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Chapter 1

Introduction

In 2009, Arikan developed polar codes as the first explicit construction of

symmetric capacity achieving codes for binary discrete memoryless channels (DMCs)

with low encoding and decoding complexity. In this construction, a kernel matrix

G =

 1 0

1 1

 ∈ F2×2
2

is considered, and G⊗n is used to encode a block of 2n channels. As the number

of channels grows, each channel becomes either a noiseless channel or a pure-noise

channel, and the rate of this polarization is related to the kernel matrix used.

Korada, Şaşoğlu, and Urbanke considered larger binary matrices as kernels and

characterized the speed of polarization by introducing a quantity called the exponent

[12]. Şaşoğlu also explored the polarization phenomenon for nonbinary alphabets

[23], and polar codes were generalized to arbitrary discrete memoryless channels by

Şaşoğlu, Telatar, and Arikan [24]. Mori and Tanaka generalized the arguments of

Korada et. al. to kernels over arbitrary finite fields [19] and showed that kernels

constructed from Reed-Solomon codes give the largest exponent when the code length
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is at most the size of the field [20]. They also stated that a Hermitian code over a

field of even characteristic of sufficient size gives a larger exponent than the Reed-

Solomon matrix over the same field. Their work, along with the BCH code employed

by Korada et. al. [12], suggests algebraic geometric codes are good candidates for

constructing kernel matrices.

Algebraic geometric codes were introduced by V.D. Goppa in the 1970s ([10],

[11]). Hermitian codes are well-known and studied, and in Chapter 4, we construct

kernel matrices from one-point and two-point Hermitian codes as well as from Suzuki

codes. In addition, we demonstrate that multipoint code kernels arise naturally from

shortening those associated with one-point codes, which leads to a discussion of three-

point Hermitian codes.

In Chapter 2, we introduce basics of coding theory and algebraic geometric

codes. We end the chapter with an application of algebraic geometric codes to stop-

ping sets. Chapter 3 gives an overview of polar coding, including a discussion of the

kernel matrix and exponent. Chapter 4 presents kernels constructed from algebraic

geometric codes and ends with a study of triples of rational places on the Hermitian

curve.
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Chapter 2

Coding Theory

When information is sent across a channel, it may be corrupted by noise in the

channel. Coding theory is the study of how one detects, or even corrects, errors that

occur due to noise. Error-correcting codes protect information from distortion caused

by noise. Figure 2.1 demonstrates how a message m is encoded to be sent across a

noisy channel and the received message c′ is decoded by the receiver. Applications

of coding theory include ISBNs, bar codes, UPCs, flash memories, CDs, DVDs, QR

codes, and much more.

Figure 2.1: Basic encoder and decoder
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2.1 Background

Let A be a finite set. Typically, we take A to be a field, and refer to A as an

alphabet. More generally, one might consider alphabets which are rings or even those

with no algebraic structure.

Definition 1 Let n be a positive integer. A code, C, is a set of elements of An. The

length of the code C is n. Elements of the code C are called codewords.

We will restrict our attention to block codes, where a block of k bits is encoded to a

codeword of length n. The length n may also be referred to as the block length. To

emphasize the choice of alphabet, we sometimes say C is a code over the alphabet A,

or just over A for short.

Definition 2 The minimum distance of a code C of length n is

d(C) := min{d(x, y) | x, y ∈ C, x 6= y}

where d(x, y) = |{i ∈ 1, . . . , n : xi 6= yi}| denotes the Hamming distance between

codewords x = (x1, . . . , xn) and y = (y1, . . . , yn).

Definition 3 Let A be a field. A linear code C of length n is an A-subspace of An for

some positive integer n. The dimension of C, usually denoted by k, is the dimension

of C as an A-vector space; that is, the dimension of C is k := dimA(C).

Given a prime power q, we will let Fq denote the finite field with q elements,

and Fnq denote the set of 1×n vectors with entries in Fq where n is a positive integer.

Given u ∈ Fnq , ui denotes the ith coordinate of u. Let Fm×nq denote the set of m × n

matrices with entries in Fq where n and m are positive integers.
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We refer to a linear code of length n and dimension k as an [n, k]-code. The

information rate of an [n, k]-code is

R =
k

n
.

Definition 4 Let C be an [n, k]-code. A generator matrix G of C is a k × n matrix

whose rows form a basis of C; that is,

G =



—– g1 —–

—– g2 —–

...

—– gk−1 —–

—– gk —–


where {g1, g2, . . . , gk} is a basis for C.

Definition 5 Let C be an [n, k]-code over Fq. The dual code of C, denoted C⊥, is

defined by

C⊥ = {x ∈ Fnq | 〈x, c〉 = 0 for all c ∈ C}

where 〈x, c〉 =
∑n

i=1 xici.

Definition 6 Let C be an [n, k]-code. A parity check matrix of C is a generator matrix

of C⊥.

Definition 7 Two codes C1 and C2 of length n over Fq are isometric if and only if

there exists a vector space isomorphism σ : C1 → C2 that preserves Hamming distance;

that is, d(c1, c2) = d(σ(c1), σ(c2)) for all c1, c2 ∈ C.

5



Note if C is a linear code, then the minimum distance of C satisfies

d(C) = min{w(c) | 0 6= c ∈ C}

where w(c) := d(c, 0) is the weight of the codeword c.

We refer to a linear code of length n, dimension k, and minimum distance d

as an [n, k, d]-code over Fq. If C is an [n, k, d]-code, then C can correct up to bd−1
2
c

errors; that is, for all w ∈ Fnq with d(w, c) ≤
⌊
d−1
2

⌋
for some c ∈ C, then c is the

unique codeword satisfying d(w, c) ≤
⌊
d−1
2

⌋
.

One of the main problems of coding theory is to construct codes whose dimen-

sion is large (which guarantees a large information rate) and whose minimum distance

is large (which guarantees correction of many errors). However, in some sense these

are competing goals as demonstrated by with the Singleton Bound below.

Proposition 1 (Singleton Bound) For an [n, k, d]-code C,

k + d ≤ n+ 1.

Proof

Let C be an [n, k, d]-code. Consider the linear subspace W ⊆ Fnq given by

W := {(a1, . . . , an) ∈ Fnq | ai = 0 for all i ≥ d}.

6



Let a ∈ W . Then w(a) ≤ d− 1. Hence, a /∈ C and C ∩W = {0}. Note dimFq(W ) =

d− 1. Thus,

k + (d− 1) = dimFq(C) + dimFq(W )

= dimFq(C +W ) + dimFq(C ∩W )

= dimFq(C +W )

≤ n.

