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ABSTRACT 

Room-temperature ionic liquids (RTILs) are a promising class of electrolyte that 

are composed entirely of ions but are liquid at room temperature. Their remarkable 

properties such as wide electrochemical window make them ideal electrolytes in many 

electrochemical systems. Because the non-equilibrium transport of RTILs often 

determines the performance of these systems, a fundamental understanding of such 

transport is needed. Here, using molecular dynamic (MD) and continuum simulations, we 

investigated the non-equilibrium transport of RTILs in three scenarios relevant to the 

application of RTILs in electrochemical systems: the electroosmotic flow (EOF) of 

RTILs through nanochannels, the electrokinetic transport of RTILs through nanopores, 

and the charging kinetics of the double layers near planar electrodes.  

For EOFs of RTILs through nanochannels, we discovered that their strength 

greatly exceeds that predicted by the classical hydrodynamic theories. We traced the 

unexpected flow strength to the short-wavelength nature of the EOFs in RTILs, which 

requires the generalized hydrodynamics (i.e., nonlocal law for the shear stress-strain rate 

relation) for describing such flows. The EOF in RTILs is thus a rare example in which 

short-wavelength hydrodynamics profoundly affects flow measurables.  

For the electrokinetic transport of RTILs through nanopores, we discovered that, 

in pores wetted by RTILs a gradual dewetting transition occurs upon increasing the 

applied voltage, which is accompanied by a sharp increase in ionic current. These 

phenomena originate from the solvent-free nature of RTILs and are in stark contrast with 
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the transport of conventional electrolytes through nanopores. Amplification of these 

phenomena is possible by controlling the properties of the pore and RTILs, and we 

showed that it is especially pronounced in charged nanopores.  

For the charging kinetics of the double layers near planar electrodes, we found 

that, the potential across the double layers can oscillate during charging when the 

charging current is large. Such oscillation originates from the sequential growth of the 

ionic space charge layers near the electrode surface. This allows the evolution of double 

layers in RTILs with time, an atomistic process difficult to visualize experimentally, to be 

studied by analyzing the cell potential under constant current charging conditions.  
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CHAPTER 1 

Introduction 

1.1 Overview 

The increasing global demands for green energy require novel energy solutions. Such 

growing demands triggered tremendous developments of energy technologies in the recent 

decades. At present, solar1, wind2 and ocean wave3 energies are harvested at very large scales 

and converted to electricity4. Since these renewable energy sources are often intermittent, 

effectively using these energy sources often demands reliable energy storage technologies. A 

large variety of electrical energy storage systems, e.g., fuel cells5, lithium-ion batteries6, lithium-

air batteries7 and supercapacitors8 have been developed to meet this requirement9. For example, 

Figure 1.1 shows the schematics of a supercapacitor, which is capable of delivering large amount 

of energy in very short time and thus can be used for load regulation (e.g., power “shaving”) in 

power grids. 

The performance of electrochemical energy storage systems often depends strongly on 

the transport characteristics of their electrolytes. The transport characteristics of conventional 

electrolytes, such as aqueous solutions of KCl, NaCl and CaCl2 have been studied extensively 

and are relatively well understood10,11. Recently, room-temperature ionic liquids (RTILs) have 

received significant attention as a new class of electrolyte for electrochemical energy storage 

devices12,13. RTILs are low temperature molten salts composed entirely of ions. Because ions in 

RTILs are usually bulky and their charges are de-localized (see Figure 1.2), the electrostatic 

interactions between ions are not as strong compared to that in conventional electrolytes. This, 

along with the fact that the complex shape of ions makes highly ordered packing of ions difficult, 
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allows RTILs to be in the liquid state at close to room-temperature. RTILs are considered 

designer molecules because it is relatively easy to tailor their properties by modifying their 

chemical structures. Because RTILs have remarkable properties such as wide electrochemical 

window, low vapor pressure, and excellent thermal stability, they are well-suited for 

electrochemical energy storage devices such as batteries and supercapacitors. For example, the 

wide electrochemical window of RTILs enables supercapacitors to operate at voltages (~4-5V) 

much higher than that of conventional electrolytes (1-3V), which helps greatly increase 

supercapacitors’ energy density. 

 

Figure 1.1. Schematics of a supercapacitor and its key components (porous electrodes, electrolytes, and 

separator)14. The structure/size of the nanopores, the interaction between ions and pore walls, and the 

operating voltage together determine the maximal energy density of the supercapacitors; the transport of 

ions in the bulk electrolytes and in the nanoporous electrode determine the power density of the 

supercapacitor. 

In this dissertation, we are most interested in the non-equilibrium transport of RTILs in 

electrochemical systems, such as ionic transport in nanochannels and nanopores, because the 

performance of these systems is often determined by the non-equilibrium ion transport at  
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Figure 1.2. Room-temperature ionic liquids (RTILs). Ions in RTILs are often bulky, have complex shape, 

and feature de-localized charge. Because there exists many types of cations and anions capable of forming 

RTILs and these ions can be further modified by functionalization, RTILs are considered designer 

molecules. Left panel: the molecular structure and charge distribution of a popular RTIL 1-Butyl-3-

methylimidazolium hexafluorophosphate (BMIM-PF6)15. Right panel: different types of RTILs showing 

different colors16. 

nanoscale17. For example, the transport of ions through nanopores within the porous electrode of 

supercapacitors determines the dynamics of charging/discharging of these nanopores, and 

ultimately the power density of the supercapacitors18. In the following sections, we review the 

basic theories and prior works on transport of ions and electrolytes in nanoscale systems, with a 

focus on the non-equilibrium transport. Since the electrical double layers (EDLs) play an 

essential role in the ionic transport in nanoscale systems, we will first introduce the concept of 

EDLs.  

1.2 Electrical double layers 

Electrical double layers (EDLs) are ubiquitous in electrochemical systems. They usually 

emerge when electrified surfaces come into contact with another phase featuring mobile charge 
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carriers1. Because of their importance in diverse applications including electrode kinetics, 

colloidal stability, and manipulation of fluids/particulates in micro/nanofluidic systems, 

numerous models have been developed to describe EDLs (see Figure 1.3). In this dissertation, 

we are interested in the EDLs formed at the interface of an electrified solid surface and 

electrolytes in the liquid state. The Helmholtz model is the simplest model for such EDLs. In this 

model, the electrical charges on the solid surface are assumed to be balanced by a single layer of 

counter-ions adsorbed on the solid surface (see Figure 1.3a). While such a model can explain 

some experimental data (e.g., those related to electrode kinetics), it fails to explain most of the 

electrokinetic experimental data. A key reason for this is that, at finite temperature, not all 

counter-ions are adsorbed on the charged surface due to thermal fluctuations. As such, the 

counter-ions do not form a single static layer but rather occupy a finite space near the charged 

surface, usually referred to as the diffuse layer (see Figure 1.3b). This picture of the EDLs was 

originally proposed by Gouy and Chapman, and had since become the cornerstone of 

electrokinetic theories.  

The picture of the EDLs proposed by Gouy and Chapman can be described quantitatively 

using the Poisson-Boltzmann (PB) equation. The PB equation is a mean-field theory, in which 

the free energy of an ion i at position r is taken as the product of the mean electrical potential at 

that position and the charge of the ion. Since the distribution of ions in liquid state is governed 

by Boltzmann statistics, it follows that the density of ion i at position r is given by 

                                                           
1 A surface can become electrified due to polarization by external voltages (as in the case of electrodes) or by other 

electrochemical means, e.g., due to deprotonation of surface groups or specific adsorption of ions onto surfaces. The 

mobile charge carriers can be ions, electrons, or holes, depending on the nature of the phase they exist. In this 

dissertation, the mobile charge carriers are ions. 
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 𝑛𝑖(𝑟) = 𝑛𝑖,∞𝑒−𝑒𝜙(𝑟)𝑧𝑖/𝑘𝐵𝑇 (1.1) 

where ni,∞ is the density of ion i in bulk electrolyte (where the electrical potential is taken as 

zero), 𝜙(𝑟) is the mean-field electrical potential at position r, z𝑖 is the valency of ion i, e is the 

electron charge, 𝑘𝐵 is the Boltzmann constant, and T is the temperature. By combining Equation 

1.1 with the Poisson equation for the electrical potential distribution, we arrive at the classical PB 

equation 

 ∇2𝜙 = −
𝑒

𝜖
∑ 𝑧𝑖𝑛𝑖,∞𝑒−𝑧𝑖𝜙𝑒/𝑘𝐵𝑇𝑁

𝑖=1  (1.2) 

where 𝜖 is the dielectric permittivity inside the EDLs. Solving the PB equation can provide all 

details of the EDLs, e.g., the distribution of the electrical potential and ion densities across the 

EDLs. In the above derivation, ions are taken as point charges, and thus they can approach  

 

Figure 1.3. Classical models of electrical double layers. (a) The Helmholtz model. In this model, the 

charge on the surface is screened by one layer of counter-ions, and the electrical potential drops linearly 

within the EDLs. (b) The Gouy-Chapman-Stern model. In this model, the ions can approach to the 

electrified surface to a finite distance. The charge on the surface is screened by adsorbed ions and ions 

within the diffuse layer. The electrical potential drops linearly within the ion-free Stern layer and 

nonlinearly within the diffuse layer. Figures are reproduced from Ref. 19.  
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infinitely close to the charged surface. Near surface with large surface charge densities (or high 

potential), the PB equation often predicts unphysically high ion density (e.g., ion density far 

exceeds the close packing limits defined by ion sizes). This issue can be resolved by setting the 

closest approach of ions to the surface to a finite value (typically equal to the diameter of an ion 

or a hydrated ion). Since this idea was first articulated by Stern, the ion-free layer adjacent to the 

charged surface is usually called the Stern layer.  

It can be shown that the thickness of the diffuse layer in the EDLs is closely related to the 

so-called Debye length  

                                                                 𝜆𝐷 = √
𝜀𝑘𝐵𝑇

∑ 𝑛𝑖,∞𝑧𝑖
2𝑒2

𝑖
                                                       (1.3) 

Since the Debye length depends on the concentration of the bulk electrolyte, it can be considered 

as an intrinsic length of the electrolyte. Physically, it characterizes the distance over which the 

charges on electrode surface are screened by ions near them. Near surface with potential smaller 

than the thermal voltage (𝜙𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑘𝐵𝑇/𝑒 ≈ 26𝑚𝑉 at room temperature), the electrical 

potential drop follows (𝑧) = 𝜙(0)𝑒−𝑧/𝜆𝐷 . Clearly, the Debye length dictates how fast the 

potential drops and it quantitatively characterizes the EDLs thickness. While the Debye length 

does not characterize the thickness of EDLs when the potential drop inside the diffuse layer is 

much larger than the thermal voltage, it can still serve as a useful indication of the extension of 

the EDLs.  

Although the PB equation has numerous limitations (e.g., it neglects the finite size of 

ions, ion-ion correlations, and non-electrostatic ion-ion and ion-wall interactions), it has been 

used successfully to interpret experimental phenomena related to electrokinetics, interactions 
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between colloidal particles and electrode kinetics. Despite these successes, we must emphasize 

that the PB equation and most of its extensions are essentially based on dilute solution theories 

and they are rigorously valid only when the electrical potential drop across EDLs is not much 

larger than the thermal voltage. We must be cautious when attempting to use them in situations 

with high electrolyte densities or large potential drop across EDLs. 

 

Figure 1.4. Structure of EDLs in RTILs revealed by MD simulations.  Distribution of cations and anions 

near a planar electrode with a surface charge density of 0.112 C/m2. The RTIL is [BMIM][Cl] in panel a 

and [BMIM][PF6] in panel b. Figures are reproduced from Reference 20.  

RTILs are solvent-free electrolytes and ions in them are in close contact. Clearly, the 

foundation of the PB equation breaks down for the EDLs in RTILs. Because of this, there has 

been tremendous interest in delineating the structure of the EDLs in RTILs in the past six years. 

Research in this direction is, in large part, triggered by a highly influential paper published by 

Professor Alexei Kornyshev (Imperial College London) titled “Double-Layer in Ionic Liquids: 
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Paradigm Change?”21 While earlier experimental data suggested that EDLs in RTILs can be 

described well by the Helmholtz model, such a simplistic picture seems to be inadequate based 

on recent experimental, theoretical and simulation works. Specifically, numerous simulations 

and experimental measurements showed that EDLs in RTILs are characterized by an alternating 

layering of counter-ions and co-ions near the charged surface (see Figure 1.4) and such layering 

can extend a few nanometers from the charged surface.22,23,24,25,26,27,28,29,30,31,32,33,34,35,36   

 

Figure 1.5. Structure of EDLs in RTILs at different surface potentials. Overscreening (a) is observed at 

low surface potential, while crowding is observed at very high surface potentials (b).  

A key feature of the EDLs in RTILs is the so-called overscreening phenomenon. In the 

classical PB equation and its variants, the charge on the surface is screened monotonically as one 

moves away from the surface, i.e., at any position inside EDLs, the net ionic space charge 

between the surface and this position is always smaller (or at best equal) to the net charge on 

surface. If the overscreening phenomenon occurs, the net ionic space charge density at a finite 

distance away from the surface exceeds the total charge on the surface (see Figure 1.5a). It has 

been found that the overscreening phenomenon is more distinct at low surface charge densities 

(or low surface potentials) and becomes weaker as the surface becomes more polarized37.  
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Figure 1.6. Structure of EDLs computed using MD simulations (solid bars) and the BSK model (open 

bars). The RTIL has counter-ions and co-ions with the same size (ion diameters ~1.0nm). Distributions of 

cations (top panels) and anions (bottom panels) are plotted in monolayer bins i =1;  2; . . . for different 

surface charge densities. Figures are reproduced from Ref. 39.  

Another interesting feature of the EDLs in RTIL is the crowding (also called lattice 

satuation21) phenomenon. This phenomenon occurs when the net charge on the surface is so high 

that the first counter-ion layer adsorbed on the surface cannot fully screen these charges. This 

phenomenon can occur because the ions in RTILs are often bulky. For example, for a counter-

ion diameter of ~0.8nm (similar to the size of a BMIM+ ion), the maximal charge screened by a 

single layer of counter-ions near the surface is ~0.35 C/m2. Since the charge density of surfaces 

in electrochemical systems can often exceed this value, crowding is indeed expected. It is worth 

noting that overscreening can still occur when crowding occurs, although these two phenomena 

are often treated as if they are mutually exclusive (e.g., the terminology of transition from over-

screening to crowding that is frequently used in the literature). For example, the bottom right 

panel of Figure 1.6 shows that, at a surface charge density of 0.32C/m2, the first layer of counter-

ions (diameter: ~1.0nm) adjacent to the electrode cannot fully screen the charge on the surface, 
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i.e., crowding appears. However, the net charge in the first and second ionic layers exceeds that 

on the electrode surface. Since there is no co-ion in the first two ionic layers, it is clear that 

overscreening occurs in the second ionic layer.  

Many models have been developed to predict the structure and thermodynamic properties 

of the EDLs in RTILs. Most of these models are mean-field models, and they can be considered 

as extensions of the PB model, usually by taking into account the finite size of the ions and the 

compressibility of the RTILs21. While these models can predict some aspects of the EDLs, in 

particular how the capacitance of EDLs depends on the voltage, they have inherent limitations, 

e.g., none of them can predict key features such as the overscreening phenomenon. Most 

recently, however, a non-mean field model that differ qualitatively from these models have been 

developed by Professors Bazant (MIT), Storey (Olin College), and Kornyshev (Imperial College) 

37. The key idea is to account for the ion-ion correlations by introducing a wavelength-dependent 

dielectric constant.  For equilibrium EDLs, the electrical potential distribution inside the EDL is 

given by 

 (1 − 𝛿𝑐
2∇̃2)∇̃2𝜙̃ =

sinh 𝜙̃

1+2𝛾sinh2(𝜙̃/2)
                                         (1.4) 

where dimensionless correlation length is 𝛿𝑐 = 𝑙𝑐/𝜆𝐷, 𝑙𝑐 is electrostatic correlation length, 𝛾 is 

the ratio of ion density in the bulk to the maximum possible density. Dimensionless length is x̃ =

𝑥/𝜆𝐷, dimensionless gradient is ∇̃= 𝜆𝐷∇ and dimensionless potential is 𝜙̃ = 𝑧𝑒𝜙/𝑘𝐵𝑇. This 

fourth order differential equation is complemented by the following boundary conditions: 

𝜙̃′′′(0) = 0, 𝑎𝑛𝑑 𝜙̃(0) = 𝑧𝑒𝑉/𝑘𝐵𝑇                                         (1.5) 
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Figure 1.7. Differential capacitance of EDLs in RTILs predicted by the BSK model (solid line), the 

mean-field model21, and MD simulations38. The inset shows the asymptotic scaling of the differential 

capacitance with respect to the electrical potential drop across EDLs. Figure is reproduced from Ref. 39. 

where 𝑉 is the potential at the surface relative to the bulk. Equations 1.4 and 1.5 are hereafter 

termed as the BSK model. The BSK model may be considered as the most significant 

breakthrough of the EDLs theories in the last five decade because, by going beyond the 

conventional mean field theories, it enables essential feature of EDLs in electrolytes with strong 

ion-ion correlations to be predicted with reasonable accuracy. Figure 1.6 compares the structure 

of EDLs near electrodes with various surface charge densities, and we observe that both 

overscreening and crowding are predicted quite well. The BSK theory can also predict the 

differential capacitance of EDLs quite well (see Figure 1.7). While the BSK model has been 

shown to predict the equilibrium characteristics of EDLs quite well, its performance for 

predicting the dynamics of EDLs formation has not been established yet and this open question 

will be addressed in this dissertation. 