Therefore, k + d ≤ n+ 1. �

Codes such that k+ d = n+ 1 are called MDS (maximum distance separable)

codes. Next, we will review Reed-Solomon codes, which are examples of MDS codes.

Let Fq be a finite field of q elements, where q is a power of a prime. Let

n = q − 1 and β ∈ Fq be a primitive element of F∗q := Fq \ {0}. For an integer k such

that 1 ≤ k ≤ n, consider the k-dimensional vector space

Lk := {f ∈ Fq[X] | deg(f) ≤ k − 1}

and the evaluation map ev : Lk → Fnq given by

ev(f) := (f(β), f(β2), . . . , f(βn)) ∈ Fnq .

Definition 8 Given n, k, β, and q as above, the Reed-Solomon code Ck over Fq is

Ck :=
{

(f(β), f(β2), . . . , f(βn)) : f ∈ Lk
}
.

Proposition 2 The Reed-Solomon code Ck is an [q − 1, k, q − k] code over Fq.

7



Proof

Note that Ck has length n = q−1 and dimension k as ev is injective. Let c ∈ Ck \{0}.

Then

w(c) = n− |{i ∈ {1, . . . , n} : f(βi) = 0}|

≥ n− deg(f)

≥ n− (k − 1).

Thus, d ≥ n+ 1− k. By the Singleton Bound, we know d ≤ n+ 1− k. Hence, Reed-

Solomon codes are MDS codes over Fq. Furthermore, d = n+1−k = q−1+1−k = q−k

since n = q − 1. Therefore, Ck is an [q − 1, k, q − k] code over Fq. �

Notice that Reed-Solomon codes are short in comparison with the size of the

alphabet Fq since the length of the codes are n = q − 1. Reed-Solomon codes are

special cases of algebraic geometry codes, which we will review in the next section.

2.2 Preliminaries

We will first introduce preliminaries to algebraic geometry before introducing

AG codes and some applications. For a more thorough review, please consult [7],

[17, Chapter 1], or [26]. Note that all definitions and theorems come from [26] unless

otherwise noted.

Definition 9 An algebraic function field F/K of one variable over K is an extension

field F ⊇ K such that F is a finite algebraic extension of K(x) for some element x ∈ F

which is transcendental over K.

We will refer to F/K as a function field.

8



Definition 10 A place P of the function field F/K is a maximal ideal of some valu-

ation ring O of F/K. Any element t ∈ P such the P = tO is called a prime element

for P . Let PF := {P | P is a place of F/K} denote the set of places F/K. Note that

t is sometimes called a uniformizer.

Definition 11 A discrete valuation of F/K is a function v : F → Z∪{∞} such that

1. v(x) =∞ if and only if x = 0;

2. v(xy) = v(x) + v(y) for all x, y ∈ F ;

3. v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ F ;

4. there exists an element z ∈ F such that v(z) = 1;

5. v(a) = 0 for any 0 6= a ∈ K.

Definition 12 Let P ∈ PF and OP be the corresponding valuation ring. Let O∗P :=

{x ∈ O | there is a w ∈ O with xw = 1}. Choose a prime element t for P . Then

every z ∈ F \ {0} has a unique representation z = tnu with u ∈ O∗P and n ∈ Z. Set

vP (x) := n and vP (0) :=∞ to define a function vP : F → Z ∪ {∞}.

Remarks:

1. This definition does not depend on the choice of t. If t′ is another prime element

for P , then P = tO = t′O. Hence, t = t′w for some w ∈ O∗P . Thus, tnu =

(t′nwn)u = t′n(wnu) where wnu ∈ O∗P .

2. The function vP is a discrete valuation of F/K.

Note that if we let P ∈ PF and OP be the corresponding valuation ring, then

FP := OP/P is a field since P is a maximal ideal. The quotient field FP := OP/P is

9



called the residue class field of the place P . Let x ∈ OP . Define x(P ) ∈ FP to be the

residue class of x modulo P , and set x(P ) := ∞ if x ∈ F \ OP . Since K ⊆ OP and

K∩P = {0}, the residue class map OP → OP/P induces a canonical embedding of K

into OP/P . Therefore, we will consider K as a subfield of OP/P via this embedding.

Definition 13 Let P ∈ PF and OP be the corresponding valuation ring. Let FP :=

OP/P be the residue class field of the place P . The degree of the place P is

deg(P ) := [FP : K].

A place P of F/K of degree one is sometimes called a rational place, or a

K-rational place.

Definition 14 Let z ∈ F and P ∈ PF . The place P is a zero of z of order m if

and only if vP (z) = m > 0. The place P is a pole of z of order m if and only if

vP (z) = −m < 0.

Definition 15 The free abelian group on the set of places of F/K is the divisor group

of F/K, denoted by DF . The elements of DF are called divisors of F/K.

Notice that a divisor is a formal sum

D =
∑
P∈PF

nPP

where nP ∈ Z and almost all nP = 0, i.e. all but finitely many. The support of a

divisor D =
∑

P∈PF nPP is

supp(D) := {P ∈ PF | nP 6= 0}.

10



A divisor of the form D = P with P ∈ PF is called a prime divisor. Two

divisors D =
∑

P∈PF nPP and D′ =
∑

P∈PF n
′
PP may be added coefficientwise; that

is,

D +D′ =
∑
P∈PF

(nP + n′P )P.

The zero element of the divisor group DF is the divisor

0 :=
∑
P∈PF

rPP

where rP = 0 for all P ∈ PF .

For Q ∈ PF and D =
∑

P∈PF nPP ∈ DF , we define vQ(D) := nQ. A partial

ordering on DF is defined by

D1 ≤ D2 if and only if vP (D1) ≤ vP (D2)

for any P ∈ PF . A divisor D ≥ 0 is called positive (or effective). The degree of a

divisor is defined by

deg(D) :=
∑
P∈PF

vP (D) deg(P ).

Since any nonzero element x ∈ F has only finitely many zeros and poles in

PF , we may define the following divisors related to the function x ∈ F .

Definition 16 Let x ∈ F \ {0}. Let Z denote the set of zeros of x in PF , and N

denote the set of poles of x in PF . Then define

(x)0 :=
∑
P∈Z

vP (x)P,

11



the zero divisor of x;

(x)∞ :=
∑
P∈N

−vP (x)P,

the pole divisor of x; and

(x) := (x)0 − (x)∞,

the principal divisor of x.

The group PF := {(x) | x ∈ F \ {0}} is called the group of principal divisors

of F/K.

Definition 17 For divisors A ∈ DF , we write A ∼ B if A and B are linearly equiv-

alent; that is, the difference between A and B is a principal divisor.