1.3 Non-equilibrium transport of ions and electrolytes 

The non-equilibrium transport of ions and electrolytes has been investigated in various 

contexts such as microfluidic pumping, biochemical sensing, and charging of supercapacitors. Of 
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particular importance for electrochemical devices is the electrically-driven transport in nanoscale 

systems featuring nanopores and nanochannels. When the research reported in this dissertation 

was performed, there was little work on the non-equilibrium transport of RTILs in nanoscale 

systems. Here we summarize the key insights from the prior works on non-equilibrium transport 

of convention electrolytes in nanosystems. While there exists many ways to classify these works, 

we found it useful to classify them depending on whether and how the EDLs in the nanosystems 

are perturbed in the transport process because the physics of non-equilibrium transport often 

differ qualitatively.   

1.3.1 Electroosmotic flows in nanosystems 

Figure 1.3 shows that, at the liquid side of the EDLs, there is a net excess of counter-ions. 

If an electrical field exists in the tangential direction of the electrified surface1, a net force will be 

generated within the liquid phase (see Figure 1.8). If the electrified surface is stationary, such a 

net force will lead to a net transport of fluids adjacent to the surface, and this flow is termed the 

electroosmotic flow (EOF)40,41. If the tangential electrical field is applied directly, the induced 

fluid flow is called the classical EOF. In the Classical EOF, the structure of EDLs is not 

perturbed except near surfaces with heterogeneous charge densities42.  

The classical theory for describing EOF is based on the Navier-Stokes equation and the 

PB equation. Without loss of generality, we shall focus on the EOF within a slit channel with a 

width of W. Assuming that the channel is long and there are no other driving forces for the flow, 

the fluid velocity is governed by 

                                                           
1 Such a tangential electrical field can either be imposed directly (as in the classical electroosmotic flow) or be 

induced within the system indirectly (as in induced-charge electroosmotic flow41). 
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Figure 1.8. Basic concept of electroosmotic flow (EOF). An electrical field in the tangential direction of a 

stationary, charged solid surface generates a body force within the liquid to drive the EOF. In classical 

EOF theory, the fluid velocity is assumed to be zero at a “shear plane” adjacent to the surface. The 

electrostatic potential on the shear plane is termed the 𝜁–potential. The figure is reproduced from Ref. 43. 

 
𝑑

𝑑𝑧
(𝜇

𝑑𝑢(𝑧)

𝑑𝑧
) + ∑ 𝑒𝑧𝑖𝑛𝑖(𝑧)𝐸𝑥

𝑁
𝑖=1 = 0                                     (1.6) 

where 𝜇 is dynamic viscosity of the fluid, 𝑢 is velocity, 𝑧 is the coordinate perpendicular to 

channel walls, 𝑁 is total number of ions and 𝐸𝑥 is the electric field tangential to the walls. The 

density of ions in Equation 1.6 is typically solved using the PB equation (Equations 1.1 and  

1.2). Prior works showed that the above theories can predict the EOF with reasonable accuracy 

only if the no-slip boundary condition is applied at the so-called shear plane, which is located at 

a short distance (typically one to a few molecular diameters) from the physical surface (see 

Figure 1.8). The location of the shear plane is usually taken as a fitting parameter in EOF 

theories. Such a treatment is equivalent to assume that the viscosity of fluids within the shear 

plane is infinitely high. While this clearly represent an oversimplification of the reality, the idea 

that the viscosity of fluids adjacent to a charged surface can be much higher than that of bulk 

liquids is supported by MD simulations (see Figure 1.9). While a number of theories have been  
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Figure 1.9. Electroosmotic flow through 6.53nm-wide slit nanochannels. (a) the velocity profile 

computed using MD simulations; (b) the effective viscosity of liquid water extracted from Equation 1.6 

using the velocity and ion densities computed from MD simulations as inputs. The thin dashed line denote 

the viscosity of bulk water. Figures are reproduced from Ref. 44.  

proposed to explain the enhanced viscosity of interfacial fluids, recent studies showed that a key 

reason is the electro-friction between counter-ions and charged surfaces. Specifically, such 

electro-friction leads to an effective loss of driving force for the fluid. If one uses the Navier-

Stokes equation, in which this effect is not taken into account, to interpret the EOF, one must 

increase the viscosity of interfacial fluids (since the viscosity of interfacial fluids is the only 

fitting parameter in the EOF model if the ion densities are obtained from first-principle 

calculations) so that the prediction of the Navier-Stokes equation can agree with that measured in 

experiments or MD simulations45. 

An interesting observation from previous MD simulations of the EOF in nanochannels is 

that, apart from the fact that the viscosity of interfacial fluids must be adjusted to values different 

from bulk fluids, Navier-Stokes equation can quantitatively predict the EOF inside channels as 

narrow as five molecular diameters. In fact, all anomalies of the EOFs discovered so far, e.g., 

enhanced viscosity of interfacial fluids and even reversal of EOF direction46, can be attributed to 

the failure of the classical theories to take into account atomistic processes (e.g., electro-friction 
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between ions and walls) within a few molecular diameters away from the charged surface. In 

another word, the classical Navier-Stokes equation is surprising robust down to nanometer scales 

and can accurately predict the EOF of conventional electrolytes at positions a few molecular 

diameters away from the charged surface47.  

1.3.2 Ionic transport through nanopores 

 

Figure 1.10. Schematic for DNA sequencing using nanopores. Electrical potential difference is applied 

between two ends of a nanopore, which is immersed in electrolyte solutions. The ionic current through the 

nanopore is sensitive to pore shape, size and materials passing through them. The sequence of nucleotides 

on the DNA can be identified by detecting the changes of the ionic current through the nanopore. The 

figure is reproduced from Ref. 48. 

The recent surge in interest in ionic transport through nanopores is, to a large extent, 

driven by the need to develop ultra-sensitive biochemical analysis systems. For example, Figure 

1.10 shows a conceptual sketch of DNA sequencing based on nanopores. The essential idea is to 

drive DNA through a nanopore with diameter comparable to its diameter using electrical fields, 

and by detecting the change of ionic current (or, in some designs, the change of voltage on 

embedded microelectronic components), one can differentiate different base pairs on the DNA 

strand and accomplish sequencing.  
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Many intriguing phenomena have been discovered for electrically-driven ionic transport 

through nanopores. For example, for conical nanopores, the ionic current is found to depend on 

the polarity of the voltage applied across the pore (this phenomenon is usually termed as current 

rectification in charged conical nanopores49,50, see Figure 1.11). These unusual phenomena have 

been studied extensively, and the underlying mechanisms are now understood reasonably well 

within the framework of the Poisson-Nernst-Planck (PNP) equations52. In this framework, the 

ionic flux is given by 

                                                         𝐽𝑖 = −𝐷𝑖∇𝑐𝑖 − 𝐷𝑖
𝑧𝑖𝑒

𝑘𝐵𝑇
𝑐𝑖∇𝜙 + 𝑐𝑖𝑢                                     (1.6) 

where 𝐷𝑖 is the diffusion coefficient of 𝑖th ionic species and 𝑢 is the local fluid velocity. The first 

term on the right hand side is the contribution from diffusion, the second term is the contribution 

from electro-migration, and the third term is the contribution from convection. The mechanism 

explained in this framework is that current rectification is due to different transference numbers 

 

Figure 1.11. A schematic for the cross section of a negatively charged conical pore (left panel) and 

current-voltage curve showing ion current rectification by a pore with tip length of 85nm filled with 1 

mM and 10 mM phosphate buffers (pH 6.7). In the left panel, potential difference is applied between the 

working electrode and the counter electrode. Regions of high and low cation transference number (t+) are 

marked, and arrows show the direction of cation flux in high and low conductance (G) states. The figures 

are reproduced from Ref. 51.  



17 

 

 

Figure 1.12. Average ion concentration and electrical potential profiles across the system at (a) V = 0V; 

(b) V = 0.5V (high conductance state); (c) V = -0.5V (low conductance state) when the surface charge 

density of conical pore is 0.16 C/m2. The inset shows the magnified tip region. This figure is reproduced 

from Ref. 52. 

in and around the tip of the conical pore. When cations transport from tip to base (V = 0.5V, 

Figure 1.12b), they are transported from a region with higher transference number to a region 

with lower transference number, which results in the increase of ion concentration in the pore 

and a higher conductance; when the cations transported from base to tip (V = -0.5V, Figure 

1.12c), they are transported from a region with lower transference number to a region with 

higher transference number, which results in the decrease of ion concentration in pore and a 

lower conductance. While PNP equations have been proven successful for understanding the 

ionic transport through nanopores with characteristic dimension much larger than the ion 

diameter, they may not provide accurate predictions in pores with diameters comparable to the 
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size of ions or fluid molecules. In such situations, molecular level understanding of the ionic 

transport is essential.  For example, using MD simulations, it has been predicted that, in narrow 

hydrophobic pores that are initially unwetted by aqueous electrolytes, an abrupt wetting 

transition can be triggered by the application of strong electric fields that will consequently cause 

ionic current to jump from zero to a finite value.53,54 This theoretical prediction has recently been 

demonstrated experimentally (see Figure 1.13).  

 

Figure 1.13. Ionic current through a single hydrophobic nanopore. At a voltage difference of 5V between 

the two sides of the nanopore, the pore is wetted by electrolytes and significant current is observed. At a 

voltage difference of 1.0V, the nanopore is in the “dry” state and no ionic current is observed.  

Most prior research on ionic transport in nanopores is limited to nanopores connected to 

aqueous electrolyte reservoirs. Ionic transport in nanopores filled with non-aqueous electrolytes 

has received much less attention despite that non-aqueous electrolytes are widely used in 

electrochemical systems, whose performance is often controlled by their transport in nanopores. 

Of the available studies on transport of RTILs in nanopores, most were devoted to the self-

diffusion of the ions. For example, the self-diffusion of ions near a graphite surface (see Figure 

1.14) with different charge densities has been carefully analyzed and it was found that the self-

diffusion of ions is strongly heterogeneous. Under high surface charge densities, the lateral  
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Figure 1.14. Equilibrium transport study for self-diffusion of RTILs in nanopores. The figure on the left 

is the MD system for studying diffusion of RTILs confined between two parallel plates. The figure on the 

right is the MD system used for studying diffusion of RTILs in multiwall carbon nanotubes. The figures 

are reproduced from Refs. 55Error! Bookmark not defined. and 56Error! Bookmark not defined.. 

diffusion of ions in the first counter-ion layer is actually faster than that in bulk RTILs. More 

systematic studies revealed that diffusion can be hindered or enhanced compared to that in bulk 

RTILs depending on the size of nanopores and the molecular structure of ions56,57,58,59. Studies of 

electrically-driven transport of RTILs through nanopores are relatively rare. Nonetheless, the 

Siwy group has studied the electrically-driven transport of RTILs through conical nanopores, and 

weak rectification of ionic current was observed (see Figure 1.15). 

 

Figure 1.15. Ionic current through nanopores filled with [BMIM][CH3SO4]. Current-voltage curves in a 

single cylindrical nanopore with a diameter of 90 nm (A) and in a single conical nanopore with the 

narrow opening of 5 nm in diameter and the big opening of 525 nm (B). Weak current rectification is 

observed in the conical pore. The figures are reproduced from Ref. 60. 
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A key finding of the existing research on ionic transport through nanopores is that the 

macroscopic behavior of ionic transport through nanopores, often characterized by a current-

voltage (I-V) curve, strongly depends on the thermodynamic states of the ions such as ion 

concentration and solvation in nanopores. While thermodynamic states of ions in nanopores are 

typically controlled by the properties of pore walls such as charge density and wetting behavior, 

they can also be modulated by applying electric field if the nanopore-electrolyte systems (e.g., 

charged conical pores immersed in dilute electrolytes) are driven far from equilibrium by the 

applied field. For conventional electrolytes (especially dilute, fully dissociated electrolytes), the 

non-equilibrium state of ions within nanopores and its dependence on the applied electric field is 

relatively well-understood. However, research on non-equilibrium transport of RTILs is still far 

more limited and merit systematic investigation.  

1.3.3 Dynamics of double layer formation 

In the ionic transport discussed above, the charge density on the surface does not change 

with time. Therefore, unless the voltage variation induced by the externally applied voltage is 

large, the EDLs are either not perturbed (e.g., in EOFs) or only weakly perturbed from their 

equilibrium state. These situations are in sharp contrast with that encountered in the charging of 

supercapacitors in which the EDLs near the electrodes are entirely driven by the applied voltages 

or imposed currents. The formation and relaxation of EDLs have been studied mostly using 

atomistic simulations, PNP models or its variants, and equivalent circuit models.  

In one of the earliest non-equilibrium dynamics studies61, the dynamics of EDLs 

formation in molten salts was explored by reversing the sign of the charges on the wall atoms 

and following the subsequent evolution of the potential across the cell with time. It was found  
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Figure 1.16. (a) Temporal evolutions of induced electric field and electric current contributed from 

cations and anions. The simulation was performed in a constant-charge setting and the charge on the wall 

is switched to zero instantaneously in the beginning of the simulation. (b) Relaxation of electrode charge 

during constant-potential discharging process. These figures are reproduced from Ref. 63. 

that the charge relaxation near the wall is very rapid due to the small-scale translation of ions and 

the large driving force from strong local electric field. In a related work62, the polarization 

relaxation of RTILs confined between two oppositely electrified walls was studied by switching 

off the external electric field and then monitoring the decay of potential in the electrolyte with 

time. It was discovered that the EDL relaxation consists of a fast process with a time scale of < 

0.2 ps that accounts for 80% of the potential drop and a slower process with a characteristic time 

of ~8 ps; it was also shown that ion diffusion, which occurs on a much longer time scale, is not 

involved in the EDL relaxation process. More recently, the relaxation of EDLs at an RTIL-

graphite interface was studied using two different approaches63. In both approaches, the EDLs 

are equilibrated initially before the studies of dynamics. The difference is that at the beginning of 

the simulations, the charges on the electrode surface are removed instantly in the first approach, 

while the electrical potential on the two electrodes was switched to the same value in the second 

approach. The EDL relaxation probed by the first approach is found to be a fast process 

occurring over a time scale of picoseconds (see Figure 1.16a). In comparison, the EDL relaxation 
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probed by the second approach is found to occur over a time scale of hundreds of picoseconds 

(see Figure 1.16b), largely due to the slow ion diffusion involved during the EDL reorganization. 

Since RTILs are solvent-free electrolytes and the classical PNP equations, which neglect 

steric effects and ion-ion correlations, cannot accurately describe the dynamics of EDLs in 

concentrated electrolytes21,37,64, the above non-equilibrium studies on the formation and 

relaxation of EDLs are all based on MD simulations. However, because of the recent 

breakthrough in the development of continuum models for EDLs in RTILs, continuum 

simulations of EDL formation in RTILs have become possible. For example, modified PNP 

equations, which take into account steric effects, have been developed and used to study the ion 

dynamics in electrochemical cells64. Most recently, using the BSK model, the step charging of a 

parallel electrochemical cell was recently simulated65, and the results indicated that the essential 

behavior of charging (i.e., formation of the EDLs) is closely controlled by a new length scale 

√𝜆𝐷𝑙𝑐, where 𝜆𝐷 is the Debye length and 𝑙𝑐 is the correlation length in RTILs, and a time scale 

𝜆𝐷
3/2

𝐿/(𝐷𝑙𝑐
1/2

), where D is the ion diffusion coefficient and L is the width of the electrochemical 

cell. The time scale is consistent with that inferred from the classical resistor-capacitor (RC) 

circuit model. 

         

Figure 1.17. A prototype electrochemical cell (left panel) and its equivalent electrical circuit (right 

panel). The electrochemical cell consists of a slab of electrolyte sandwiched between two electrodes. 

These figures are reproduced from Ref. 66. 
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While both MD and continuum simulations help understand the formation and relaxation 

of EDLs driven by external voltages (or currents), these methods are relatively complicated and 

are only begun to be used in research. In practice, the EDL dynamics is widely studied using 

equivalent electrical circuits because of their simplicity and ability to capture some essential 

features of EDL dynamics. Figure 1.17 shows a prototype electrochemical cell and its equivalent 

RC circuit. The resistance of the bulk electrolyte is given by  

                                                             𝑅𝑏 =
2𝐿

𝜎
                                                             (1.7) 

where 2𝐿 is the thickness of the bulk electrolytes. 𝜎 is the electrical conductivity of the bulk 

electrolyte given by 

 𝜎 = 𝐹 ∑ 𝑐𝑖,∞|𝑧𝑖|𝑖 𝜇𝑖                                                     (1.8) 

where 𝐹 is the Faraday constant, 𝑐𝑖,∞ is the concentration of 𝑖th species in the bulk, and 𝜇𝑖 is the 

mobility of 𝑖th ion species. The EDLs near each electrode is modeled as two capacitors (one 

corresponds to the Stern layer and one corresponds to the diffuse layer, cf. Figure 1.3) in serial. 

The capacitance of the Stern layer is given by  

                                               𝐶𝑠 =
𝜖𝑠

𝑙𝑠
                                                    (1.9) 

where 𝜖𝑠 and  𝑙𝑠 are the dielectric permittivity and the thickness of the Stern layer, respectively. 

The capacitance of the diffuse layer is given by  

𝐶𝐷 =
𝜖

𝜆𝐷
cosh (𝑒𝜙𝑑/2𝑘𝐵𝑇)                                            (1.10) 

where 𝜙𝑑 is the potential drop across the diffuse layer of EDLs.  
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The previous studies on dynamics of EDLs in RTILs have provided fundamental insights 

into the formation and relaxation of EDLs, but many issues remain to be explored. Some of these 

issues are critically relevant to the practical applications of EDLs. First, the majority of the prior 

studies focused on the macroscopic behavior of EDL formation/relaxation by examining the 

variation of the electrical potential drop across EDLs, but relatively few works provided detailed 

characterizations for the evolution of EDL structures. Second, most of the existing works dealt 

with the limiting case of EDL formation or relaxation, i.e., when a step change of the charged 

state is enforced on the electrode surface. Such a limiting case corresponds to an infinitely large 

electronic current in the external electric circuit, which is not always realistic. Finally, although 

the recently developed BSK model39 can reproduce many EDL properties under equilibrium 

condition, it is not yet clear whether they can predict the dynamics of EDL formation with 

accuracy. 