Definition 18 For a divisor A ∈ DF , define

L(A) := {x ∈ F \ {0} | (x) ≥ −A} ∪ {0}.

We sometimes call L(A) the Riemann-Roch space of A.

Note that if

A =
r∑
i=1

niPi −
s∑
j=1

mjQj

where ni,mj > 0, then L(A) consists of all elements x ∈ F \ {0} such that

1. x has zeros of order ≥ mj at Qj for j = 1, . . . , s, and

2. x may have poles only at the places P1, . . . , Pr, with the pole order at Pi being

bounded by ni for i = 1, . . . , r, together with the 0 function.

Lemma 1 The Riemann-Roch space of A, L(A), is a vector space over K \ {0}.

12



Proof Let x, y ∈ L(A) and a ∈ K. For any place P ∈ PF ,

vP (x+ y) ≥ min {vP (x), vP (y)} ≥ −vP (A)

and

vp(ax) = vP (a) + vP (x) ≥ −vP (A).

Thus, x+ y, ax ∈ L(A). �

Define `(A) := dimK(L(A)). Note that if deg(A) < 0, then `(A) = 0.

Definition 19 The genus g of F/K is defined by

g := max{deg(A)− `(A) + 1 | A ∈ DF}.

Note that the genus of F/K is a nonnegative integer. To see this fact let

A = 0. Then deg(0)− `(0) + 1 = 0. Thus, g ≥ 0.

Definition 20 Let F/K be a function field of genus g. A divisor W of F/K is a

canonical divisor if

deg(W ) = 2g − 2 and `(W ) ≥ g.

Theorem 1 (Riemann-Roch Theorem) Let F/K be a function field of genus g. Let

W be a canonical divisor of F/K. For any divisor A ∈ DF ,

`(A) = deg(A) + 1− g + `(W − A).

Lemma 2 Let F/K be a function field of genus g. If A is a divisor of F/K of degree

13



greater than or equal to 2g − 1, then

`(A) = deg(A) + 1− g.

Let N0 denote the set of nonnegative integers.

Definition 21 For a rational place P of F/K, the Weierstrass semigroup H(P ) of

P is

H(P ) := {α ∈ N0 | there exists f ∈ F such that (f)∞ = αP}.

Notice that H(P ) is a monoid under addition. Indeed, if α, β ∈ H(P ), then

there exists f, g ∈ F such that (f)∞ = αP and (g)∞ = βP . Then (fg)∞ = (f)∞ +

(g)∞ = αP + βP = (α + β)P . Thus, α + β ∈ H(P ).

Definition 22 For a rational place P of F/K, the Weierstrass gap set G(P ) of P is

G(P ) := N0 \H(P ).

The elements of G(P ) are often called gaps at P or gap numbers of P .

Theorem 2 (Weierstrass Gap Theorem) Suppose that F/K has genus g > 0 and P

is a place of degree one. Then there are exactly g gap numbers α1 < α2 < . . . < αg of

P . Moreover,

α1 = 1 and αg = 2g − 1.

Definition 23 For rational places P1, P2, . . . , Pm of F/K, the Weierstrass gap set

G(P1, P2, . . . , Pm) of the m-tuple (P1, P2, . . . , Pm) is

G(P1, P2, . . . , Pm) := Nm
0 \H(P1, P2, . . . Pm).

14



Definition 24 [4] Let P1, P2, . . . , Pm be rational places of F/K. An m-tuple (α1, α2, . . . , αm)

of natural numbers is said to be a pure gap at (P1, P2, . . . , Pm) if

`(α1P1 + α2P2 + · · ·+ αmPm) = `((α1 − 1)P1 + α2P2 + · · ·+ αmPm)

= `(α1P1 + (α2 − 1)P2 + · · ·+ αmPm)

...

= `(α1P1 + α2P2 + · · ·+ (αm − 1)Pm).

2.3 Algebraic geometric codes

Algebraic geometric codes were introduced by V.D. Goppa in the 1970s and

provided a generalization of Reed-Solomon codes ([10], [11]). Reed-Solomon codes

discussed earlier are special cases of algebraic geometry codes.

Definition 25 Let D = P1 + · · · + Pn, where P1, . . . , Pn are pairwise distinct places

of F/Fq of degree 1, and let A be a divisor of F/Fq such that supp(D)∩ supp(A) = ∅.

The algebraic geometric code C(D,A) associated with the divisors D and A is defined

by

C(D,A) = {(f(P1), . . . , f(Pn)) | f ∈ L(A)} ⊆ Fnq .

If |supp(A)| = m, then C(D,A) is called an m-point code; if m ≥ 2, C(D,A) is

known as a multipoint code.

Theorem 3 The code C(D,A) is an [n, k, d] code with parameters

k = `(A)− `(A−D) and d ≥ n− deg(A).

15



Proof

Consider the code C(D,A) where D = P1+· · ·+Pn such that supp(D)∩supp(A) = ∅,

and the evaluation map evD : L(A)→ Fnq given by

evD(f) := (f(P1), . . . , f(Pn)) ∈ Fnq .

The evaluation map is a surjective linear map with kernel

ker(evD) = {f ∈ L(A) | vPi(f) > 0 for i = 1, . . . , n} = L(A−D).

Thus, k = `(C(D,A)) = `(A) − `(A − D). Now, suppose C(D,A) 6= 0, and pick

f ∈ L(A) such that w(evD(f)) = d. Then exactly n − d places Pi1 , . . . , Pin−d in the

support of D are zeros of f . Thus,

f ∈ L
(
A−

(
Pi1 , . . . , Pin−d

))
.

Hence,

0 ≥ deg
(
A−

(
Pi1 , . . . , Pin−d

))
= deg(A)− (n− d).

Therefore, d ≥ n− deg(A). �

Corollary 1 Suppose that the degree of A is strictly less than n. Then

1. The code C(D,A) is an [n, k, d] code with k = `(A) ≥ deg(A) + 1− g. Thus,

k + d ≥ n+ 1− g.

2. In addition, if 2g − 2 < deg(A) < n, then k = deg(A) + 1− g.
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3. If {f1, . . . , fk} is a basis for L(A), then



fk(P1) fk(P2) · · · fk(Pn)

fk−1(P1) fk−1(P2) · · · fk−1(Pn)

...
...

...

f1(P1) f1(P2) · · · f1(Pn)


is a generator matrix for C(D,A).

Recall that the Singleton Bound gives k + d ≤ n + 1. As stated in Corollary

1, the code C(D,A) has parameters satisfying n+ 1− g ≤ k + d ≤ n+ 1.

Example 1 Let F/Fq be of genus 0. Then F is the rational function field over

Fq. Let Fq = {0, α, α2, . . . , αq−1}. Let Pi be the rational place x − αi of Fq for

0 ≤ i ≤ q−1. Let A = (k−1)P∞ where P∞ denotes the infinite place of Fq(x). Then

C(P0 + . . .+ Pq, (k − 1)P∞) is the Reed-Solomon code Ck over Fq.

Example 2 Let F = Fq2(x, y) be the function field of the Hermitian curve

yq + y = xq+1

where q is a power of a prime. The Hermitian code over Fq2 of length q3 is C(D, aP∞),

where

D =
∑

α,β∈Fq2 ,βq+β=αq+1

Pα,β

and Pα,β is a common zero of x− α and y − β. Note that g = q(q−1)
2

.

We will now discuss several applications of AG codes. Section 2.4 will cate-

gorize stopping sets over certain curves; Chapter 4 will discuss polar coding and AG

code kernels as well as triples of points of the Hermitian curve.
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2.4 Stopping Sets

Combinatorial structures called stopping sets govern the performance of a

linear code over the binary erasure channel when coupled with an iterative decoding

algorithm.1

Let C := C(H) be an [n, k, d]-code over Fq with parity-check matrix H. Let

[n] = {1, . . . , n} denote the set of column indices of H.

Definition 26 A stopping set S of the code C(H) is a subset of [n] such that the

restriction of H to S does not contain a row of weight 1. The stopping distance s(H)

of C(H) is the minimum size of a nonempty stopping set.

Note that the stopping set and stopping distance depend on the choice of

parity-check matrix H. We only consider the parity-check matrix H∗ consisting of all

the nonzero codewords of the dual code C⊥.

Let F be a function field over Fq of genus g. Consider divisors G = mP∞,

where 0 < m < n, and D = P1 + · · ·+ Pn with disjoint support, where Pi are places

of F of degree 1.

The structure of an AG code reveals information about its stopping sets. In

2013, Zhang, Fu, and Wan [31] showed that dimensions of Riemann-Roch spaces

can be used to decide if S is a stopping set, as shown in Figure 2.2. Notice that

A = {i1, . . . , ij} is not a stopping set of C(D,mP∞)⊥ if and only if

wt((f(Pi1), . . . , f(Pij))) = 1

1This section is joint work with A. Omairi.
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for some f ∈ L(mP∞) if and only if

f(Pik) 6= 0 and f(Pij) = 0

for all ij ∈ A \ {ik} if and only if

(f) ≥
∑

j∈A\{ik}

Pj −mP∞ and vpik (f) = 0

if and only if

f ∈ L

mP∞ − ∑
j∈A\{ik}

Pj

 \ L(mP∞ −∑
j∈A

Pj

)
.

Lemma 3 [31, Theorem 6] Let m be a positive integer less than n. A subset A ⊆ [n]

is a stopping set of C(D,mP∞)⊥ if and only if

L

(
mP∞ −

∑
j∈A

Pj

)
= L

mP∞ − ∑
j∈A\{i}

Pj

 .

for all i ∈ A.

Corollary 2 [31, Corollary 7] Let m be a positive integer less than n. Consider

C(D,mP∞)⊥. Any subset of [n] with cardinality greater than or equal to m + 2 is a

stopping set of C(D,mP∞)⊥. Any non-empty subset of [n] with cardinality less than

or equal to m− 2g + 1 is not a stopping set of C(D,mP∞)⊥.

Proof

Let A be subset of [n] with cardinality greater than or equal to m + 2. Then
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deg
(
mP∞ −

∑
j∈A Pj

)
< 0 and deg

(
mP∞ −

∑
j∈A\{i} Pj

)
≤ 0. Hence,

`

(
mP∞ −

∑
j∈A

Pj

)
= `

mP∞ − ∑
j∈A\{i}

Pj

 = 0

and L
(
mP∞ −

∑
j∈A Pj

)
= L

(
mP∞ −

∑
j∈A\{i} Pj

)
. Thus, A is a stopping set by

Lemma 3.

Let B be non-empty subset of [n] with cardinality less than or equal to

m− 2g+ 1. Then deg
(
mP∞ −

∑
j∈A Pj

)
≥ 2g+ 1 and deg

(
mP∞ −

∑
j∈A\{i} Pj

)
≥

2g + 2. By Lemma 2, `
(
mP∞ −

∑
j∈A Pj

)
6= `

(
mP∞ −

∑
j∈A\{i} Pj

)
= 0 and

L
(
G−

∑
j∈A Pj

)
6= L

(
G−

∑
j∈A\{i} Pj

)
. Thus, A is not a stopping set by Lemma

3. �

Figure 2.2: The cardinality of A plays a role in whether or not A is a stopping set of

C(D,mP∞)⊥.

Example 3 Let m be a positive integer less than n. Consider the Reed-Solomon code

Ck over Fq. Then g = 0 and m = n−k−1. Using Corollary 2, we can categorized all

the stopping sets. Any subset of [n] with cardinality greater than or equal to n− k+ 1

is a stopping set. Any non-empty subset of [n] with cardinality less than or equal to

n− k is not a stopping set. Hence, the stopping distance is n− k + 1.

Let E be an elliptic function field over Fq with rational place O. Endow E(Fq)

with a group structure and the zero element O. Let {P1, P2, . . . , Pn} be a subset of
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the set E(Fq) and D = P1 + · · ·+Pn such that the supports of D and O are disjoint.

Let m be a positive integer less than n. Note g = 1. Using Corollary 2, we know any

subset of [n] with cardinality greater than or equal to m is a stopping set C(D,mO)⊥,

and any non-empty subset of [n] with cardinality less than or equal to m+ 1 is not a

stopping set C(D,mO)⊥.

Using Lemma 4, one can classify stopping sets of size m+1 and m in Corollary

3.

Lemma 4 [31, Corollary 9] Let A be a subset of [n]. If

K −G+
∑
j∈A

Pj ∼ E

for some effective divisor E with supp(E) ∩ {Pi | i ∈ A} = ∅ where K is a canonical

divisor on X, then A is stopping set.

Corollary 3 [31, Theorem 10] Let m be a positive integer less than n. Consider

C(D,mO)⊥. Any A ⊆ [n] with cardinality m + 1 is a stopping set if and only if for

all i ∈ A, ∑
j∈A \{i}

Pj 6= O.

Any A ⊆ [n] with cardinality m is a stopping set if and only if

∑
j∈A

Pj = O.

.

Similar techniques can be used to classify stopping sets of AG codes over

hyperelliptic function fields of genus 2. Let E be an hyperelliptic function field of
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genus 2 over Fq with rational place O. Endow E(Fq) with a group structure and the

zero element O. We will consider C(D,mO)⊥.