1.4 The scope of this dissertation 

A thorough understanding of the ion transport in electrochemical devices using RTILs as 

working electrolyte is essential for exploiting the potential of RTILs in these applications to the 

fullest extent. The ionic transport in these systems have different features depending on whether 

and how the EDLs in them are perturbed during the operation. In this dissertation, we study the 

non-equilibrium transport of RTILs under three different scenarios in which the EDLs are 

perturbed in very different ways: 

(1) We study the EOF inside slit-shaped nanochannels filled with RTILs using MD 

simulations. The nanochannels are periodical in the axial direction to mimic a long 

nanopore. In this case, the EDLs near the nanopore-RTIL interface are barely 
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perturbed. We will study the ion number densities and EOF velocity distributions 

across the system. The essential question to address is whether the classical EOF 

theories developed for conventional electrolytes can predict the EOF in RTILs. In 

particular, we are interested in whether new features of EOF may emerge due to the 

strong ion-ion correlations in this new class of electrolytes.  

(2) We study the ionic transport through cylindrical nanopores connected with RTILs 

reservoirs. In this case, the EDLs inside the nanopore can be perturbed strongly in the 

pore length direction when the voltage drop applied across the pore is large enough. 

The essential question to address is how the structure of the EDLs inside the nanopore 

evolves as the applied voltage increases and how this structure evolution ultimately 

determines the ionic current through the nanopore. We are particularly interested if 

new features of ionic transport can be observed due to the fact that RTILs are solvent-

free. Most of the simulations will be performed using MD method but we will also 

study the problem using modified PNP equations.  

(3) We study the dynamics of EDL formation in an electrochemical cell featuring a pair of 

planar electrodes separated by RTILs under constant-current charging conditions, a 

scenario frequently encountered in galvanostatic electrochemical experiments. In this 

case, the EDLs form dynamically in response to the applied current, i.e., the EDLs are 

perturbed in the direction normal to the electrode. The essential question to answer is 

how the electrical potential across the cell evolves during the charging process, and 

how such response is governed by the transport of ions. We will determine the spatial 

and temporal evolution of the ion densities across the cell. We will also examine 
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whether the ion transport model proposed by Professors Bazant, Storey and Kornyshev 

can predict the dynamics of EDL formation.  

The rest of this dissertation is organized as follows. In Chapter 2, we present the study of 

the EOF of RTILs in nanochannels. In Chapter 3, we present the study of the electrically-driven 

transport of RTILs through cylindrical nanopores connected with large electrolyte reservoirs. In 

Chapter 4, we present MD and continuum simulations of the charging dynamics of EDLs in an 

electrochemical cell under the constant-current charging condition. Finally, conclusions will be 

presented in Chapter 5. 
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CHAPTER 2 

Electrokinetic Transport of RTILs in Nanochannels 

Electrokinetic transport in RTILs plays an important role in their applications, but is only 

begun to be understood. In this chapter we present the atomistic simulation of EOF in RTILs. We 

find that, although the EOF is suppressed by the ion-wall electrofriction, its strength greatly 

exceeds that predicted by classical hydrodynamic theories if correct ion distribution is used and 

electrofriction effects are effectively accounted for. We trace the unexpected flow strength to the 

short-wavelength nature of EOF in RTILs. We show that the EOF in RTILs is a rare example in 

which short-wavelength hydrodynamics profoundly affects flow measureables in macroscopic 

systems, and thus is a good test bed for developing improved theories for generalized 

hydrodynamics.  

2.1 Models, simulation system and methods 

We simulated the EOFs in slit-shaped nanopores. Since we are interested in the generic 

features of EOFs in RTILs rather than their electrolyte specificity, RTILs were modeled as 

charged spheres interacting via a potential given by 

                                                      𝜙𝑖𝑗 = 4𝜀𝑖𝑗

𝜎𝑖𝑗
12

𝑟𝑖𝑗
12 +

𝑧𝑖𝑧𝑗𝑒2

4𝜋𝜀0𝜀𝑟

1

𝑟𝑖𝑗
                                                     (2.1) 

where 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are Lennard-Jones (LJ) parameters, 𝑟𝑖𝑗 is the distance between ions 𝑖 and 𝑗, 𝑧𝑖 

is the valence of ion 𝑖, 𝑒 is the unit charge, 𝜀0 is the vacuum permittivity, and 𝜀𝑟 = 2 is a 

dielectric screening constant accounting for the electronic polarizability of ions not explicitly 
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modeled here. This model captures essential features of the electrical double layers (EDLs) in 

RTILs such as charge over-screening well29,67. It has also been established that coarse-grained 

models can capture key features of EOFs in conventional electrolytes very well.68,69 As will be 

 

Figure 2.1. A snapshot for bulk model RTILs in MD simulation visualized by VMD70. MD simulation is 

performed in an NPT ensemble to calculate radial distribution function (RDF) and density at atmosphere 

pressure. 

 

Figure 2.2. RDFs for model RTILs used in our work. The size and mass are the same for both cation and 

anion. The peak for cation-anion RDF is at r=0.5nm, which indicate 𝜎 of the ions. The RDFs indicate the 

model RTILs is in liquid state. 

shown below, this model also captures the key features of the hydrodynamics in RTILs down to 

molecular scale. In this work, cations and anions are monovalent ions, and all atoms have the 
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same 𝜎 and mass m. In the following, all physical quantities will be given in the reduced units, 

e.g., mass, length, and charge are measured by m, 𝜎 and the charge of cation; time, velocity and 

electrical field are measured (𝑚𝜎2/𝜀)0.5, (𝜀/𝑚)0.5 and 𝜀/(𝜎𝑒), respectively.  

 

Figure 2.3. A schematic of the simulation system. There are 1200 cations and 1108 anions inside the 

channel. 

The simulation system consists of a slab of RTILs sandwiched between two fixed walls 

(see Figure 2.3). Each wall is made of two staggered layers of atoms (𝜎𝑤𝑎𝑙𝑙 = 0.627𝜎𝑖𝑜𝑛) 

arranged in square lattices. The wall structure was designed so that no significant slip is observed 

near the wall in our coarse-grained simulations, which allows us to focus on the EOF in the 

interior of the pore. The atom layers in contact with the RTILs were assigned partial charges so 

that the surface charge density of each pore wall is -0.188 𝑒/𝜎2 (for 𝜎 = 0.5 nm, which is quite 

typical for ions in RTILs, this corresponds to a charge density of -0.12 C/m2). The pore width is 

18.4. The number of ions inside the pore was chosen such that the entire system is electrically 

neutral and bulk-like RTILs with cation/anion number density of 0.26 exist in the pore center. 

The temperature of RTILs was set to 1.0. Similar parameters have been used successfully in 
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prior modeling of EDL capacitance in RTILs29, and we confirmed that RTILs described using 

these parameters are dense liquids by examining the ion-ion pair correlation functions.  

Simulations were performed using a modified MD code Gromacs in the NVT ensemble71. 

Periodic boundary conditions were used in all three directions. The cutoff method was used to 

compute the non-electrostatic interactions, and the Lorentz-Berthelot rule was used to compute 

the LJ parameters for wall-ion interactions. To remove the periodicity in the direction normal to 

the pore walls, the simulation box length in this direction was set to be three times of the pore 

width, and the slab-PME method was used to compute the electrostatic interactions72. An 

external electrical field E = 1.03 was applied in the x-direction to drive the EOF. A Nose-Hoover 

thermostat was used to maintain the RTIL temperature at T = 1.0. To avoid biasing the velocity 

profile, only the velocity components in the directions orthogonal to the flow were thermostated. 

The system was first run 2 million steps to reach a steady state (time step: 0.004), which was 

followed by a production run of 14 million steps.  

2.2 Results and discussions 

Figure 2.4a shows the density distribution of the cations and anions across the pore. We 

observe that, near the negatively charged pore walls, alternating layers of cations and anions 

form and this pattern persists to a position ~8 molecular diameters (i.e., 8 𝜎) from the surface. To 

measure how the wall charges are screened by the ions, we computed a charge screening factor 

𝐶𝑓
46 

                                                        𝐶𝑓(𝑧) = ∫ (𝑛− − 𝑛+)𝑑𝑧/𝜎𝑠
𝑧

0
                                              (2.2) 
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Figure 2.4. (a) Distribution of cation density, anion density and space charge density across the pore. (b) 

Distribution of the screening factor 𝐶𝑓(𝑧) defined in Equation 2.2 near the lower pore wall.  

where 𝜎𝑠 is the surface charge density, and 𝑛+ and 𝑛− are the number density of cation and 

anions, respectively. 𝐶𝑓(𝑧) = 1.0 corresponds to a complete screening of the electrode charge at 

position z, and 𝐶𝑓(𝑧) > 1.0 corresponds to an over-screening of the electrode charge. Figure 2.4b 

shows that the surface charge starts to be overscreened at 𝑧 = 1.21. At larger distance, the degree 

of screening oscillates and 𝐶𝑓 approaches 1.0 only at 𝑧 ≈ 7. These EDL features revealed in 

Figure 2.4, e.g., alternating and persistent layering of ions and surface charge over-screening, are 

consistent with that observed in prior coarse-grained and fully-detailed modeling of EDLs in 

RTILs, and are mainly caused by the strong ion-ion correlations inside RTILs29,33. These results 

confirm that the model and simulation methods used here are adequate for studying EDL 

phenomena in RTILs.  

We next study the EOF inside the pore. Since the EOF stands for the collective 

(convective) transport of fluids (here, our fluid is an ionic mixture), the EOF velocity at an 

arbitrary position z in the pore can be defined as u(z) = (n+(z)u+(z)+n-(z)u-(z))/(n+(z)+n-(z)),  
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Figure 2.5 Distribution of velocities of cation u+(z) and anion u-(z) across the pore. 

where n+ (n-) and u+ (u-) are the density and velocity of the cation (anion).73 Figure 2.6 shows the 

distribution of EOF velocity across the pore. We observe that (1) the EOF velocity oscillates 

significantly near the charged wall, and (2) the EOF direction in the pore center is in the negative 

direction, while the classical electrokinetic theories predict the flow to be in the positive 

direction at position away from the pore wall. The first observation is caused by the oscillatory 

driving force in the pore (cf. the space charge distribution in Figure 2.4a), which is in turn caused 

by the alternating layering of cations and anions near the wall. The second observation is caused 

by electro-friction and charge over-screening. Specifically, because of the strong electrofriction 

between the cations adsorbed on pore wall and the wall atoms, these cations do not effectively 

render driving force to the flow. The anion layer immediately adjacent to the contact-adsorbed 

cations, however, can render driving force effectively, and this leads to a reversal of flow 

compared that expected from the classical theories in which these effects are neglected46. Since 

similar phenomenon has been observed in conventional concentrated electrolytes exhibiting 

strong ion-ion correlations46, and RTILs are characterized by strong ion-ion correlations, the 
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present finding is not surprising – in fact, it is an indication that our simulation can capture key 

features of EOFs in electrolytes with strong ion-ion correlations.  

 

Figure 2.6. Distribution of EOF velocity across the pore obtained from MD simulations and from solving 

Equation 2.3 using a constant viscosity of 1.39 across the pore.  

The EOF velocity profile shown in Figure 2.6 seems to be consistent with the 

understanding of EOF obtained from molecular simulations of concentrated electrolytes74,75. 

However, significant difference exists. Specifically, extensive MD simulations of EOF in the 

past decade suggest that, while the classical electrokinetic theories cannot quantitatively describe 

the EOF in a region very close to the charged surface due to atomistic effects such as electro-

friction, slip, anomalous interfacial fluid structure, etc,68,75,76 (general models capable of 

accounting for these effects are still lacking at present), EOFs at positions ~ 1-2 ion or solvent 

diameters away from the charged surfaces can typically be described quantitatively by classical 

theories77,78. In another word, if the EOF velocity u at any given position 2 ion (or solvent) 

diameters away from a charged surface is known, u at locations further away from this position 

can be predicted  
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                                                           𝜇
𝜕2𝑢

𝜕𝑧2
+ 𝑒(𝑛+ − 𝑛−)𝐸𝑒𝑥𝑡 = 0                                          (2.3) 

quantitatively by solving using the velocity at the given position as boundary condition. Here 𝜇 is 

the viscosity of the bulk fluids and 𝐸𝑒𝑥𝑡 is the electrical field parallel to the charged surface. 

Such a conclusion, however, fails for the EOFs in RTILs. To demonstrate this, we first compute 

the viscosity of RTILs in our pore. Specifically, we set up a box of homogeneous RTILs (box 

size: 14.7× 14.7×18.5) with the same density and temperature as the RTILs in center of our pore. 

Following the Sinusoidal Transverse Force (STF) method79 (also called periodic perturbation 

method80) we applied a body force on all ions in the form of a cosine wave across the z-direction 

of the simulation box, and obtained a viscosity of 1.39±0.02 by measuring the generated fluid 

flow. Alternatively, we applied a uniform acceleration on all ions inside the pore and retrieved 

the viscosity by fitting the generated Poiseuille flow to that predicted by the Navier-Stokes 

equations. The width of channel is divided into several bins and we assume the viscosity is 

constant in each bin. The equation for pressure-driven flow and the formula for viscosity 

calculation in each bin are shown below 

                                                            𝜌𝑖𝑔𝑥 +
𝜕

𝜕𝑧
(𝜇𝑖 (

𝜕𝑢𝑥

𝜕𝑧
)) = 0                                               (2.4) 

                                                            𝜇𝑥𝑖
=

−𝑔𝑥 ∫ (∫ 𝜌𝑖𝑑𝑥
𝑥𝑖

0 )𝑑𝑥
𝑥𝑖+1

𝑥𝑖

𝑢𝑥𝑖+1
−𝑢𝑥𝑖

                                               (2.5) 

Using Equation 2.5, the viscosity was found to decrease from 1.47±0.10 at z = 10 (i.e., pore 

center) to 1.33±0.12 at z=1.5, indicating that the fluid viscosity probed by a Poiseuille flow is 

rather uniform across the pore. We next solved Equation 2.3 using the MD velocities at z = 1.6 
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Figure 2.7. Velocity profiles for pressure-driven flow in nanochannels from MD simulation and 

analytical solution. 

and 18.4 as boundary conditions and a viscosity of 1.39. We chose to let the velocities at z = 1.6 

and 18.4 to be given a priori when solving Equation 2.3 for two reasons. First, these two points 

are sufficiently away from the pore wall so that atomistic effects (e.g., ion-wall electrofriction) 

neglected in Equation 2.3 will not significantly affect the prediction of EOF by Equation 2.3. 

Second, such a choice is convenient because the velocity is zero at these points. One can choose 

any other positions 1.6 < z < 18.4 at which the velocities are given a priori and the same 

conclusion will be arrived. Figure 2.6 compares the velocity predicted by Equation 2.3 with that 

obtained from MD simulations, and poor agreement is found. In fact, the EOF velocity at the 

pore center obtained from MD simulation is three times of that predicted by Equation 2.3, i.e., 

the classical electrokinetic theory significantly under-estimate the EOF even if the velocity at 

position ~2 molecular diameter from the wall is known in advance. To the best of our 

knowledge, such an observation has not been reported previously for EOFs.  
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Figure 2.8. Variation of dynamical viscosity calculated from velocity profile in a pressure-driven flow in 

nanochannels obtained from MD simulations. The viscosity is calculated by both polynomial fitting to the 

central portion of velocity profile and using equation 2.5. 

We hypothesize that the underestimation of EOF by the classical electrokinetic theory 

(or, equivalently, the apparent amplification of EOF compared to the prediction by classical 

theories) is caused by the short-wavelength nature of the EOF in RTILs. As shown earlier, the 

very strong ion-ion correlations in RTILs lead to alternating layering of cations and anions near 

the charged wall, which in turn leads to driving forces and shearing forces that oscillate rapidly 

near the wall. Under the action of these rapidly oscillating shearing forces, the EOF velocity then 

oscillates rapidly and the flow will feature significant short-wavelength components. To see this 

clearly, we transform the real space EOF velocity distribution to the k-space. Figure 2.9 shows 

the spectrum of the EOF velocity. We observe that three flow components with wavenumbers 𝑘 

= 2.99, 4.30 and 5.22 (the corresponding wavelengths 𝜆 = 2𝜋/𝑘 are 2.10, 1.46, and 1.12, 

respectively) contribute significantly to the total EOF. Since the wavelengths of these flow 

components are comparable to the size of RTIL molecules, the shearing behavior of RTILs in 
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such flows can differ significantly from that in flows featuring only very large wavelengths. 