Corollary 4 Let m be a positive integer less than n. Consider C(D,mO)⊥. Any

subset of [n] with cardinality greater than or equal to m + 2 is a stopping set. Any

non-empty subset of [n] with cardinality less than or equal to m− 3 is not a stopping

set.

Proof

From Corollary 2, any subset of [n] with cardinality greater than or equal to

m + 2 is a stopping set. Since g = 2, any non-empty subset of [n] with cardinality

less than or equal to m− 2(2) + 1 = m− 3 is not a stopping set by Corollary 2.

Proof

𝑖         0                             m - 3    m – 2    m - 1         m    m + 1   m + 2                             n  

|𝐴|  =  𝑖 

𝐴 is not a stopping set       𝐴 is a stopping set 

Figure 2.3: Stopping sets of hyperelliptic function fields with genus 2

Corollary 5 Let m be a positive integer less than n. Consider C(D,mO)⊥. Any

A ⊆ [n] with cardinality m+ 1 is a stopping set if and only if for all i ∈ A,

∑
j∈A \{i}

Pj 6= O.
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Any A ⊆ [n] with cardinality m− 2 is a stopping set if and only if

∑
j∈A

Pj = O.

.

Proof

Suppose |A| = m + 1 and that A is not a stopping set. Then by Lemma 3

there exists some i ∈ A such that

L

mO − ∑
j∈A\{i}

Pj

 6= L(mO −∑
j∈A

Pj

)
.

Hence, there exists some nonzero f ∈ L(mO) such that

f ∈ L

mO − ∑
j∈A\{i}

Pj

 \ L(mO −∑
j∈A

Pj

)
.

Since |A| = m+ 1,

deg

mO − ∑
j∈A\{i}

Pj

 = m−m = 0

and

(f) ≥ −mO +
∑

j∈A\{i}

Pj.

Since deg((f)) = 0 and deg
(
−mO +

∑
j∈A\{i} Pj

)
= 0,

(f) = −mO +
∑

j∈A\{i}

Pj =
∑

j∈A\{i}

(Pj −O).
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Hence, (f) = O since f 6= 0. So

∑
j∈A\{i}

Pj = O.

Now, suppose |A| = m − 2 and that A is a stopping set. Then by Lemma 3,

for all i ∈ A,

L

mO − ∑
j∈A\{i}

Pj

 = L

(
mO −

∑
j∈A

Pj

)
.

Notice that since g = 2,

deg

mO − ∑
j∈A\{i}

Pj

 = m− (m− 3) = 3 = 2g − 1.

Then by the Riemann-Roch Theorem, there exists some nonzero f such that

f ∈ L

mO − ∑
j∈A\{i}

Pj

 = L

(
mO −

∑
j∈A

Pj

)
,

so

(f) = mO −
∑
j∈A

Pj ==
∑

j∈A\{i}

(O − Pj).

Then (f) = O since f 6= 0. Thus,

∑
j∈A

Pj = O.

Conversely, pick A such that
∑

j∈A Pj = O. Since 2O is a canonical divisor, we have

2O −mO +
∑
j∈A

Pj ∼ 2O.
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By Lemma 4, since 2O is an effective divisor, A is a stopping set. �

Note it is still undetermined if there are stopping sets of size m − 1 and m.

This remains a topic of further investigation.

We now consider stopping sets of algebraic geometric codes from function fields

with larger genus. Let F = Fq2(x, y) be the function field of the Hermitian curve

yq + y = xq+1 where q is a power of a prime. Recall, the Hermitian code over Fq2 of

length q3 is C(D,mP∞), where m is a positive integer, D =
∑

α,β∈Fq2 ,βq+β=αq+1 Pα,β

and Pα,β is a common zero of x− α and y − β. Note

g =
q(q − 1)

2
.

Corollary 6 Let m be a positive integer less than n. Consider the Hermitian code

C(D,mP∞)⊥ over Fq2 Any subset of [n] with cardinality greater than or equal to m+2

is a stopping set of C(D,mP∞)⊥. Any non-empty subset of [n] with cardinality less

than or equal to m− q2 + q + 2 is not a stopping set of C(D,mP∞)⊥.

Proof

By Corollary 2, any subset of [n] with cardinality greater than or equal to m + 2 is

a stopping set of C(D,mP∞)⊥. Since g = q(q−1)
2

, any non-empty subset of [n] with

cardinality less than or equal to m − 2 q(q−1)
2

+ 1 = m − q2 + q + 2 is not a stopping

set of C(D,mP∞)⊥ by Corollary 2. �

We say A is a collinear set if the columns of the parity check matrix indexed

by A are represented by

[∪i∈{1,...,b}{Pαi,β | β ∈ Kαi}] ∪ {P1, . . . , Pt}
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where b is a nonnegative integer, Pj ∈ {Pα,β ∈ PF | β ∈ Kα} for some α ∈ Fq2 , and

Kα := {β ∈ Fq2 | βq + β = αq+1}. The follow result allows us to determine if there

exists a collinear stopping set for size i for m− q2 + q + 2 ≤ i ≤ m+ 1.

Theorem 4 [15, Theorem 3.6] Consider the Hermitian function field H over Fq2,

and the divisor

S := rP∞ +
∑
β∈Kα

kβPα,β

of H where α ∈ Fq2 , r ∈ Z, and kβ ∈ Z for each β ∈ Kα := {β | βq + β = αq+1}. The

dimension of the space L(S) is given by

`(S) =

q∑
i=0

max

{⌊
r − iq
q + 1

⌋
+
∑
β∈Kα

⌊
kβ + i

q + 1

⌋
+ 1, 0

}
.

Theorem 5 Let b and r be nonnegative integers with 0 ≤ r ≤ q − 1. Let m be

a positive integer less than n. Consider the Hermitian code C(D,mP∞)⊥ over Fq2.

There exists a collinear stopping set of size bq+t ≤ m if and only if m−bq < q2−q−1

and either t ≥ bm−bq
q+1
c+ 2 or t = 0.

Proof

Suppose A is the set such that the columns of the parity matrix indexed by A are

represented by

[∪i∈{1,...,b}{Pαi,β | β ∈ Kαi}] ∪ {P1, . . . , Pt}

where Pj ∈ {Pα,β ∈ PF | β ∈ Kα} for some α ∈ Fq2 and Kα := {β ∈ Fq2 | βq + β =

αq+1}. Let A′ denote the set such that the columns of the parity check matrix

indexed by A′ are represented by [∪i∈{1,...,b}{Pαi,β | β ∈ Kαi}], and let A′′ denote the

set such that the columns of the parity check matrix indexed by A′′ are represented

by {P1, . . . , Pt}.
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Let f ∈ L
(
mP∞ −

∑
j∈A Pj

)
= L

(
mP∞ −

∑
j∈A′ Pj −

∑
j∈A′′ Pj

)
. Then

(f) ≥
∑
j∈A

Pj −mP∞ =
∑
j∈A′

Pj +
∑
j∈A′′

Pj −mP∞.

Hence, (
f
∏
i

1

x− αi

)
≥
∑
j∈A′′

Pj − (m− bq)P∞.

Therefore,

L

(
mP∞ −

∑
j∈A′

Pj −
∑
j∈A′′

Pj

)
∼= L

(
(m− bq)P∞ −

∑
j∈A′′

Pk

)
.

Recall from Lemma 3 that A is a stopping set if

L

(
mP∞ −

∑
j∈A

Pj

)
∼= L

mP∞ − ∑
j∈A\{k}

Pj


for all k ∈ A. Thus, we would like to show

L

(
(m− bq)P∞ −

∑
j∈A′′

Pk

)
∼= L

mP∞ − ∑
j∈A\{k}

Pj


for all k ∈ A.

Case 1: Suppose k ∈ A′. Note if t = 0, then this is the only case we need to

check. Let f ∈ L
(
mP∞ −

∑
j∈A\{k} Pj

)
. Then

(f) ≥
∑

j∈A\{k}

Pj −mP∞.
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Thus, (
f
∏
i

1

x− αi

)
≥
∑
j∈A′′

Pj − Pk − (m− bq)P∞.

Then

L

mP∞ − ∑
j∈A\{k}

Pj

 ∼= L(Pk + (m− bq)P∞ −
∑
j∈A′′

Pj

)
.

Note `
(

(m− bq)P∞ −
∑

j∈A′′ Pk

)
= `

(
Pk + (m− bq)P∞ −

∑
j∈A′′ Pj

)
if and only if

(1, β) ∈ H(Pk, P∞), which holds if and only if β ≤ m− bq < q2 − q − 1 [9].

Case 2: Suppose k ∈ A′′. By Theorem 4,

`

(
(m− bq)P∞ −

∑
j∈A′′

Pk

)
=

q∑
i=0

max


⌊
m− bq − iq

q + 1

⌋
+
∑
j∈A′′

⌊
−1 + i

q + 1

⌋
+
∑
j /∈A′′

⌊
0 + i

q + 1

⌋
+ 1, 0


= max

{⌊
m− bq
q + 1

⌋
− t+ 1, 0

}
+

q∑
i=1

max

{⌊
m− bq − iq

q + 1

⌋
+ 1, 0

}
.

Also, by Theorem 4,

`

(m− bq)P∞ −
∑

j∈A′′\{k}

Pk


=

q∑
i=0

max


⌊
m− bq − iq

q + 1

⌋
+

∑
j∈A′′\{k}

⌊
−1 + i

q + 1

⌋
+

∑
j /∈A′′\{k}

⌊
0 + i

q + 1

⌋
+ 1, 0


= max

{⌊
m− bq
q + 1

⌋
− t+ 2, 0

}
+

q∑
i=1

max

{⌊
m− bq − iq

q + 1

⌋
+ 1, 0

}
.
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Thus, `
(

(m− bq)P∞ −
∑

j∈A′′ Pk

)
= `

(
(m− bq)P∞ −

∑
j∈A′′\{k} Pk

)
if and only if

max

{⌊
m− bq
q + 1

⌋
− t+ 1, 0

}
+

q∑
i=1

max

{⌊
m− bq − iq

q + 1

⌋
+ 1, 0

}

= max

{⌊
m− bq
q + 1

⌋
− t+ 2, 0

}
+

q∑
i=1

max

{⌊
m− bq − iq

q + 1

⌋
+ 1, 0

}
,

which holds if and only ⌊
m− bq
q + 1

⌋
− t+ 2 ≤ 0.

Therefore, A is stopping set if and only if m− bq < q2 − q− 1 and t ≥ bm−bq
q+1
c+ 2. �

Example 4 Let q = 4 and m = 40. We know A is not a stopping set if |A| ≤ 29 and

A is a stopping set if |A| ≥ 42 as shown in Figure 2.4. Thus, it remains to consider

index sets A if 30 ≤ |A| ≤ 41. Table 2.1 shows the existence of collinear stopping sets

as guaranteed by Theorem 5. Table 2.2 shows the existence of non-collinear stopping

sets for |A| = 37 and 41 using SAGE.

𝑖         0                                           29                                        42                                        64  

|𝐴|  =  𝑖 

𝐴 is not a stopping set 𝐴 is a stopping set 

Figure 2.4: Hermitian Example: q = 4 and m = 40

Example 5 Let q = 5 and m = 80. We know A is not a stopping set if |A| ≤ 61 and

A is a stopping set if |A| ≥ 82 as shown in Figure 2.5. Table 2.3 shows the existence
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i r s t Existence of a collinear stopping set of size i

30 12 7 2 No collinear stopping set
31 12 7 3 No collinear stopping set
32 8 8 0 Collinear stopping set
33 8 8 1 No collinear stopping set
34 8 8 2 No collinear stopping set
35 8 8 3 Collinear stopping set
36 8 8 4 Collinear stopping set
37 4 9 1 No collinear stopping set
38 4 9 2 Collinear stopping set
39 4 9 3 Collinear stopping set
40 4 9 2 Collinear stopping set
41 0 10 1 No collinear stopping set

Table 2.1: Hermitian Example (q = 4 and m = 40): Collinear stopping sets

of a collinear stopping set as guaranteed by Theorem 5. Table 2.4 shows the existence

of non-collinear stopping sets for |A| = 68, 71, 72, 76, and 81 using SAGE.