Indeed, the generalized hydrodynamics theories show that the generalized viscosity of bulk 

 

Figure 2.9. Spectrum of the EOF velocity profile obtained from MD simulations (cf. Figure 2.6). The 

wavelength 𝜆 is related to the wavenumber by 𝜆 = 2𝜋/𝑘. 

fluids decreases as the wavenumber (wavelength) of flow increases (decreases), and it 

approaches the viscosity in classical hydrodynamics only in the limit of zero wavenumber or 

infinite wavelength81,82,83,84. We computed the wavenumber-dependent viscosity of bulk RTILs at 

the same thermodynamic state as the RTILs in the central portion of our slit pore using the STF 

method, and the results are shown in Figure 2.11. We observe that the generalized viscosity of 

our RTILs decreases rapidly as the wavenumber increases. At 𝑘 = 3.00 and 7.14 (or 𝜆 = 2.09 and 

0.88 molecular diameters), it reaches 50% and 10% of its value at 𝑘 = 0. Since the EOF shown in 

Figure 2.6 is dominated by flow components with wavenumber of 3-7 (or wavelength 0.9-2.1 

times of the ion diameter), the generalized viscosity experienced by these flow components is 

expected to be 50%-90% smaller than the viscosity at infinite wavelength, i.e., the viscosity used 

in the classical electrokinetic model (Equation 2.3), hence explaining why the EOF predicted 

using Equation 2.3 is much weaker than that observed in MD simulations. As a side note, we  
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Figure 2.10. A typical distribrution of cation and anion velocities in z-direction across bulk RITLs using 

STF method. In this case, the wave number k is 1.36. 

note that the trends of generalized viscosity shown in Figure 2.11 agree quite well with that 

obtained in more sophisticated simulations of RTILs. Specifically, using polarizable all-atom 

force fields, Yan et al. found that the generalized viscosity of 1-ethyl-3-methylimidazolium 

nitrate (EMI-NO3) is reduced to 50% and 10% of its hydrodynamic limit value at a wavelength of 

~0.96 and ~0.37 nm (or 2.4 and 0.93 ion diameter since the diameter of EMI+ and NO3
- ions are 

~0.4 nm)85, while the generalized viscosity of our RTILs reduces to 50% and 10% of its large 

wavelength limit value at wave-lengths of 2.09 and 0.88 ion diameters. The reasonable 

agreement between the scaling of the generalized viscosities obtained from our coarse-grained 

simulations and from fully-detailed simulations indicates that the coarse-grained model can 

reasonably capture the hydrodynamic behavior of the RTILs down to molecular scale. 

To further ascertain that the inaccurate prediction of EOF at position away from the pore 

wall by the classical electrokinetic theories is caused by their failure to account for wavelength-

dependent transport, we extracted the shear stress across pore from the MD velocity profile 

shown in Figure 2.6 using two methods. Firstly, we computed the shear stress using  
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Figure 2.11. Variaion of the generalized viscosity of the model RTILs as a function of wavenumber. 

Solid line is a fitting of the MD data to the Gaussian form of generalized viscosity proposed in Ref. 86. 

The fitting parameters are 𝜇(0) = 1.39, a= 5.134, and b= 12.228. 

                                                                 𝜏𝑧𝑥(𝑧) = 𝜇𝛾̇(𝑧)                                                     (2.4) 

where 𝜇 is the fluid viscosity at the hydrodynamic limit, 𝛾̇(𝑧) = 𝑑𝑢/𝑑𝑧 is the local strain rate at 

position 𝑧. In this calculation, the shear stress is assumed to depend only on local strain rate, 

which is a basic premise of all classical electrokinetic theories. Secondly, we computed the shear 

stress using generalized hydrodynamics that account for the wavelength-dependent nature of 

fluid transport, i.e.,86,85,87  

                                                𝜏𝑧𝑥(𝑧) = ∫ 𝜇(𝑧 − 𝑧′)𝛾̇(𝑧′)𝑑𝑧′∞

−∞
                                               (2.5) 

where 𝜇(𝑧 − 𝑧′) is the viscosity kernel, which is also the real-space transformation of the 

generalized viscosity 𝜇(𝑘). Implementing Equation 2.4 requires the local strain rate 𝛾̇(𝑧) to be 

computed, which is difficult since the MD velocity data contains noise. To circumvent this, we 

computed 𝛾̇(𝑧) by first fitting the MD velocity profile to piecewise polynomials and then 

analytically differentiating the polynomials. The viscosity of the fluids was taken as 1.39. In  
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Figure 2.12. Distribution of fluid shear stress in half of the pore computed from Equations (2.4) and 

(2.5), and by integrating the electrical body force acting on the fluids.  

implementing Equation 2.5, we used the fact that the viscosity kernel has a finite width, and 

reduced Equation 2.5 to 𝜏𝑧𝑥(𝑧) = − ∫ 𝜇′(𝑧 − 𝑧′)𝑢(𝑧′)𝑑𝑧′∞

−∞
 where 𝜇′ is the derivative of 

viscosity kernel. Since an effective way to compute the inhomogeneous viscosity kernel in 

confined dense liquids is yet to emerge88, the viscosity kernel of the fluids confined inside the 

pore was taken as that of homogeneous fluids at the same temperature and density in this work. 

Specifically, the viscosity kernel was obtained by first fitting the generalized viscosity 𝜇(𝑘) to 

the Gaussian form suggested in Ref. 86 and then by transforming the fitted 𝜇(𝑘) to the real 

space. The half-width of the real-space viscosity kernel was taken as 1.6 when performing the 

integration shown in Equation 2.5. Since the MD fluid velocity is defined only in region 0.8 < 𝑧 

< 19.2 and the generalized hydrodynamic theories for interfacial and confined fluids are not yet 

available, we computed the shear stress only in the region 2.4 < 𝑧 < 17.6. Figure 2.12 compares 

the shear stress computed using Equations 2.4 and 2.5 with the exact value obtained by 

integrating the electrical body force acting on the fluids. We observe that Equation 2.4 

significantly overestimates the shear stress throughout the pore. Although the shear stress can 
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only be computed in the middle portion of the pore when Equation 2.5 is used, the computed 

stress agrees very well with the exact value. These results confirm that generalized 

hydrodynamics are necessary and sufficient to accurately predict the fluid shear stress (and thus 

the EOF) at position away from the pore wall, and the classical hydrodynamics neglecting the 

short-wavelength nature of the EOF fails quantitatively. We note that the conclusion that 

generalized hydrodynamics can predict fluid flows with strong short-wavelength components has 

been reported in a prior study89, although the fluids are homogeneous and under the action of 

hypothetical sinusoidal body forces in that prior study. The above results confirm that this 

conclusion also holds at least at positions away from the pore wall for confined fluids. A more 

difficult question, i.e., how to compute the stress of interfacial fluids, remains open and merits 

further study. 

In the above simulations, we showed that short wavelength hydrodynamics tend to 

amplify EOFs in RTILs near walls with a moderate surface charge density. We expect this 

conclusion to hold for other surface charge densities too. This is because the short wavelength 

hydrodynamics originates from the fact that EOFs in RTILs features significant short wavelength 

components (as evident in Figure 2.9), which is in turn caused by the strong ion-ion correlations 

in RTILs. Since ion-ion correlations do not depend strongly on the surface charge density 

(except when the surface charge density is so high that lattice saturation occurs in the first 

interfacial ion layer37. Even under such a condition, the ion-ion correlations are still important at 

positions beyond the lattice-saturated layers), EOFs in RTILs will always feature short 

wavelength components, and hence the amplification phenomenon observed here will be 

important regardless of the magnitude of the surface charge density. We also performed 

simulations using [BMIM][PF6] as working electrolytes (the RTIL was modeled using the semi-



42 

 

coarse grained force field proposed in Ref. 90), and similar amplification phenomenon was 

observed. It is worth noting that EOF can also be affected by various interfacial effects such as 

charge-induced thickening41, which tend to weaken the EOF. These interfacial effects are nearly 

always limited within the first ion or solvent layer (<1nm), and they can counteract with the 

effects of short wavelength hydrodynamics at those positions. However, short wavelength 

hydrodynamics persist much deeper from the wall toward the fluids (several ion layers or a few 

nanometers), and thus at these positions, the amplification effects of short wavelength 

hydrodynamics will always be important.  

The foundations of generalized hydrodynamics theories that can account for wavelength-

dependent transport have been developed more than four decades ago81,82,83,84. Since then, both 

the application and advancement of these theories have been relatively limited, at least when 

compared to other branches of fluid dynamics. This is likely caused by the fact that there are few 

practical systems in which classical hydrodynamics are inadequate and thus the non-local stress-

strain rate relation or the small-wavelength nature of flow must be taken into account. The 

emergence of nanofluidics91, i.e., transport of fluids in nanometer wide pores and channels, 

brings renewed interest in these theories. However, a majority of nanofluidic studies suggest that, 

except at position in close vicinity of the wall, the classical hydrodynamic theories are robust 

enough to predict flows in pores down to five to ten molecular diameter with good accuracy92,93. 

In fact, there are few practical nanofluidic examples in which the error caused by neglecting the 

non-localness of stress-strain relation (or equivalently, the small-wavelength nature of flow) will 

lead to an error ~100% in flow prediction. Identifying such problems is not only important for 

gaining fundamental insights into the problems themselves, but also for developing and testing 

improved generalized hydrodynamics theories. The results above suggest that EOF in RTILs is 
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one of such problems. The uniqueness of EOF lies in that the strength of the flow does not 

depend on the size of the charged pore providing that the EDLs near opposing pore walls do not 

overlap. Therefore, although short-wavelength hydrodynamics directly affects the flow only 

within the EDLs (in RTILs, the EDL thickness is often one to several nanometers29,94,95), its 

effects can be measured at position far away from the surface. In addition, since the EOF 

strength does not vary outside of the EDLs, the amplification of EOFs by short-wavelength 

hydrodynamics can be assessed in micrometer-wide pores rather than only in nanopores, which 

facilitates experimental study.  

2.3 Conclusions 

The electrokinetic transport in a slit-shaped nanopore filled with RTILs has been 

investigated using MD simulations. Due to the strong ion-ion correlations, alternating layers of 

anions and cations form near the charged pore wall and this pattern extends about eight 

molecular diameters deep into the bulk electrolyte. Under the action of a tangential electrical 

field, an oscillatory body force varying over molecular distances induces EOF with significant 

short-wavelength components. Due to the short-wavelength nature of the flow, EOF is 

significantly amplified compared to that predicted by the classical hydrodynamic theories if the 

electrofriction effects are taken into account effectively. We suggest that EOF in RTILs is a rare 

example in which short-wavelength hydrodynamics, or equivalently the non-localness of stress-

strain rate relation, significantly affects the macroscopic characteristics of a flow even if the flow 

occurs in micrometer-wide pores. We envision that EOF in RTILs to be a good test problem for 

developing and testing improved generalized hydrodynamics theories.  
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CHAPTER 3 

Transport of RTILs in Cylindrical Nanopores 

In this chapter, electrically driven ionic transport of RTILs through nanopores is studied 

using atomistic simulations. The results show that, in nanopores wetted by RTILs, a gradual 

dewetting transition occurs upon increasing the applied voltage, which is accompanied by a sharp 

increase of ionic current. These phenomena originate from the solvent-free nature of RTILs and 

are in stark contrast with the transport of conventional electrolytes through nanopores. 

Amplification is possible by controlling the properties of the nanopore and RTILs, and we show 

that it is especially pronounced in charged nanopores. The results highlight the unique physics of 

non-equilibrium transport of RTILs in confined geometries and point to potential experimental 

approaches for manipulating ionic transport in nanopores, which can benefit diverse techniques 

including nanofluidic circuitry and nanopore analytics. 

3.1 MD systems and methods  

3.1.1 Single-nanopore and single-reservoir system 

Here, we use atomistic MD simulations to study the ionic transport of RTILs through a 

nanopore driven by an electric field. Figure 3.1 shows a schematic of the simulated system, 

which consists of a nanopore with two ends connected to a reservoir filled with [BMIM][PF6], an 

immidazolium-based RTIL. A (32, 0) single wall carbon nanotube with a center-to-center 

diameter of 2.51 nm was used as the nanopore. Taking a diameter of 0.34 nm for the carbon 

atoms, the access diameter of the nanopore is 2.17 nm. Hereafter, the access diameter is used to 
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compute the average RTIL density and conductivity in nanopore. Carbon nanotubes were used as 

nanopores due to their well-defined geometry. 

 

Figure 3.1. A schematic of the MD system for studying ionic transport of RTILs through a nanopore 

driven by electric fields. The system consists of a nanopore and a RTIL reservoir. Dashed lines denote the 

periodic simulation box, which measures 20.0 nm, 12.3 nm and 12.3 nm in x-, y- and z-directions, 

respectively.  

MD simulations were performed in the NVT ensemble using the Gromacs package71. The 

length of the nanopore and the RTIL reservoir were both 10 nm. Periodic boundary conditions 

were applied in all three directions. The RTILs were modeled using the force field developed in 

Ref. 90, and carbon nanotube was modeled using the force field described in Ref. 96. The 

vertical walls were modeled as carbon atoms with the same Lennard-Jones parameters as those 

for the nanopore. The Lennard-Jones parameters for interactions between atoms of RTILs, 

nanotube and the vertical walls were obtained using the Lorentz-Berthelot combination rule. The 

number of ions inside the system was adjusted so that the system is neutral and the ion density at 

the center of RTIL reservoir matches that of a bulk [BMIM][PF6] at 400 K and 1 atm 

(2.68#/nm3). The vertical wall atoms and two ends of the nanopore were fixed during 

simulations. The temperature of RTILs and vibrating CNT atoms were maintained at 400 K 
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using the velocity rescaling method with a time constants of 1 ps for ions and 0.25 ps for 

vibrating CNT atoms. The smaller time constant for carbon nanotube atom is necessary to ensure 

that the heat generated during ionic transport is effectively dissipated. Electrostatic interactions 

were calculated using PME method (real space cutoff: 1.6 nm; FFT spacing: 0.12 nm). Non-

electrostatic interactions were computed using the cutoff method (cutoff radius: 1.6 nm). The 

neighbor list was updated each time step (2 fs). Bond lengths for RTIL ions were constrained 

using the LINCS algorithm during the simulations97.  

Each simulation consisted of a trial run of 5 ns to reach a steady state and a production 

run of 25 ns. Five independent cases were studied to estimate the error bars. To determine the 

ionic currents, we used the method detailed in Ref. 99. This requires computing the displacement 

of the effective charge center of the entire system 

                                 DCc(𝑡) = 〈1/𝐿𝑥 ∑ 𝑞𝑖[𝑥𝑖(𝑡) − 𝑥𝑖(0)]𝑁
𝑖=1 〉                                      (3.1) 

where qi and xi(t or 0) are the charge and x-position of each atom i inside the system, and 〈⋯ 〉 

denotes the ensemble average. During simulation, the position of each atom was recorded every 

0.2 ps to compute the drift of effective charge center Cc(t). Next, the ionic current was obtained 

through a linear regression of Cc(t). Such a method for computing current is used in both the 

nanopore + RTIL system, in periodic nanopores, and in bulk RTILs. To compute the 

conductivity of RTILs confined in periodic nanopores, we computed the current 𝐼 through 

nanopore at different electric field 𝐸𝑥 and the conductivity is evaluated by 𝜎 =
𝐼

𝐸𝑥𝐴
, where 𝐴 is 

the cross-section area of the nanopore based on the accessible diameter of nanopore. To compute 
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the conductivity of bulk RTILs, a uniform electric field was applied to bulk RTILs and the above 

procedure was used except that A was taken as the cross-section area of the bulk RTILs. 

We verified that the phenomena reported here can be reproduced in other nanopores (e.g., 

those obtained by drilling through a FCC lattice). Two types of nanotubes were studied: neutral 

nanotubes and charged nanotubes. For charged nanotubes, partial charges of small magnitude 

were decorated on the pore surface to give a net charge density of -0.05 C/m2. The uniform 

surface charge is similar to that induced by applying a gate voltage to dielectric materials98. We 

also studied charged nanotubes in which discrete charge groups were decorated on their surface, 

and qualitatively similar results were obtained. Two vertical walls, each consisting of carbon 

atoms arranged in a square lattice (atom spacing is nm) were used as boundaries of RTIL to 

block the RTIL, allowing it to transport only through the nanopore from one reservoir to the 

other. To drive ionic transport, we imposed a voltage drop  across the system by applying a 

uniform electric field along the pore axis (x-direction) following 𝐸𝑥 = 𝜙/𝐿𝑥, where 𝐿𝑥 is the 

length of simulation box in x-direction. This method has been validated in the studies of ionic 

transport through various nanopores49,99. Note that, although the applied electric field is uniform, 

electrical potential inside the system conforms to the electrostatic law due to a generation of 

reaction electric fields99,100. The net electrical potential of the ions in the system is the sum of the 

potential associated with the uniform applied field and the potential due to the reaction electric 

field. As shown in Figure 3.8, for a given voltage applied across the system, most of the 

electrical potential drop occurs within the nanopore, and consequently, the net electric forces are 

much larger for ions inside the nanopores than for ions in the reservoir. Note that, at zero applied 

voltage drop, the nanopores are wetted by RTILs and this is consistent with the fact that the 

RTILs studied here can wet nanopores with even smaller diameter (~0.9 nm) 101,102,103. 
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3.1.2 MD system and method for dual-nanopore and dual-reservoir system 

Additional simulations based on the dual-nanopore and dual-reservoir method, in which 

electrostatic potentials in the entire system follow Poisson’s equation in a straightforward 

manner, were performed to ascertain that the ionic transport phenomena observed in the above 

simulations are independent of the way the voltage drop is applied.  

 

Figure 3.2. A schematic of the dual-pore-dual-reservoir method for imposing a potential difference across 

a nanopore connected with electrolyte reservoirs.  At t = 0, a charge imbalance in the two reservoirs is 

created to generate the desired voltage drop across the nanopores.  

To study electrically-driven ionic transport through nanopores connected with an 

electrolyte reservoir, a voltage drop must be applied across the system. In this work, we used the 

most straightforward method, i.e., applying a uniform electric field along the pore axis, which 

has been shown to create an electric field that is consistent with electrostatic laws. Two other 

methods can also be implemented. In the first method, an electrical potential is imposed on 

virtual electrodes immersed in the electrolyte reservoirs104. Such a method is computationally 

very intensive since 1) it requires solving an auxiliary Laplace equation over the entire domain 

during each MD step and 2) ions must be continuously inserted into or removed from electrolyte 
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reservoirs, which is difficult for dense liquids and non-monatomic ions. The second method is 

the dual-pore and dual-reservoir method54. In this method, two identical nanopores and 

electrolyte reservoirs (see Figure 3.2) are used. An electrical potential difference is created by 

introducing a charge imbalance in each reservoir, i.e., a net positive charge (an excess of cations) 

in one reservoir and a net negative charge (an excess of anions) in another reservoir. This method 

requires modest computational cost. Its key limitation is that, as ionic transport through nanopore 

progresses, the charge imbalance in each reservoir diminishes and the voltage drop across each 

nanopore reduces. This limitation makes studying steady ionic transport through nanopore 

difficult. However, here we use this method to verify that the most essential feature of ionic 

transport through nanopore filled with RTILs revealed in section 3.2, i.e., partial dewetting of 

nanopore under large voltage drop across nanopore.  