𝑖 0                                     61                                        82                                       125 

|𝐴| = 𝑖

𝐴 is not a stopping set 𝐴 is a stopping set

Figure 2.5: Hermitian Example: q = 5 and m = 80
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i Existence of a stopping set of size i

30 Undetermined
31 Undetermined
32 Yes
33 Undetermined
34 Undetermined
35 Yes
36 Yes
37 Yes (Non-collinear)
38 Yes
39 Yes
40 Yes
41 Yes (Non-collinear)

Table 2.2: Hermitian Example (q = 4 and m = 40): Non-collinear stopping sets

i r s t Existence of a collinear stopping set

62 20 12 2 No collinear stopping set
63 20 12 3 No collinear stopping set
64 20 12 4 No collinear stopping set
65 15 13 0 Collinear stopping set
66 15 13 1 No collinear stopping set
67 15 13 2 No collinear stopping set
68 15 13 3 No collinear stopping set
69 15 13 4 Collinear stopping set
70 15 13 5 Collinear stopping set
71 10 14 1 No collinear stopping set
72 10 14 2 No collinear stopping set
73 10 14 3 Collinear stopping set
74 10 14 4 Collinear stopping set
75 10 14 5 Collinear stopping set
76 5 15 1 No collinear stopping set
77 5 15 2 Collinear stopping set
78 5 15 3 Collinear stopping set
79 5 15 4 Collinear stopping set
80 5 15 5 Collinear stopping set
81 0 16 1 No collinear stopping set

Table 2.3: Hermitian Example (q = 5 and m = 80): Collinear stopping sets
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i Existence of a stopping set
62 Undetermined
63 Undetermined
64 Undetermined
65 Yes
66 Undetermined
67 Undetermined
68 Yes (Non-collinear)
69 Yes
70 Yes
71 Yes (Non-collinear)
72 Yes (Non-collinear)
73 Yes
74 Yes
75 Yes
76 Yes (Non-collinear)
77 Yes
78 Yes
79 Yes
80 Yes
81 Yes (Non-collinear)

Table 2.4: Hermitian Example (q = 5 and m = 80): Non-collinear stopping sets
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Chapter 3

Polar coding

In this chapter, we will give an introduction to polar codes, which were con-

structed by Arikan [1] in 2009 as the first explicit construction of symmetric capacity

achieving codes for binary discrete memoryless channels with low encoding and de-

coding complexity. First, we will give some background to the problem and Shannon’s

theorem.

Let W : X → Y be a discrete channel. The input alphabet of W is X , and

the output alphabet of W is Y , both of which are finite. The channel W is defined

by transition probabilities

W (y|x)

for all x ∈ X and y ∈ Y . Let WX (x) be the probability that x ∈ X is sent across W .

Definition 27 A channel is memoryless if for consecutive uses of the channel with

inputs x1, x2, . . . , xn, the probability of obtaining output y1, y2, . . . , yn is

W (y1, . . . , yn|x1, . . . , xn) = W (y1|x1)W (y2|x2) · · ·W (yn|xn).

Definition 28 The channel transition matrix is the matrix A whose ijth entry is
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W (yi|xj). A channel is said to be symmetric if all rows of its channel transition

matrix are permutations of each other, and all columns are permutations of each

other.

Example 6 The binary symmetric channel (BSC) with crossover probability 1− p is

defined by the transition probabilities

W (0|0) = p,

W (0|1) = 1− p,

W (1|1) = p,

and

W (1|0) = 1− p

where 1/2 ≤ p ≤ 1. It is often convenient to express W as in Figure 3.1.

p

1-p

Figure 3.1: Binary symmetric channel

Definition 29 Let W : X → Y be a discrete memoryless channel (DMC). The rate
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of the channel W is defined as

I(X ;Y) =
∑
y∈Y

∑
x∈X

W (y|x)WX (x) logq

(
W (y|x)

WX (x)

)
,

and the channel capacity of the channel W is defined as

C = max
WX

I(X ;Y).

Example 7 For the BSC with p = 0.95 such that WX (0) = WX (1) = 0.50, we have

I(X ;Y) = 2(0.50)(0.95) log2

(
0.95

0.50

)
+ 2(0.50)(0.05) log2

(
0.05

0.50

)
= 0.7136.

Theorem 6 (Shannon’s Theorem) Suppose W has a channel capacity C > 0. Then

for every ε > 0 and R < C, for every large N , there exists a block code of length

N and rate RN ≥ R such that there exists a decoding algorithm with probability of

decoding error less than ε.

For many years, a primary goal of coding theorists has been to find an explicit con-

struction of capacity achieving codes. Coding theorists have searched for powerful

codes and efficient implementations via algebraic geometric (AG) codes, low-density

parity-check codes, and random codes as well as polar codes. In 2009, polar codes

were developed by Arikan [1] as an explicit construction of symmetric capacity achiev-

ing codes for binary discrete memoryless channels with low encoding and decoding

complexity. Arikan employs the nth Kronecker power of the matrix

G2 :=

 1 0

1 1

 ∈ F2×2
2
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for encoding a block of 2n symbols where n is taken to be a positive integer. The

matrix G2 is called the kernel matrix or kernel for short. Synthetic channels are

created so that as the number of channels grows, meaning as n goes to infinity,

each channel becomes either a noiseless channel or a pure-noise channel. This will

be discussed more precisely in the next section, where we formally introduce polar

coding.

We end this introduction with an explanation of notation to be used. Recall

that given u ∈ Fnq , ui denotes the ith coordinate of u. For 1 ≤ i ≤ j ≤ n, it is often

convenient to write uji := (ui, . . . , uj) ∈ Fj−i+1
q . For two vectors u,w ∈ Fn2 , u ⊕ w

denotes the componentwise sum in Fn2 .

Given an m× n matrix A with entries in a field F, Aij denotes the entry of A

in the ith row and jth column, and RowiA denotes the ith row of A; here, i is referred

to as the row index. The jth column of A is denoted by ColjA. A n× n matrix L is

lower triangular if Lij = 0 for i < j. A n× n matrix U is upper triangular if Uij = 0

for i > j.

The Kronecker product, denoted by ⊗, of two matrices A ∈ Fn×m and B ∈

Fp×k is defined as

A⊗B =


A11B . . . A1nB

... . . .
...

Am1B . . . AmnB

 ∈ Fnp×mkq

Let A⊗n := A⊗ · · · ⊗ A︸ ︷︷ ︸
n

for n ≥ 1 and A⊗0 := [1], a 1× 1 matrix.
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3.1 Channel polarization

In this section, we review polar coding over a q-ary discrete memoryless channel

(DMC). Throughout this section, let q be a prime power, X := Fq, and W : X → Y

be a q-ary DMC with transition probabilities W (y|x) for all x ∈ X and y ∈ Y .

Two important quantities associated with the channel W are the capacity and the

Bhattacharyya parameter; the standard definitions are as follows. The Bhattacharyya

distance between x, x′ ∈ X is

Zx,x′ =
∑
y∈Y

√
W (y|x)W (y|x′).

Let

I(W ) := I(X ;Y) (3.1)

whenWX (x) = 1
q

for all x ∈ X . The reliability ofW is described by the Bhattacharyya

parameter

Z(W ) =
1

q(q − 1)

∑
x,x′∈X ,x 6=x′

Zx,x′(W )

of W . By [1, Proposition 1], we know for a binary-DMC W ,

I(W ) ≥ log2

(
2

1 + Z(W )

)

and

I(W ) ≤
√

1 + Z(W )2.