Figure 3.2 shows a schematic of the MD system setup. The length of both nanopores was 

10 nm and the length of both RTIL reservoirs was 8 nm. Periodic boundary conditions were 

applied in all three directions. The choices of RTILs, nanopore and vertical wall atoms are the 

same as those used in section 3.2. The nanopore walls are charged (s = -0.05 C/m2). To generate 

a desired voltage drop across nanopore, we removed N cations in one reservoir and the same 

amount of anions in another reservoir at t = 0. While the entire system is electrically neutral, 

such a charge imbalance creates a voltage drop through nanopore connecting the two reservoirs. 

The voltage drop across each nanopore at t = 0 is given by  

𝑉𝑡=0 =  
𝑁𝑞𝐿𝑝𝑜𝑟𝑒

2𝐿𝑦𝐿𝑧𝜖0
                                                              (3.2) 
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where 𝐿𝑝𝑜𝑟𝑒 is the length of each nanopore in the x direction, 𝐿𝑦 and 𝐿𝑧 are the lateral sizes of 

simulation box in y and z directions, respectively, 𝑞 is the magnitude of the electric charge of 

each cation and anion, and 𝜀0 is the vacuum permittivity.  

We present the simulation protocol as the following. We first built the dual-pore-dual-

reservoir system sketched in Figure 3.2 without creating a charge imbalance in any of the 

reservoirs. We next perform an equilibrium run of 2 ns. At the end of this simulation, the number 

of ions inside each nanopore and reservoir was found to reach their equilibrium values. 

Following this, we randomly removed N cations from one RTIL reservoir and removed the same 

number of anions from the other RTIL reservoir to obtain the desired voltage drop according to 

Equation 3.2. We then performed simulations for another 2 ns to study the ionic transport 

through nanopore. The beginning of this simulation corresponds to t = 0 mentioned above. These 

simulations were performed for three times with different initial configurations and the results 

were very close to each other.  

3.2 Results and discussions 

3.2.1 Single-pore and single-reservoir system 

3.2.1.1 Neutral pore 

Figure 3.3a shows the I-V curve in the neutral nanopore. For applied voltages  < 2 V, 

the ionic current increases nearly linearly with increasing applied voltage and the effective 

nanopore conductance is small. At higher voltages, the I-V curve becomes highly nonlinear, and 

the effective nanopore conductance increases sharply. This latter observation is unusual, since 

nonlinear I-V curves and greater effective conductance at higher applied voltages have been 
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observed in nanopores, but typically only in charged conical nanopores105,49 rather than in the 

neutral and cylindrical nanopore studied here. Another interesting aspect of the ionic transport is 

that, as the applied voltage increases, the density of RTILs inside the nanopore reduces. As 

shown in Figure 3.3b, for applied voltages  6 V, the ion density in the central portion of the 

nanopore (defined here as within 1.0 nm from the middle plane of the nanopore, i.e. x = 9-11 nm 

in Figure 3.6) initially changes little, but reduces notably as increases. At  = 10 V, the ion 

density inside the pore is ~75% of that at  = 0 V. 

 

Figure 3.3. Variation of the ionic current (a) and average ion number density in the central portion of the 

nanopore (b) as a function of the voltage drop across the entire system. The nanopore surface is 

electrically neutral. 

These unusual phenomena originate from the fact that, for RTILs confined in nanopores, 

under strong electric fields, the ionic conductivity is larger than that of bulk RTILs and it 

increases with decreasing ion density. To validate this point, we first performed a series of 

simulations to compute the ionic conductivity of RTILs confined in nanopores with the same size 

as considered above but periodic along the pore axis. In these simulations, different numbers of 
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RTIL molecules were placed inside the nanopore so that the average ion density varies from 

100% to 80% of that found in Figure 3.3b at zero voltage (ion,=0) i.e., from 2.68 #/nm3 to 2.14 

#/nm3. The method for computing the conductivity of RTILs in a periodic nanopore, together 

with that for bulk RTILs, in described in Section 3.1 of this chapter. Figure 3.4 shows that, with  

 

Figure 3.4. Conductivity of bulk RTILs and RTILs confined in neutral periodic nanopores as a function 

of ion density and strength of the applied electric fields.  

the same average ion density, the conductivity of RTILs increases as the electric field E becomes 

stronger. In fact, when the ion density inside nanopore is the same as ion,=0, the conductivity of 

RTILs confined in the nanopore is smaller than that of bulk RTILs at E=0.1 V/nm but it exceeds 

the latter when E>0.8V/nm. Note that the comparison is made between the conductivity of the 

ions in nanopore at 0.8 V/nm and that of ions in the bulk at 0.1 V/nm due to the small voltage 

drop in the bulk (see Figure 3.8). These behaviors are consistent with the results on the ionic 

transport of RTILs reported previously. In particular, the weaker conductivity of RTILs in the 

nanopore at low electric fields compared to that in the bulk is in line with the slower self-

diffusion of RTILs in nanopore reported earlier by the Hung group56,58; the increase of 

conductivity as E increases is similar to that has been observed for bulk RTILs.106 Figure 3.4 also 
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shows that the conductivity of RTILs increases sharply when the ion density decreases slightly, 

indicating that the mobility of ions increases greatly with decreasing ion density. This behavior is 

in marked contrast to that of aqueous electrolytes, in which the mobility of ions increases only 

slightly as the density decreases. This difference is caused by the solvent-free nature of RTILs. 

RTILs are dense liquids in which electrical migration of ions is retarded primarily by ion-ion 

friction originating from the close ion-ion contacts and is facilitated by a transient atomistic 

cavity within the liquids. As such, the ion mobility increases greatly as the ion density decreases, 

and diverges as the ion density approaches zero. However, in aqueous electrolytes, the migration 

of ions is retarded by the surrounding solvent molecules and the ionic cloud around each ion 

plays a secondary role.  

To understand how the dependence of RTIL’s electrical conductivity on the strength of 

electric fields and ion density revealed in Figure 3.4 leads to a decrease of ion occupancy in 

nanopore as electric field strength increases and the nonlinear I-V curve shown in Figure 3.3., we 

examined the response of a nanopore/RTIL system (cf. Figure 3.1) as a voltage drop is 

impulsively applied across the system (see Figure 3.5). Once a voltage drop is applied, an 

electric field is established inside the nanopore. Since the diameter of the nanopore is much 

smaller than the lateral size of RTIL reservoir and the system is electrically neutral everywhere, 

most of the potential drop occurs within the nanopore. When a sufficiently large voltage drop is 

imposed, the electric field inside the nanopore can be strong enough that the ionic conductivity 

of the RTILs in the nanopore exceeds that of bulk RTILs. For example, immediately after a 

potential difference of 8 V is imposed across the system, an electric field of ~0.8 V/nm is 

established inside the nanopore, and the ionic conductivity of RTILs confined inside the 
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nanopore exceeds that of bulk RTILs (cf. Figure 3.4). Because of the different ionic 

conductivities in the nanopore and in the bulk RTILs, the ionic flux inside the nanopore (in 

 

Figure 3.5. A schematic illustrating the mechanism of ion density reduction in a nanopore filled with a 

RTIL under large applied voltages. The length of arrows indicates the magnitude of ion flux. The 

formation of charged ionic clouds near pore entrances (red/blue color denotes ionic cloud with 

positive/negative charges) and the significant increase of RTIL conductivity as ion density decreases are 

the main reasons for the reduction of ion density in nanopores under strong applied electric fields. 

Figure 3.5a, toward the negative electrode for cations and the opposite direction for anions) will 

be larger than that inside the bulk RTILs. Consequently, cations (anions) start to accumulate near 

the pore entrance closer to the negative (positive) electrode to form a cation (anion)-rich zone 

and meanwhile the number of ions inside the nanopore decreases (cf. Figure 3.5b). The cation 

(anion)-rich zone will be termed cationic (anionic) cloud hereafter. Since the number of ions 

inside the nanopore decreases during this process, the ionic conductivity inside the pore increases 

(cf. Figure 3.4), which further enhances the ionic flux through the nanopore, prompting further 

growth of ionic clouds near the pore entrances. On the other hand, the formation of ionic clouds 

near the pore entrances creates an electric field within the nanopore that counteracts the electric 

field initially established due to the imposed voltage drop. As a result, the strength of the net 

electric field in the nanopore decreases, which tends to reduce the ionic flux through the 
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nanopore and to impede the growth of ionic clouds near the pore entrances. These two effects 

compete with each other until a steady state of ionic transport through the nanopore is 

established. At steady state, the ion density inside the nanopore will be smaller than its initial 

value and stationary ionic clouds are established near the pore entrances. To quantify the charge 

accumulation in the ionic clouds near the pore entrances, we computed the ionic charge density 

in the shaded region shown in Figure 3.1 at the steady state for an applied potential drop of 10 V. 

Figure 3.6 shows that, within the nanopore, ionic charge density becomes more positive 

(negative) as we move toward the pore entrance facing the negative (positive) electrode, thus 

supporting the accumulation of ionic clouds near the pore entrances suggested above. Within the 

RTIL reservoir, ionic charge density shows strong oscillations near the pore entrances, consistent 

with the alternating layering of cation/anions observed ubiquitously for interfacial RTILs58,59. 

The degree of ion depletion inside the pore and the buildup of ionic clouds near the pore 

entrances at steady state increase rapidly as the applied voltage drop increases. This is because, 

at higher applied voltages, immediately after the voltage is applied, the ionic conductivity inside 

the nanopore is higher, making the ionic current through the nanopore stronger and consequently 

the ion depletion and the buildup of ionic clouds more significant. This explains how the 

dependence of RTIL’s electrical conductivity on the strength of electric fields and ion density 

presented in Figure 3.4 leads to the decrease of ion occupancy in the nanopore as the applied 

voltage increases (Figure 3.3b). 

To understand the sharp increase of ionic current as applied voltage increases (cf. 

Figure 3.3a), one can directly analyze the potential drop and ionic conductivity inside nanopore 

as  increases. However this is not straightforward because the potential drop inside nanopore 

may not increase monotonically as  increases. This is because, as increases, more ions  
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Figure 3.6. Distribution of ionic space charge density along the nanopore axis in the shaded region shown 

in Figure 3.1. The charge density of nanopore surface is zero. The applied voltage across the 

nanopore/RTIL reservoir system is 10 V. Distributions of cation and anion density along nanopore axis 

are shown in Figure 3.9 in Section 3.4.  

accumulate inside the ionic clouds near pore entrances and they screen electric fields inside 

nanopore more significantly, thus lowering the potential drop inside nanopore. Here we adopt a 

different method, i.e., we analyze how the ionic current from RTIL reservoir to nanopore 

changes as the applied voltage increases. This method is based on the fact that the steady-state 

ionic current through nanopore is equal to that from RTIL reservoir to nanopore, which is 

governed by the potential drop in RTIL reservoir and the ionic conductivity of bulk RTILs. The 

potential drop in RTIL reservoir is affected by two factors: the applied voltage across the entire 

nanopore/RTIL reservoir system and, more importantly, the formation of ionic clouds near the 

pore entrances. Specifically, charges accumulated in the ionic clouds near pore entrances help 

increase the potential drop inside the RTIL reservoirs. As pointed out above, when the voltage 

imposed across the entire nanopore/RTIL reservoir system increases, charge accumulation within 

each ionic cloud near the pore entrance increases sharply. Therefore, as the applied voltage 

across the system increases, the increase of potential drop inside RTIL reservoir is faster than the 
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increase of potential drop across the entire system, and this in turn leads to the sharp increase of 

ionic current through the RTIL reservoir. Equivalently, the ionic current in the entire system 

increases sharply with the applied voltage, as shown in Figure 3.3a. 

3.2.1.2 Charged pore 

The above discussions suggest that ion depletion in the nanopore and the concomitant 

sharp increase of ionic current at large voltages are triggered by the high conductivity of RTILs 

in nanopore at large voltages and sustained by the increase of ionic conductivity as the ions 

density decreases. Based on these results, we expect that, if the conductivity of the RTILs inside 

nanopore can be increased and the sharp increase of ionic conductivity as ion density reduces can 

be achieved, large ionic current through nanopores can be induced and ion depletion can be 

amplified at lower voltages. Such a situation can in principle be achieved by tailoring the surface 

and geometrical properties of nanopores and the size/shape of RTIL molecules. In particular, 

such a situation may be achieved in charged nanopores. In charged nanopores, the density of 

counter-ions exceeds that of co-ions. Under the action of applied electric fields, the net ionic 

current is a sum of the migration current due to electrical migration of individual ions and the 

convective current due to the collective movement of all ions (termed the electroosmotic flow). 

In narrow nanopores with moderate/high surface charge densities or a smooth surface, the 

convection current can be much greater than the migration current107,108. For the charged 

nanopore considered here ( = -0.05 C/m2, D=2.17 nm), the ionic conductivity of RTILs inside 

an isolated nanopore (i.e., the nanopore is periodic along its axis and is not connected with an 

external RTIL reservoir) is 733 S/m at an applied electric field strength of only 0.001 V/nm and 

the convection current contributes to ~99.9% of the total ionic conductivity. Figure 3.7a shows  
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Figure 3.7. (a) I-V relations in charged nanopores (=-0.05C/m2) connected with RTIL reservoirs. (b) 

Variation of ion density in the central portion of charged nanopore (9 nm < x < 11 nm) as a function of 

the applied voltage across the nanopore/RTIL reservoir system. (c) A snapshot of the MD system at an 

applied voltage of 10V. Yellow (cyan) balls denote nanopore (vertical wall) atoms. Red (blue) balls 

denote cations (anions). (d) Distribution of ionic space charge density along nanopore axis in the shaded 

region shown in Figure 3.1. Distributions of cation and anion density along nanopore axis are shown in 

Figure 3.10 in Section 3.4. 

the I-V relation for the RTIL going through this charged nanopore when it is connected to a 

RTIL reservoir. The I-V curve shows essentially the same feature as that in neutral nanopores, 

i.e., ionic current increases nonlinearly as applied voltage increases, although the magnitude of 

ionic current is much larger than that in neutral nanopores at any given voltage. Figure 3.7b 

shows that, at a zero applied voltage, more cations (counter-ions) reside inside the negatively 

charged nanopore than anions (co-ions). The net charge of ions inside the nanopore is found to 

balance the charge on the nanopore surface. As the applied voltage increases, the density of both 

cations and anions in the central portion of the nanopore decreases, but their difference remains 

nearly the same, which still balances the surface charge on the pore wall. An interesting 

observation is that at an applied voltage of = 10 V, anion’s density in the central portion of the 
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nanopore drops to nearly zero and the cation’s density is reduced to ~30% of that at =0 V, 

which represents a much stronger ion depletion compared to that in neutral nanopores. The 

decrease in ion density signifies a gradual dewetting transition inside nanopore as the applied 

voltage increases. Figure 3.7c shows a snapshot of the MD system at = 10 V, and it can be 

clearly seen that a significant portion of nanopore becomes dewetted. The larger ionic current 

and stronger ion depletion of ions in charged nanopores compared to neutral nanopores are 

consistent with our expectations. These phenomena have the same physical origins with similar, 

albeit less pronounced behavior as observed in neutral nanopores (cf. Figure 3.3). For example, 

as shown in Figure 3.7d, while the ionic space charge density is non-zero everywhere along the 

pore axis (due to the presence of net surface charge), the space charge density near the pore 

entrance adjacent to the negative electrode is more positive than that near the pore entrance 

adjacent to the positive electrode. This confirms the formation of ionic clouds near the pore 

entrances, which was also observed in neutral nanopores. It is worth noting that the onset voltage 

drop for observing strongly non-linear I-V curves in both neutral and charged nanopores is 

smaller than 6 V. Since such onset voltage is comparable to the electrochemical window of 

RTILs, it helps the experimental realization of the non-linear phenomena observed here. 

3.2.1.3 Distribution of electrical potential in nanopore+reservoir system 

In the simulations reported here, a uniform electric field was applied to impose a voltage 

drop across the nanopore+RTIL reservoir system. Specifically, a constant electric force fi=qiEext 

is applied on each charge i inside system regardless of its position. However, once charges inside 

system are subjected to these forces, they redistribute to generate a reaction electric field. The 

sum of the constant electric force and the force due to reaction electric field produces the final  
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Figure 3.8. Distribution of the average electrical potential inside charged nanopore+RTIL reservoir 

system as a function of x-position. The imposed voltage drop across the entire system is Vapp = 2 V. The 

distribution of potential is computed as the sum of the applied potential app = -x/L Vapp and the reaction 

potential field re. The latter is computed by solving Poisson’s equation ∇2𝜙𝑟𝑒 = −𝜌𝑒/𝜖0 (𝜌𝑒: space 

charge density obtained from MD trajectory, 𝜖0: vacuum permittivity).   

electric force exerted on ions and electrical potential distribution inside system. Figure 3.8 shows 

the average electrical potential profile along the pore axis in the charged nanopore considered 

here. In this case, the applied voltage drop is 2 V across the nanopore+RTIL reservoir system. 

We observe that most of the electrical potential drop occurs within the nanopore, due to the fact 

that nanopore diameter is much smaller than the lateral dimension of the RTIL reservoir. It can 

be thus expected that the electric force experienced by ions inside the nanopore is much larger 

than that in the RTIL reservoir, despite that a uniform electric field is applied on all ions inside 

the system.  

3.2.1.4 Ion density distribution inside nanopore+reservoir system 

Figure 3.6 in section 3.2 shows distribution of space charge density along the nanopore 

axis in the shaded region shown in Figure 3.1 (nanopore is neutral and applied voltage is 10V). 

Figure 3.9 further shows the distribution of cation and anion density along the nanopore axis in 

the same region. The density of ion in nanopore is lower than that in bulk due to 1) the ion  

nanopore 
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Figure 3.9. Distribution of cation and anion density along the nanopore axis in the shaded region shown 

in Figure 3.1. The ionic transport conditions are the same as those in Figure 3.6 in section 3.2, where the 

charge density of nanopore surface is zero. Red line is for cation and blue line is for anion.  

 

Figure 3.10. Distribution of cation and anion density along the nanopore axis in the shaded region shown 

in Figure 3.1. The ionic transport conditions are the same as those in Figure 3.7d in section 3.6, where the 

charge density of nanopore surface is = -0.05C/m2. Red line is for cation and blue line is for anion. 

depletion phenomena discussed in section 3.2, and 2) the shaded region goes from r=0 (pore 

axis) to Rc (the center of carbon atoms on nanopore surface). Since ions can be found anywhere 

between r=0 and Rc in RTIL reservoirs but not very close to r=Rc in nanopores, the ion density 

inside pore appears to be smaller. Figure 3.10 shows the cation and anion density profiles along 
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the nanopore axis in the shaded region shown in Figure 3.1 under ionic transport conditions same 

as those in Figure 3.7b.  

3.2.1.5 Different sensitivity of ionic conductivity on ion density  

 

Figure 3.11. Distribution of cations inside the neutral periodic nanopore in radial direction considered in 

Section 3.2 (access diameter: 2.17nm). Red line indicates the ion density profile when total number of 

ions inside nanopore is equal to that at zero applied voltage. Blue line indicates the ion density profile 

when the number of ions inside nanopore was reduced by 20% from its value at zero applied voltage 

(ion,=0).  

In Figure 3.4 in Section 3.2, we showed that, as the ion density in nanopore decreases 

from its equilibrium value at zero applied voltage, the ionic conductivity increases significantly 

(e.g., at E = 1 V/nm, the ionic conductivity increases by ~ 200% as ion density decreases by 

20%). For bulk RTILs, the increase of their ionic conductivity as ion density reduces is weak 

(e.g., at E = 1 V/nm, the ionic conductivity increases by only ~30%). The different sensitivity of 

ionic conductivity of bulk RTILs and RTILs in nanopores to ion density can be traced to 

different response of molecular structure of RTILs to reduction of ion density. For RTILs in 

bulk, as their density decreases, cavities form within RTILs, and for ions away from the cavities, 

their local environment (e.g., how each ion is surrounded by other ions) does not change 
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noticeably because of the strong electrostatic interactions between ions. As such, electro-friction 

between ions remains high and ionic conductivity does not increase greatly as ion density 

reduces. For RTILs confined in nanopores, their density is strongly inhomogeneous due to ion-

wall interactions. Upon reducing the ion density inside nanopore, the variation of RTIL structure 

inside nanopore is achieved to a much less extent by forming cavities. Instead, the organization 

of RTILs across nanopore changes greatly. For example, as shown in Figure 3.11, as the number 

of cations inside the neutral nanopore considered in section 3.2 reduces by 20%, the number of 

cations in the core portion of nanopore (r<0.5nm) reduces greatly and the first cation density 

peak also moves away from the pore wall. The former will reduce the electro-friction between 

ions in the core of nanopore and ions near pore wall, and help increase the conductivity of RTILs 

in nanopore.  

3.2.1.6 Possibility of nonlinear ionic transport phenomena exist in very wide pores 

We expect the nonlinear ionic transport phenomena reported in the section 3.2 to occur 

only in narrow pores. Although in principle higher conductivity of RTILs in nanopore than in 

reservoir can be achieved in wide pores as long as their diameter is much smaller than reservoir 

size, the sharp increase of ionic conductivity as ion density reduces, which is necessary to sustain 

the nonlinear ionic transport phenomena is difficult to achieve in wide nanopores. In wide 

nanopores, RTILs are bulk like and our calculations (cf. Figure 3.4) indicate that, when the 

density of bulk RTILs reduces by 20%, their ionic conductivity only increases slightly (the 

mechanism of this observation is discussed Section 3.5). As such, once the higher ionic 

conductivity in wide nanopore triggers the formation of ionic clouds near pore ends and the 

depletion of ions in nanopore, the electric field inside nanopore decreases due to screening of 
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electric field by the ionic clouds. Since the ionic conductivity only increase slightly as the ion 

density decreases, the decrease of electric field in nanopore reduces the ionic current through 

nanopores and halts the growth of ionic clouds and ion depletion in nanopore. Consequently, the 

nonlinear ionic transport phenomena will be difficult to observe. It is desirable to determine, 

through direct simulations, the threshold nanopore diameter at which the nonlinear ionic 

transport disappears. Future studies along this line may be pursued. 

3.2.2 Dual-nanopore and dual-reservoir system 

 

Figure 3.12. Evolution of the number of cations and anions inside each nanopore after an initial voltage 

drop of 12.6 V was created across the nanopores. The number of cations inside the nanopore is always 

larger than that of anions because the nanopore is negatively charged.  

Figure 3.12 shows the evolution of numbers of cations and anions inside each nanopore 

as a function of time. The voltage drop across each pore is 12.6 V at t = 0 (t = 0 is the moment 

that charge imbalance is created). We observe that, within 50 ps, the number of ions inside each 

nanopore decreases by ~20-25% compared that at t = 0. The decrease of ion occupancy inside 

nanopore under large voltage drop is qualitatively similar to that observed in the single-nanopore 
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simulations reported in Section 3.2 and thus confirms the partial dewetting of nanopore under 

larger voltage drop across nanopore. The key differences are that, the magnitude of decrease is 

not as significant as those observed in single-nanopore simulations, and at t > 50 ps, the number 

of ions inside the nanopore begins to increase and gradually returns to the equilibrium value. 

These differences are expected. Immediately after the charge imbalanced was created, the 

strength of electric field inside nanopore was ~1.2 V/nm. The number of ions inside the 

nanopore starts to decrease following the mechanism pointed out in Section 3.2 (see Figure 3.5) 

and ionic clouds build up near pore mouths. However, as ions transport through nanopores, the 

net charge in each reservoir decreases, which leads to a decrease of the voltage drop across each 

pair of nanopore+reservoir. As discussed in section 3.2, the magnitude of ionic clouds near 

nanopore mouths decreases as the voltage drop across nanopore+reservoir system decreases. 

Consequently, ionic clouds near pore mouths diminish as ion transport progresses and ions from 

these clouds refill the nanopores. 

3.3 System and results by solving PNP equations 

In the previous sections, we hypothesized that the sharp increase of ion mobility as the 

ion density decreases is the essential reason for the electrical field-induced dewetting 

phenomena. To further validate this hypothesis, we perform continuum simulations using the 

PNP model to study the electrokinetic transport of RTILs through nanopores. In these 

simulations, the ion mobility is assumed to increase as the ion density decreases. Generally, the 

PNP model is rigorously valid only for the transport of dilute electrolytes thus cannot predict the 

electrokinetic transport of RTILs accurately. However, PNP model can also be considered as a 

minimal model for ionic transport since it incorporates all modes of ion transport (diffusion, 
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electrical migration and convection) using the simplest form. If the dewetting and current 

avalanche phenomena can be predicted by incorporating the ion density-dependent mobility 

outlined above into such a minimal model, we can be confident that our hypothesis captures the 

most essential physics underlying these phenomena.  

3.3.1. Simulation model 

 

Figure 3.13. The computational domain of the PNP model. The domain is axisymmetric about the dashed 

line. Each part of the boundary is labeled by a number to facilitate the description in section 3.2.  

We adopted the PNP equations given by equations 1.5 and 1.6. We further neglect the 

convection effects. Therefore, the PNP equations are reduced to the following form: 

                                
𝜕𝑐𝑖

𝜕𝑡
+ ∇ ∙ (−𝐷𝑖∇𝑐𝑖 − 𝑧𝑖𝑢𝑚,𝑖𝐹𝑐𝑖∇v) = 0                                    (3.3) 

                                               −∇ ∙ (𝜖0𝜖𝑟∇v) = 𝜌𝑞                                                    (3.4) 

where 𝑖 = + (cation) or – (anion), 𝐷 is the diffusion coefficient, 𝑧+ = 1 and 𝑧− = −1, um,i is the 

mobility of ion i.  𝐹 is the Faraday constant; v is the electrical potential; 𝜖0 is the vacuum 

permittivity; 𝜖𝑟 is the relative permittivity and it’s 78 in our model; space charge density 𝜌𝑞 =

(𝑐+ − 𝑐−)𝐹. Within the electrolyte reservoir, the diffusion coefficient of both cations and anions 

are taken as 0.26 × 10−9m2/s, and the mobilitiy of both cations and anions are taken as 𝑢𝑚,+ =
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𝑢𝑚,− = 7.8177 × 10−14s ∙ mol/kg. The diffusion coefficients and ion mobilities of ions inside 

the nanopore are detailed below.  

The 3D cylindrical nanopore-reservoir system is simplified to the 2D-axisymmetric 

domain shown in Figure 3.13. Zero ionic flux is imposed on boundaries 2, 3, 4, 5 and 6 to model 

the non-permeating wall; concentration of ions is  fixed at 1000𝑚𝑜𝑙/𝑚3 on boundaries 1 and 7. 

The initial concentration of both cations and anions is 1000𝑚𝑜𝑙/𝑚3 throughout the domain. 

Insulation boundary condition is applied on boundaries 2, 3, 4, 5, 6, and 8 for the electrical 

potential. The electrical potential on boundary 7 is kept at 0𝑉 and different electrical potentials 

(Vapp) are applied on boundary 1 from 0 to 0.6𝑉 to study the I-V relation. 

 

Figure 3.14. The mobility factor 𝑓(𝑐𝑡) used in the PNP model. 

The mobilities and diffusion coefficients of ions are modeled as a function of ion 

concentration only in the pore region. Without loss of generality, we assume that the diffusion 

coefficient and mobility of ion decrease linearly once the local total ion concentration (𝑐𝑡 = 𝑐+ +

𝑐−) becomes lower than 2000𝑚𝑜𝑙/𝑚3. Specifically, we define a mobility factor 𝑓(𝑐𝑡) as below: 
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                               𝑓(𝑐𝑡) = 𝑘 ∙ (𝑐𝑡 − 2𝑐𝑏𝑢𝑙𝑘),   𝑖𝑓 𝑐𝑡 ≤ 2𝑐𝑏𝑢𝑙𝑘                                     (3.5) 

                                          𝑓(𝑐𝑡) = 1,   𝑖𝑓 𝑐𝑡 > 2𝑐𝑏𝑢𝑙𝑘                                                  (3.6) 

where 𝑐𝑏𝑢𝑙𝑘 = 1000𝑚𝑜𝑙/𝑚3 and 𝑘 = −0.008. The mobilities and diffusion coefficients of ions 

are multiplied by 𝑓(𝑐𝑡) to account for their dependency on the total local ion concentration. 

Figure 3.14 shows the concentration dependent mobility factor 𝑓(𝑐𝑡). Clearly, other more 

sophisticated forms of 𝑓(𝑐𝑡) can also be adopted. However, even with the simple form shown in 

Fig. 3.14, the dewetting and current avalanche phenomena can already be predicted using the 

PNP model (see below).  

3.3.2. Results and discussions 

 

Figure 3.15. The space charge density (a) and total ion concentration distribution (b) in the system. A 

voltage drop of 0.4V was applied between the two electrolyte reservoirs. 

We solved the PNP model with the ion mobilities given by Equations 3.5 and 3.6 using a 

finite element package Comsol114,115. For simplicity, the pore wall is assumed to carry a zero 

surface charge density. Figure 3.15a shows the ionic space charge density inside the system 
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when a voltage difference of 0.4V was applied between the two electrolyte reservoirs (the 

direction of electrical field is in the positive direction of z-axis, i.e. it’s from left to right). We 

observe that ionic clouds formed near the two entrances of the nanopore: an anion cloud forms 

inside the left reservoir and a cation cloud forms inside the right reservoir. The formation of 

these ionic clouds and their polarity in the two reservoirs are consistent with the MD results 

shown in previous sections. Figure 3.15(b) further shows that the total ion concentration inside 

the nanopore is less than the total ion concentration in the reservoir, thus indicating that the 

partial ion depletion phenomenon can be recovered using the simplistic PNP model adopted here. 

 

Figure 3.16. I-V relationship calculated from the PNP model and concentration dependent mobilities and 

diffusion coefficients given by Equations 3.5 and 3.6. The onset of the nonlinear current-voltage relation 

at ~0.3V roughly corresponds to the onset of the partial ion depletion phenomenon shown in Figure 3.15. 

Figure 3.16 shows the current-voltage relation predicted by the PNP model. We observed 

that while the current increases rather linearly with increasing voltage for Vapp<0.3V, the current 

increases sharply as the applied voltage increases further. The sharp increase of ionic current at 

high voltage observed here closely resembles that obtained in our MD simulations, hence lending 



70 

 

support to our hypothesis that the increase of ion mobility due to decrease of ion density causes 

the dewetting and current avalanche phenomena.  

3.4 Conclusions 

In summary, electric field driven ionic transport of RTILs through nanopores was studied 

using atomistic and continuum simulations. As the applied voltage increases, the ionic current 

through the nanopore increases sharply while the ion density inside the nanopore decreases. 

These unusual phenomena are synergistic results of the unique property of RTILs (ionic 

conductivity increases as ion density decreases, which originates from the solvent-free nature of 

RTILs and the fundamental role of ion-ion friction in controlling electrical ion migration in 

RTILs) and the far-from equilibrium operation of ionic transport explored here (e.g., formation 

of stable ionic clouds near the pore entrances under large applied voltages). As a proof-of-

concept, we only explored the manipulation of these phenomena by tailoring the surface charge 

of the nanopores. However, manipulating these phenomena by tailoring other properties of 

nanopores and RTIL molecules can also be a good strategy. In particular, it should be possible to 

amplify these phenomena through careful selection of nanopores or RTIL molecules with 

size/shape optimized for a given nanopore. These strategies will benefit from the recent 

progresses in fabricating nanopores with different sizes and surface functionalization and from 

the vast diversity of RTILs that potentially can be synthesized. Examining these strategies will 

help guide rational selection of nanopores and RTILs to harness these phenomena in practical 

applications. 

The highly nonlinear ionic transport of RTILs through nanopores shown here and its 

variants (e.g., ionic transport through nanopores with discontinuous surface charge densities109) 
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can be implemented in solid-state nanopores for applications such as naonfluidic circuitry109 and 

nanopore analytics49. In particular, it could provide new ways of improving sensing and 

detection of molecules using nanopores. Specifically, in nanopore-based sensing, the passage of 

molecules through a nanopore causes changes in ionic current or other measurable electrical 

quantities, and such a change is used for molecular sensing. Present nanopore analytics based on 

aqueous electrolytes works best for charged and hydrophilic molecules or nanoparticles but face 

considerable challenges when hydrophobic molecules, which have limited stability in aqueous 

electrolytes, must be analyzed. Recent experiments demonstrated that molecules with different 

levels of hydrophobicity can be solvated using RTILs110. Such solvation capability of RTILs, 

along with the other unique advantages of RTILs such as non-volatility, helps expand the 

applicability of nanopore analytics to broader classes of molecules and to enhance the 

performance. 
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CHAPTER 4 

Dynamics of electrical double layer formation in RTILs   

In this chapter, we present detailed MD simulation results on the formation dynamics of 

an EDL inside an electrochemical cell featuring RTILs enclosed between two planar electrodes. 

Under relatively small charging currents, the evolution of cell potential during charging can be 

suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (M. Z. 

Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett., 106, 046102, 2011). Under very 

large charging currents, the cell potential shows pronounced oscillation during the initial stage of 

charging, a feature not captured by the continuum model. Such oscillation originates from the 

sequential growth of the ionic space charge layers near the electrode surface, allowing the 

evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, 

to be studied by analyzing the cell potential under constant current charging conditions. While 

the continuum model cannot predict the potential oscillation under such far-from-equilibrium 

charging conditions, it can nevertheless qualitatively capture the growth of cell potential during 

the later stage of charging. Improving the continuum model by introducing frequency-dependent 

dielectric constant and density-dependent ion diffusion coefficients may help to further extend 

the applicability of the model. The evolution of ion density profiles is also compared between the 

MD and the continuum model, showing good agreement. 

4.1 Simulation systems and methods 

The MD model for the electrochemical cell consists of two parallel walls and the RTIL 

electrolyte enclosed in between (Figure 4.1). The separation between the two walls is 30 nm, 

which is wide enough to ensure a bulk-like RTIL behavior in the middle of the system. The force  
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Figure 4.1. (a) Schematic of MD (top) and continuum model (bottom) used for studying the formation of 

EDLs at the interface of planar electrodes and RTILs. The electrical potential at x = 0 is taken as zero. 

The horizontal dashed lines in the top panel denote periodic boundaries of the MD system. (b) A snapshot 

of the MD system, where the blue and red spheres represent anions and cations, respectively.  

fields for the wall atoms and RTILs are the same as those adopted in Ref. 29. Briefly, each wall 

is made of Lennard-Jones (LJ) spheres arranged in a square lattice with a lattice spacing of 0.33 

nm. The ions are modeled as a generic RTIL without molecular details. Cations and anions of the 

RTIL electrolyte are symmetrical LJ spheres of 0.5 nm in radius with unit charge. The setup and 

the identical cation/anion radii lead to a symmetrical capacitor. The non-electrostatic interactions 

within the system are described by 𝑢𝐿𝐽(𝑟) =
𝐶12

𝑟12 29,where r is the distance between two atoms. At 

a temperature of T = 450 K, the LJ parameters are C12 = 3.742 kJ/mol·nm for ion-ion interactions 

and 9.931×10-3 kJ/mol·nm for ion-wall interactions29. A background dielectric constant of 2.0 is 

used in the calculations of electrostatic interactions to account for the electronic polarizability of 

ions not explicitly modeled in the force fields. We adopt this minimal model for RTILs because 

it has been shown to successfully capture the key features of EDLs revealed by simulations 

based on more sophisticated RTIL models29. The number of cation-anion pairs for the RTIL 

electrolyte is tuned so that the cation/anion concentration in the cell center is 0.5 M at zero wall 

charge conditions. 
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Simulations are performed in the NVT (T = 450 K) ensemble using the Gromacs 

package.71 A time step of 5 fs is used. Further details of the MD technique, such as the 

calculations of electrostatic interactions and thermostating, can be found in our prior work on 

electrokinetic transport in RTILs30. Using the setup and force fields given above, we were able to 

accurately reproduce the capacitance-voltage (C-V) relation of EDLs under the equilibrium 

conditions reported in Ref. 29. To simulate the formation of EDLs at the electrode/electrolyte 

interface under constant-current charging conditions, we first equilibrate the system with zero 

wall charge for 100 ns. At t > 0, we continuously add (remove) a small partial charge on each 

atom of the positive (negative) electrode wall until the absolute value of the surface charge 

density of both walls reaches 0.09 C/m2. The rate at which the partial charge was added to 

(removed from) the positive (negative) wall atoms was varied to obtain five charging current 

densities: I = 25, 50, 100, 200 and 400 kA/cm2. We note that these current densities are several 

orders of magnitude larger than that found in typical experimental systems111,112 because the 

spacing between the two charged walls is small and the diffusion coefficient of the model RTILs 

used here is large (see below). During simulations, the number densities of cations and anions 

across the cell are recorded every 1, 0.5, 0.25, 0.125 and 0.075 ps for the five different charging 

rates, respectively. To obtain reliable statistics, each charging case is repeated 100 times with 

independent initial configurations. The potential distribution across the entire cell is then 

calculated using the following equation derived from Poisson’s equation113 

                                     𝜙(𝑥) =
𝑠

𝜖0𝜖𝑟
𝑥 −

1

𝜖0𝜖𝑟
∫ (𝑥 − 𝑦)𝜌𝑒(𝑦)𝑑𝑦

𝑥

0
                                  (4.1) 

where 𝜙 is the electrical potential, 𝑠 is the wall charge density, 𝑥 is the distance from the 

geometrical plane of the left wall (x = 0), 𝜖0 is the vacuum permittivity, 𝜖𝑟 is the background 

dielectric constant used in the RTIL model, and 𝜌𝑒 is the ionic space charge density. As indicated 
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in Figure 4.1, the left wall is the positive electrode of the electrochemical cell, with its potential 

taken as zero.  

Continuum simulations. Based on the BSK model developed in Ref. 37, the dynamics 

of EDL formation in the above system can be described by the following equations: 

                             
𝜕𝐶±

𝜕𝑡
= 𝐷±

𝜕

𝜕𝑥
(

𝜕𝐶±

𝜕𝑥
±

𝐹

𝑅𝑇
𝐶±

𝜕𝜙

𝜕𝑥
+

𝛾𝐶±

1−𝛾(𝐶++𝐶−)

𝜕(𝐶++𝐶−)

𝜕𝑥
)                        (4.2) 

                                         𝜖0𝜖𝑏𝑢𝑙𝑘 (𝑙𝑐
2 𝜕2

𝜕𝑥2 − 1)
𝜕2𝜙

𝜕𝑥2 = 𝐹(𝐶+ − 𝐶−)                               (4.3) 

where 𝐶± are the cation/anion concentrations, 𝑅 is the ideal gas constant, 𝐹 is the Faraday 

constant, 𝑇  is temperature, 𝛾 is the minimum volume available in space for ions, 𝐷± is the ion 

diffusion coefficient, 𝜖𝑏𝑢𝑙𝑘 is the permittivity of bulk RTILs, and 𝑙𝑐 is the electrostatic 

correlation length. An ion-free Stern layer with a thickness of Lstern and a dielectric constant of 

𝜖𝑠𝑡𝑒𝑟𝑛 are also included near both walls (see Figure 4.1). To facilitate the comparison of the 

predictions by the BSK model with those by the MD simulations, the BSK model is 

parameterized using the properties of the model RTILs described above. Part of such a 

parameterization has been performed in Ref. 39, and the results are as follows: Lstern = 0.5 nm, 

𝛾 = 0.83 nm3, 𝑙𝑐 = 1.33 nm,  𝜖𝑏𝑢𝑙𝑘 = 𝜖𝑠𝑡𝑒𝑟𝑛 = 5. To determine the diffusion coefficient of cation 

and anion, we perform independent simulations to compute the electrical mobility of ions by 

applying uniform electric fields to bulk RTILs. Next, the diffusion coefficient of ions is obtained 

by using the Einstein relation between diffusion coefficient and electrical mobility. This method 

is consistent with the fact that the Einstein relation is assumed in Equation 4.2. Using this 

method, 𝐷+ = 𝐷− = 1.68 × 10−8 m2/s was obtained. Such a diffusion coefficient is three to four 

orders of magnitude larger than that of typical bulk RTILs due to the spherical geometry of the 

RTIL model and the high temperature adopted here. Because of this large ion diffusion 
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coefficient, the formation and relaxation of EDLs is fast. As such, it enables nearly quasi-

equilibrium formation of EDLs to be simulated at a charging rate much larger than that in 

practical systems (e.g., I = 400 kA/cm2, cf. Figure 4.6b), which facilitates the comparison with 

EDL formation under non-equilibrium charging conditions. 

Equation 4.2 is complemented by a zero-ion flux boundary condition for the ions at x = 0 

and 2L. For Equation 4.3, the third derivative of the electrical potential is set to zero at x = 0 and 

2L; the first derivative of the electrical potential at x = 0 and 2L is treated as a time dependent 

function which represents the steady increase of the wall charge density due to constant-current 

charging: 

  
𝜕𝜙

𝜕𝑥
|

𝑥=0
=

−𝐼∙𝑡

𝜖0𝜖𝑏𝑢𝑙𝑘
 ; 

𝜕𝜙

𝜕𝑥
|

𝑥=2𝐿
=

𝐼∙𝑡

𝜖0𝜖𝑏𝑢𝑙𝑘
                                  (4.4) 

where 𝐼 is the current density (kA/m2). At t = 0,  𝐶+ = 𝐶− = 0.5 M and 𝜙 = 0 𝑉 throughout the 

domain. These equations were solved using a commercial finite element package Comsol114,115. 

Nonuniform elements are implemented in order to better resolve EDLs near walls while 

minimizing the computational cost. Mesh sizes are reduced several times to ensure the results are 

mesh-independent. As in the MD simulations, five different constant charging current densities 

are used to study the dynamics of EDL formation. 

4.2 MD results and discussions 

We first examine the dynamics of EDL formations in the RTIL electrolyte using the MD 

method described in Section 4.1. Figure 4.2 shows the evolutions of the potential drop across the 

entire cell as a function of the wall charge density under constant-current charging at different 

rates. At the highest charging rate (I = 400 kA/cm2), the potential drop increases sharply as the  
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Figure 4.2. Evolution of the potential drop across the entire electrochemical cell (cf. Figure 4.1) as a 

function of the wall charge density during constant-current charging at different charging rates.  

wall charge density increases and oscillates significantly until the wall charge density reaches 

~0.02 C/m2. Afterward, the potential drop increases rather linearly with the wall charge density, 

and the weak curvature of the voltage-charge curve is closely related to the fact that the 

differential capacitance of double layers in RTILs depends on the surface charge density of the 

electrodes. At lower charging rates, the oscillation of potential drop across the cell initiates at 

lower wall charge densities and the amplitude is reduced with respect to that of 400 kA/cm2. For 

any given wall charge density, the potential drop across the cell increases with increasing 

charging current, which is expected because higher charging current leads to larger ionic current 

and IR drop across the RTILs (Ohmic loss), and thus larger voltage drop across the entire cell. 

These theoretical evolutions of potential drop bear a close resemblance to the charging branch of 

the galvanostatic charge/discharge profiles of supercapacitors utilizing RTILs as electrolytes, 

where the voltage plotted versus time shows linear slopes indicating a capacitive behavior111,116. 
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We also note that the system has negative dynamic differential capacitance due to potential 

oscillations. 

To understand the physical origins of the potential oscillation shown in Figure 4.2, we 

examine the potential drop across half of the cell 𝜙ℎ𝑐, i.e., that from the left wall to the cell 

center. Note that 𝜙ℎ𝑐 is 1/2 of the total potential drop across the entire cell due to the symmetries 

of the cell geometry and ion models used here. Using Equation 4.1, the rate at which the half-cell 

potential drop 𝜙ℎ𝑐 changes under a constant-current charging condition is given by  

                                      
𝜕𝜙ℎ𝑐

𝜕𝑡
=

𝜕𝜙𝑤𝑐

𝜕𝑡
+

𝜕𝜙𝑖𝑐

𝜕𝑡
                                               (4.5a) 

 
𝜕𝜙𝑤𝑐

𝜕𝑡
=

𝐼∙𝐿

𝜀0𝜖𝑟
                                                          (4.5b) 

𝜕𝜙𝑖𝑐

𝜕𝑡
= −

1

𝜀0𝜖𝑟

𝜕 ∫ (𝐿−𝑠)𝜌𝑒(𝑠)𝑑𝑠
𝐿

0

𝜕𝑡
                                (4.5c) 

in Equation 4.5a, 𝜕𝜙𝑤𝑐/𝜕𝑡 and 𝜕𝜙𝑖𝑐/𝜕𝑡 represent the contributions from the accumulation of 

surface charge on the wall and from the formation of ionic space charge layers (i.e., EDLs) 

inside the RTILs, respectively. Note that 𝜕𝜙𝑤𝑐/𝜕𝑡 is a constant determined by the charging rate 

in the constant-current charging. Figure 4.3a shows the temporal evolution of 𝜙ℎ𝑐 while Figure 

4.3b shows the contributions to 𝜙ℎ𝑐 from the two components of 𝜕𝜙𝑤𝑐/𝜕𝑡 and 𝜕𝜙𝑖𝑐/𝜕𝑡. Figure 

4.3b indicates that the oscillation of the half-cell potential drop is driven by the dynamic 

formation of ionic space charge layers inside RTILs: 𝜙ℎ𝑐 increases (decreases) 𝜕𝜙𝑖𝑐/𝜕𝑡 is 

smaller (larger) than 𝜕𝜙𝑤𝑐/𝜕𝑡, and 𝜙ℎ𝑐 reaches a peak (or valley) whenever 𝜕𝜙𝑖𝑐/𝜕𝑡 becomes 

equal to 𝜕𝜙𝑤𝑐/𝜕𝑡. More specifically, for t < 1.24 ps, 𝜕𝜙𝑖𝑐/𝜕𝑡 increases rapidly and exceeds 

𝜕𝜙𝑤𝑐/𝜕𝑡 at t = 0.91 ps and this leads to the first peak of 𝜙ℎ𝑐. Between t = 1.24 ps and 2.21 ps, 

𝜕𝜙𝑖𝑐/𝜕𝑡 decreases and crosses over 𝜕𝜙𝑤𝑐/𝜕𝑡 at t = 1.63 ps, leading to the first valley of 𝜙ℎ𝑐. At 
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later times, 𝜕𝜙𝑖𝑐/𝜕𝑡 still oscillates but with a reduced amplitude. As such, the oscillation of 𝜙ℎ𝑐 

becomes weaker with time and practically disappears at t > 6 ps. 

 

Figure 4.3. Evolution of the potential drop across a half-cell under the largest charging current studied (I 

= 400 kA/cm2). (a) Temporal evolution of the half-cell potential drop (𝜙ℎ𝑐); (b) Contributions from the 

wall charge (𝜕𝜙𝑤𝑐/𝜕𝑡, horizontal blue line) and the ionic space charge (𝜕𝜙𝑖𝑐/𝜕𝑡, red curve) to the half-

cell potential drop. Since 𝜕𝜙𝑖𝑐/𝜕𝑡 is always negative, its absolute value is shown here to facilitate 

comparison with 𝜕𝜙𝑤𝑐/𝜕𝑡. The vertical dashed lines denote the time when 𝜙ℎ𝑐 reaches a peak (or valley) 

or equivalently when 𝜕𝜙𝑤𝑐/𝜕𝑡 is equal to 𝜕𝜙𝑖𝑐/𝜕𝑡. 

The above results indicate that the formation of ionic space charge layers (or 

equivalently, EDLs) inside the cell during charging is responsible for the oscillation of the 

potential drop across the cell observed in Figure 4.2. To further rationalize how the formation of 

EDLs leads to the potential oscillation, we divide the space between the left wall and the middle 

plane of the cell into several layers: the first and the second layers (0 nm < x < 0.93 nm and 0.93 

nm < x < 1.67 nm) correspond to the space occupied by the first counter-ion (anion) and co-ion 

(cation) layers adjacent to the left wall, respectively. The third layer (1.67 nm < x < 2.31 nm) 
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corresponds to the space occupied by the second layer of counter-ions near the wall. Since the 

alternating layering of counter-ions and co-ions is no longer strong beyond the second counter-

ion peak, the space between x = 2.31 and 15 nm is taken as the fourth layer. It is worth noting 

that the locations of the counter-ion and co-ion layers adjacent to the wall will change during the 

charging process. However, such a change is relatively small during the time when potential 

oscillations are observed, and therefore we adopt a static partition of the ionic layers inside the 

cell. Figure 4.4a shows the evolution of the net charge in each of these layers and Figures. 4.4b-d 

show the detailed evolution of the cation density, anion density, space charge density, and total 

ion density profiles during the first 6 ps of charging. We observe that the net charge grows 

noticeably only in the first layer at short times (t < ~0.9 ps). The growth of the first layer is 

followed by the second, the third, and the fourth layers at successively later times. 

Using the data on the growth of charge inside each layer shown in Figures 4.4a-c and 

Equation 5c, we compute how the sequential growth of all these layers contributes to the 

evolution of  𝜕𝜙𝑖𝑐/𝜕𝑡  with time. Figure 4.5a shows that, for t < ~1 ps, if we include only the 

charge in the first space charge layer in 𝜌𝑒 when evaluating Equation 5c, the computed 𝜕𝜙𝑖𝑐/𝜕𝑡 

is close to the result in which all space charge layers are included in 𝜌𝑒 when evaluating 

Equation 5c. This indicates that, for t < ~1 ps, the growth of 𝜙𝑖𝑐 is governed mostly by the 

growth of the first space charge layer (blue solid curve in Figure 4.5a) and its competition with 

the growth of 𝜙𝑤𝑐 due to the steady increase of wall charge density (solid black line in Figure 

4.5a) leads to the first potential peak observed at t  0.9ps. Such an observation is expected 

because, by t ~ 1 ps, only the first space charge layer grows notably (i.e., has significant charge 

accumulation). Figure 4.5a also shows that at t > ~1 ps, the growth of the first space charge layer  



81 

 

 

Figure 4.4. (a) Evolution of the net ionic space charge in the four layers defined in text during the initial 

stage of charging. (b), (c), (d), and (e) Evolution of the cation number density, anion number density, 

space charge density, and total number density, respectively, during the constant-current charging. I = 400 

kA/cm2 in all cases. 

contributes much more greatly to the variation of 𝜙ℎ𝑐 than the growth of the wall charge. 

However, as can be seen from Figure 4.5b, while the growth of the first space charge layer tends 

to slow down the increase of 𝜙ℎ𝑐, its impact is strongly reduced by the growth of the second 

space charge layer. In fact, when the net charge in both layers are considered, 𝜕𝜙𝑖𝑐/𝜕𝑡 (thus 

𝜕𝜙ℎ𝑐/𝜕𝑡) is small and even becomes smaller than 𝜕𝜙𝑤𝑐/𝜕𝑡 at t  1.46 ps, which in turn leads to 

the first valley of the 𝜙ℎ𝑐 at t  1.63 ps. Such a result is consistent with the fact that, at t > 0.9 ps, 

the second space charge layer near the wall starts to grow rapidly (see Figure 4.4a). Because the 

net charge in this layer is opposite to that in the first space charge layer, the growth of this layer 

counteracts the suppression effect on the growth of 𝜙ℎ𝑐 due to the growth of the first space 

charge layer. Figure 4.5b shows that at t > 1.63 ps, the simultaneous growth of the first and the 

second charge layers tend to greatly enhance the growth of 𝜙ℎ𝑐 (see blue line in Figure 4.5b).  
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Figure 4.5. The evolution of |𝜕𝜙𝑖𝑐/𝜕𝑡| and how the growth of various space charge layers adjacent to 

wall contributes to it. Both 𝜕𝜙𝑖𝑐/𝜕𝑡 and 𝜕𝜙𝑙𝑎𝑦𝑒𝑟𝑠/𝜕𝑡 are negative, their absolute values are shown here 

to facilitate comparison with 𝜕𝜙𝑤𝑐/𝜕𝑡 (black solid line). The red dotted dashed curve denotes the 

contribution due to the space charge in all layers and blue solid curve represents potential due to the net 

charge in several layers (a: the first layer only; b: the first two layers; c: the first three layers). The vertical 

black dashed line represents the time at which 𝜙ℎ𝑐 reaches peak or valley. The charging current is I = 400 

kA/cm2. 

However, as shown in Figure 4.5c, their effects are counteracted by the growth of the third space 

charge layer near wall, which has a net charge opposite to that in the second space charge layer. 

While the large statistical noise in Figure 4.5c prevents a conclusive determination of the origin 

of the second peak of 𝜙ℎ𝑐 at t  2.84 ps, it should be closely related to the significant growth of 

the third charge layer by this time. From Figure 4.2, we also observe that there are more potential 

oscillations in smaller charging current cases, such as I = 200 kA/cm2. This can be explained by 

the sequential formation of EDLs. During constant-current charging, the total charges on the wall 
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at any given time is smaller for smaller current than that for higher current, then the formation of 

layers further away from the wall, such as 4th and 5th layers, becomes more important in affecting 

the total potential drop in smaller charging current cases since the charges in those layers are 

more comparable to total charges on the wall. 

The above analysis shows that the sequential formation of the space charge layers with 

net charge of alternating signs causes the oscillation of the half-cell potential shown in Figure 

4.2. The origins of the sequential formation of the space charge layers near the wall can be 

understood as follows. Immediately after a constant current is imposed on the wall, the surface 

charge density on the walls starts to increase, creating an electric field across the cell to drive 

counter-ions (co-ions) toward (away from) each wall. Since the wall prevents penetration of 

counter-ions into them, counter-ions accumulate near the wall and thus the first space charge 

layer grows first. With the lapse of time, the number of counter-ions inside the first layer 

increases more rapidly as the wall charge becomes larger (due to the constant-current charging). 

At t ~ 0.8 ps in the fastest charging case (I = 400kA/cm2), the rate at which the net charge inside 

the first layer increases becomes faster than that on electrode walls. This phenomenon is 

analogous to the charge over-screening phenomenon in equilibrium EDLs and can be termed 

“dynamic” over-screening. Because of this effect, co-ions are now attracted strongly toward the 

wall and the growth of the second space charge layer becomes prominent. Since the electrode 

walls are still being charged constantly, both the first and the second space charge layers 

continue to grow. In a similar manner, the third space charge layer starts to grow significantly 

when the second space charge layer “dynamically” over-screens the charge on the wall and 

inside the first space charge layer. Such a process is repeated in subsequent layers but becomes 

weaker as each additional layer is located farther away from the electrode wall.  
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4.3. Comparison between MD and continuum simulation results 

In order to test the accuracy of BSK model for non-equilibrium dynamics of RTILs, we 

also investigated the formation of EDLs under constant-current charging conditions using the 

continuum simulation approach described in Section 4.1. Figure 4.6a shows that, at a current 

density of I = 25 kA/cm2, the potential evolution predicted by the MD and BSK models are in 

good agreement up to a relatively high wall charge density of ~0.07 C/m2, suggesting that the 

BSK model can be used to quantitatively predict the formation of EDLs. This is quite 

encouraging as it opens the possibility of studying the charging dynamics in large systems using 

continuum simulations, which can be orders of magnitude faster than MD simulations. We also 

observe that the potential-surface charge relation obtained under such a current density already 

approaches that at equilibrium conditions, which, as explained in Section 4.1, is caused by the 

fast diffusion of the model RTILs in our MD simulations.  

Figure 4.6b compares the predictions of the potential drop across the entire cell by the 

MD and BSK models at the largest current density studied, i.e., I = 400 kA/cm2. The BSK model 

cannot predict the fast rise of potential drop across the cell at the initial stage of charging as well 

as the potential oscillation until the surface charge density of electrode wall reaches ~0.02 C/m2. 

These difficulties most likely originate from the fact that the BSK model is parameterized to 

reproduce the structure and capacitance of the EDLs under equilibrium conditions and thus may 

not perform very well when the EDLs near the electrode wall are driven far from equilibrium, as 

is the present case under a very large charging current. For example, a dielectric constant of 5 

was used in the parameterized BSK model. As clarified earlier, ionic polarization, i.e., the 

polarization due to relative displacements of oppositely charged ion pairs, contributes 
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significantly to the overall dielectric screening both in bulk RTILs117 and in EDLs33. When EDL 

formation is driven by a very large charging current, significant accumulation of net charge in 

space charge layers near the wall occurs at a time scale comparable to the time scale that an ion 

 

Figure 4.6. Evolution of potential drop across entire cell predicted by MD, the BSK model, and a 

modified PNP model with zero electrostatic correlation length (panel a: I = 25 kA/cm2, panel b: I = 400 

kA/cm2). The equilibrium potential drop corresponding to various surface charge densities is computed in 

separate equilibrium MD simulations. 

pair is polarized by external electric fields. Therefore, the effective dielectric constant 

experienced by the ions can be smaller than that at equilibrium conditions, akin to the scenario 

when bulk dielectric fluids (e.g., water) or electrolyte confined between two walls is subject to a 

strong external electric field imposed abruptly.118 This helps explain the faster rise of cell 

potential during the initial stage of charging in MD simulations. Such effects may be 

incorporated into the BSK model by introducing a frequency-dependent dielectric constant, but 
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this study is out of the scope of the present work. Figure 4.6b also shows that, at the later stage of 

charging (wall charge > 0.045 C/m2), the cell potential predicted by the BSK model increases at 

a slower rate compared to that observed in MD simulations. This is caused in part by the fact that 

a constant ion diffusion coefficient was used in the BSK model. When the wall charge density 

increases beyond ~0.04 C/m2, further growth of the ionic space charge layers is mainly due to the 

growth of the first ionic layer (MD results not shown). Since the counter-ion density inside the 

first ionic layer is already large at a wall charge density of 0.04 C/m2, further insertion of 

counter-ions in this layer tends to reduce their diffusion coefficient in the direction normal to the 

electrode wall.119 Such a decrease of ion diffusion coefficient effectively increases the electrical 

resistance in the electrochemical cell, and consequently the potential drop across the cell from 

the MD simulations increases faster than that predicted by the BSK model, in which the ion 

diffusion coefficient is assumed to be uniform in the entire system and for the complete charging 

process. 

Unlike previous modified PNP models, the BSK model effectively accounts for 

additional ion-ion correlations by introducing an electrostatic correlation length 𝑙𝑐 into the 

Poisson equation (see. Equation 4.3). To evaluate the importance the ion-ion correlations effects, 

we also solved the BSK model by setting 𝑙𝑐 = 0. In this case, the BSK model is reduced to the 

modified PNP model in Ref. 64, which only entertains steric effects. As shown in Figure 4.6, 

such a modified PNP model performs considerably worse than the BSK model, and cannot even 

predict the charging kinetics at the lowest charging rate. This highlights the significance of 

parameterizing ion-ion correlations in the BSK model. 
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Figure 4.7. Temporal evolution of cation (red) and anion (blue) area densities in the first (a1, b1 and c1), 

second (a2, b2 and c2) and third (a3, b3 and c3) layers in the MD simulation at I = 25 kA/cm2 (dotted) 

and BSK model (solid line). (a1-3) are unscaled ion densities, (b1-3) are ion densities scaled by their 

initial value at t = 0 and (c1-3) are ion charge densities scaled by charge density on the wall, which 

increases with time. The method for partition of layers is the same as that in Figure 4.3 of Ref. 12 and the 

width of each layer is 1 nm. 

In addition to comparing the evolution of the electrical potential drop across the cell 

during charging, we performed a detailed comparison of the evolution of ion density profiles 

obtained by MD and the BSK model to further assess the accuracy of the BSK model in 

predicting the dynamics of double layer formation. To facilitate comparison, we divided the 

space between the right wall and middle plane into several layers following the partition method 

in Ref. 12. The width of each layer is 1 nm, and the first layer is the defined as the layer closest 

to the right wall. 

We next calculated the evolution of average cation/anion area densities in the first, 

second and third layers using MD and BSK models, and the results are shown in Figure 4.7. We 

observe that the unscaled ion densities in these layers (Figure 4.7 (a1-3)) in the MD simulation 
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and BSK model differ even at t = 0, which makes the comparison of the evolution of unscaled 

ion densities at t > 0 difficult. The disagreement at t = 0 (when charge density on the wall is zero) 

is expected because ion densities are non-uniform in MD system but is uniform in the BSK 

model (see Figure 4.8). 

 

Figure 4.8. Ion densities near the wall when the wall is not charged in MD model and BSK model. 

Density profiles of cation and anion overlap with each other because the wall is electrically neutral. 

To circumvent the above issue, we scaled the ion densities in each layer by their values at 

t = 0. Figure 4.7 (b1-3) show that in the first layer, the results from MD and BSK agree well with 

each other; in the second layer, ion densities predicted by MD model are slightly larger than that 

by BSK and their agreement is fair; in the third layer, the noise in MD results prevents a 

conclusive comparison. Alternatively, we also scaled the cation and anion area charge densities 

(cation and anion) in each layer by the charge density on the wall, which increases with time 

during constant current charging. Figures 4.7 (c1-3) show that, in all layers, the order of 

magnitude of σcation/σwall and σanion/σwall predicted by MD and BSK models agrees well. Such an 

agreement is not trivial because, at short time, the magnitude of wall charge density σwall is very 
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small. Note that the profiles of σcation/σwall and σanion/σwall nearly overlap with each other in all 

layers because the difference between cation and anion densities is quite small.  

4.4 Conclusions 

In summary, we have studied the dynamics of EDL formation at the interface of planar 

electrodes and RTILs under constant-current charging conditions. At relatively low charging 

rates, the evolution of the cell potential drop predicted by the MD simulations and the BSK 

model agree with each other quite well. At very high charging rates, MD simulations predict a 

very fast rise of the cell potential at very short times and an oscillation of the cell potential until 

the wall charge density reaches a moderate value (~0.02 C/m2 in our model). Such oscillation is 

caused by the sequential growth of the space charge layers with net charges of alternating signs 

near the electrode wall, and cannot be predicted by the present BSK model. In addition, the BSK 

model predicts a slower rise of cell potential during both the initial and later stage of charging 

compared to that obtained from MD simulations. Such a difference is most likely caused by the 

fact that the BSK model is parameterized under equilibrium conditions. This can in principle be 

resolved by introducing frequency-dependent dielectric constant, ion density-dependent diffusion 

coefficients and even local concentration/field dependent 𝑙𝑐 into the BSK model.41,120 Together, 

these results suggest that, unless EDL formation occurs under far-from-equilibrium conditions, 

its macroscopic behavior can be predicted quite well by the BSK model. The evolution of ion 

density profiles, another aspect of the EDL formation dynamics, is also compared to further 

assess the accuracy of the BSK model in predicting the dynamics of double layer formation, 

showing good agreement between the MD and BSK model. 
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The present study suggests that one can gain insights into the formation of separate EDL 

layers, an atomistic process difficult to quantify directly, by analyzing the oscillation of the 

electrical potential as a function of time during a constant-current charging process. Such a 

procedure can also potentially provide critical information about the ion transport behavior 

within the EDL and in the direction normal to the electrode wall. However, the experimental 

studies of galvanostatic charge/discharge of supercapacitors utilizing RTILs as electrolytes do 

not display such potential oscillations, probably because of the limited temporal resolution on a 

time scale of seconds. In the model RTIL we employed, the potential oscillation is observed at 

very large charging current (>O(100 kA/cm2)) and very short time scale (<O(5 ps)). As pointed 

out above, this is mainly caused by the large diffusion coefficient of the model RTILs, which 

enables very fast formation/relaxation of the EDL structure and potential. Consequently, a far-

from-equilibrium EDL formation can only be probed using large charging currents and observed 

at short time scales. For practical RTILs, whose diffusion coefficient is usually three to four 

orders of magnitude smaller than the model RTIL considered here, the formation/relaxation of 

EDL is much slower and thus we can expect the potential oscillation to be observed at charging 

currents that are more accessible experimentally and at much longer time scales up to 1 ns. 

Nevertheless, the temporal resolution of present galvanostatic charge/discharge experiments 

must be enhanced to the nanosecond scale in order to observe the potential oscillations predicted 

in this work. 
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CHAPTER 5 

Conclusions 

 Room-temperature ionic liquids (RTILs) are an emerging class of electrolytes that holds 

promise of greatly improving the performance of many electrochemical devices. The transport 

behavior of RTILs in nanopores plays a crucial role in determining the performance of these 

devices. Most prior research on the transport behavior of RTILs focused on the equilibrium self-

diffusion in nanopores, and relatively little is known about their non-equilibrium transport. In 

this dissertation, we use molecular dynamics (MD) and continuum simulations to investigate the 

non-equilibrium transport of RTILs in nanopores. We consider three qualitatively different 

scenarios: the hydrodynamic transport of RTILs, in which the electrical double layers (EDLs) are 

not perturbed; the ionic transport through nanopores connected with RTIL reservoirs, in which 

EDLs are perturbed along the pore length direction; the charging dynamics in electrochemical 

cells, in which the EDLs form in response to the imposed currents.  

For the hydrodynamic transport of RTILs, we simulated the electroosmotic flows (EOFs) 

through slit nanochannels filled with RTILs. Our key findings are as follows:  

1. The EOF velocity profile shows significant oscillations near charged walls. This is 

due to strong ion-ion correlations in RTILs, which lead to alternating layering of 

counter/co-ions near charged channel walls. The alternating layering of ions in turn 

leads to oscillations of space charge and EOF driving force, and finally an oscillation 

of the EOF velocity. 

2. The strength of the EOF greatly exceeds that predicted by classical electrokinetic 

theory if correct ion distribution and electro-friction between ions and walls are taken 
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into account. We demonstrated that the amplified velocity is caused by the short-

wavelength of the EOF. EOF velocity profile of RTILs features short-wavelength 

components due to its significant oscillations near charge walls. For such flows, the 

shear stress at one position no longer depends only on the local strain rate, but must 

be described by the nonlocal strain rate-shear stress constitutive law. The EOF in 

RTILs is thus a rare example in which short-wavelength hydrodynamics profoundly 

affects flow measurables in macroscopic systems and thus is a good test bed for 

developing improved theories for generalized hydrodynamics. 

For ionic transport through nanopores connected with RTIL reservoirs, we computed the 

ionic current through neutral and charged nanopores with diameter comparable to the size of 

ions. We investigated how the ionic current and structure of the RTILs in nanopore evolve as the 

voltage changes. Our key findings are as follows: 

1. Inside the neutral pore, as applied voltage increases, the ionic current increases 

nonlinearly but the ion density decreases. Inside the charged pore with the same 

diameter, similar trends are observed but the ionic current increases much shaper 

compared to that in neutral pores. At sufficiently high voltages, a significant portion 

of the charged nanopore becomes empty (termed dewetting here) while the ionic 

current is very high. The latter observation differs qualitatively from the transport of 

aqueous electrolytes through nanopores.  

2. The sharp increase of the ionic current as voltage increases and the concomitant 

nanopore dewetting is caused by the sharp increase of ion mobility as the ion density 

in RTILs decreases, which is unique to solvent-free electrolytes confined in 
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nanopores with diameter compared to the ion size. Specifically, inside nanopores, the 

electrical field is stronger than that in bulk electrolyte and this leads to a decrease of 

ion density inside nanopore as the voltage is applied. This in turn leads to ion 

depletion inside the pore and the formation of ionic clouds near pore entrances. While 

the ion depletion tends to further increase ion mobility inside pore, the formation of 

ionic clouds near pore entrances reduces the electrical field inside pore. These two 

processes compete with each other until the system reaches steady state. The net 

result is that the ionic current is enhanced as pore becomes dewetted. The essential 

role of the unique ion mobility-ion density relation in RTILs in the nonlinear I-V 

curve and ion depletion in nanopore is also supported by our continuum simulations 

based on a minimal ionic transport model in which we implemented an ion density-

dependent ion mobility similar to that in RTILs.  

Finally, for charging dynamics of electrochemical cells filled with RTILs, we used MD 

simulations and BSK model to study dynamics of EDL formation under constant-current 

charging condition. We investigated the spatial and temporal evolutions of the ion densities and 

electrical potential across the cell during charging. The key findings are as follows: 

1. The MD results show that, at the same surface charge density on the electrode, the 

total potential drop across the cell under larger charging current is higher than that 

under smaller charging current. This is consistent with RC circuit theory, in that the 

potential drop across the resistor increases if the current running through it increases. 

2. The potential drop across the cell oscillates at the beginning stage of charging and the 

magnitude of oscillation increases as charging current increases. We show that the 
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potential oscillation is related to the sequential formation of EDLs near charged walls. 

The formation of the first layer that mainly consists of counter-ions will decrease the 

total potential drop across the cell, while the formation of second layer that mainly 

consists of co-ions will increase total potential drop. The formation of further layers 

will continue increase or decrease the potential, but their influence on the potential 

becomes smaller as the layers form further away from the wall. Together, these 

phenomena cause potential oscillation to decay as charging proceeds. The origin of 

sequential formation of EDLs is related to the dynamic over-screening when net 

charge in each layer grows during the charging process. 

3. The BSK model can predict the overall charging dynamics and the underlying EDL 

structure evolution quite well under small charging currents. For large charging 

currents, such as I = 400 kA/cm2, the BSK model cannot capture the potential 

oscillations at the beginning of charging. The BSK model also predicts a relatively 

slower rise of the potential in initial and later stage of charging. Such a difference is 

most likely caused by the fact that the BSK model is parameterized under equilibrium 

conditions. This can in principle be resolved by introducing frequency-dependent 

dielectric constant, ion density-dependent diffusion coefficients and even local 

concentration/field dependent 𝑙𝑐 into the BSK model. These results suggest that, 

unless EDL formation occurs under far-from-equilibrium conditions, its macroscopic 

behavior can be predicted quite well by the BSK model.  

In summary, we discovered that the non-equilibrium transport of RTILs in electrified 

nanosystems exhibit features not found in the transport of conventional electrolytes. These 

unique features arise, at the most fundamental level, from the strong ion-ion correlations in 
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RTILs. More systematic study of these phenomena will help develop better theories for the non-

equilibrium transport of RTILs and help exploit their potential for application in electrochemical 

systems to the fullest extent.  
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