Thus, using the bounds above we could expect I(W ) ≈ 0 if and only if Z(W ) ≈ 1,

and I(W ) ≈ 1 if and only if Z(W ) ≈ 0.

Let G be a l × l matrix over Fq. Set N = ln for some positive integer n. Let
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RN be the N ×N matrix with columns given by

Coliln−1+j[RN ] = e(j−1)l+(i+1)

for 0 ≤ i ≤ ln−1 and 1 ≤ j ≤ ln−1, where ek is the standard basis vector of length N

whose only nonzero entry is a one in the kth coordinate; that is, RN is the N × N

permutation matrix such that

[u1, u2, . . . , uN ]RN = [u1, ul+1, . . . , uN−(l−1), u2, ul+2, . . . , uN−(l−2), . . . , ul, u2l, . . . , uN ],

where [u1, u2, . . . , uN ] ∈ FN×Nq .

A block of N = ln channels is produced from the channel W by combining

and splitting channels as we describe now. Let WN denote N independent uses of the

channel W . To begin, N independent copies of W are combined to form the channel

WN : XN → YN with transition probabilities

WN(yN1 |uN1 ) = WN(yN1 |(uN1 )T (BNG
⊗n)) =

N∏
i=1

W (yi|((uN1 )TBNG
⊗n)i)

where BN is defined recursively by

BN = RN(Il ⊗BN/l)

and Bl = Il, the l × l identity matrix.

Next, the channel WN is split into N channels W
(i)
N : X → YN × X i−1, 1 ≤

i ≤ N , which are defined by the transition probabilities

W
(i)
N (yN1 , u

i−1
1 |ui) :=

∑
uNi+1∈XN−i

1

qln−1
WN(yN1 |uN1 ).
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This gives rise to the N channels

W
(1)
N : X → YN

W
(2)
N : X → YN ×X

W
(3)
N : X → YN ×X 2

...

W
(N)
N : X → YN ×XN−1.

The next example illustrates this.

Example 8 Taking q = 2 and G = G2 yields Arikan’s original construction. Set

W1 := W for a binary discrete memoryless channel W . At the first step of the

recursion, consider W2 : X 2 → Y2 by the transition probabilities

W2(y1, y2|u1, u2) := W (y1|u1 ⊕ u2)W (y2|u2).

We may then split W2 into two new channels W
(1)
2 and W

(2)
2 . Then the channel

W
(1)
2 : X → Y2

has transition probabilities

W
(1)
2 (y21|u1) :=

1

2

∑
u2∈X

W2(y
2
1|u21),

and the channel

W
(2)
2 : X → Y2 ×X
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Figure 3.2: Polarization with l × l kernel matrix

has transition probabilities

W
(2)
2 (y21, u1|u2) :=

1

2
W2(y

2
1|u21).

As we discuss below, the properties of the channels W
(i)
N depend on the kernel

matrix G and on the size of the input alphabet, q.

Theorem 7 [1, Theorem 1] Let W be a binary DMC. For any fixed δ ∈ (0, 1), as N

goes to infinity the fraction of channels in the set
{
W

(i)
N : 1 ≤ i ≤ N

}
such that

I(W
(i)
N ) ∈ (1− δ, 1]

approaches I(W ) and the fraction of channels in the set
{
W

(i)
N : 1 ≤ i ≤ N

}
such that

I(W
(i)
N ) ∈ [0, δ)

approaches 1− I(W ).

40



This phenomenon is known as polarization. We say that a kernel matrix

polarizes a channel W if the behavior described in Theorem 7 holds.

Example 9 Figure 3.3 shows channel polarization for the BSC W with p = .95.

Recall from Example 7, I(W ) = 0.7136. Using G2, after the first step of channel

combining and splitting, we create two new channels W
(1)
2 and W

(2)
2 . For these new

channels,

I(W
(1)
2 ) = 0.5866 and I(W

(2)
2 ) = 0.1900.

Again using G2, we create four new channels with

I(W
(1)
4 ) = 0.7556,

I(W
(2)
4 ) = 0.3441,

I(W
(3)
4 ) = 0.3021,

and

I(W
(4)
4 ) = 0.0361.
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W2
(1)
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(2)

 

W4
(4)

 

W4
(3)

 

W4
(2)

 

W4
(1)

 

Figure 3.3: Polarization with BSC with p = .95

The rate of polarization of a kernel is known as the exponent and its defi-

nition is below. In preparation, consider a sequence of independent and identically

distributed (i.i.d.) random variables {Bn | n ≥ 1} uniformly distributed over the set

{1, . . . , N}. Let Zn := Z(W ′
n) where the channels W ′

i , i ≥ 0, are defined recursively

by

W ′
0 = W, and W ′

n+1 = (W ′
n)

(Bn+1)
N .

Definition 30 [19, Theorem 19] Let W be a q-ary DMC with 0 < I(W ) < 1, and

consider an l × l matrix G with entries in Fq. The exponent of G is the value E(G)

such that for any fixed β < E(G),

lim inf
n→∞

Pr[Zn ≤ 2−l
nβ

] = I(W ),

and for any fixed β > E(G),

lim inf
n→∞

Pr[Zn ≥ 2−l
nβ

] = 1.
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The exponent E(G) is also called the rate of polarization of G.

It follows that for any fixed rate 0 < R < I(W ) and 0 < β < E(G), there

exists a sequence {AN} of sets AN ⊆ {1, . . . , N} such that |AN | ≥ NR and

∑
i∈AN

Z(W
(i)
N ) = o(2−l

nβ

).

Definition 31 [1] Let W be a DMC. Fix N , the code block length, and K, the number

of information bits. For (W,N,K), choose an information set AN ⊆ {1, . . . , N} such

that |AN | = K and

Z(W
(i)
N ) ≤ Z(W

(i′)
N ) for all i ∈ AN , i′ ∈ AcN .

A polar code is defined by (W,N,K,AN , uAcN ), where uAcN are considered the frozen

bits.

Example 10 Return to example 9 using G2 for the BSC W with p = .95. If K = 2,

then A4 = {3, 4}.

We encode uN1 ∈ XN for N = ln as xN1 := uN1 BNG
⊗n where BN = RN(Il ⊗

BN/l). Note that uN1 = uA ⊕ uAc , where uAc are the frozen bits.
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Example 11 Let N = 8, and consider using G2 as the kernel matrix over F2. Then

G⊗32 =



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1



,

B8 =



1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1



,
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and

B8G
⊗8
2 =



1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1



.

Figure 3.4 demonstrates encoding 8-bits.

x1=u1     u2    u3     u4      u5    u6     u7     u8     

x2=u5     u6     u7     u8     

x3=u3     u4     u7     u8     

x4=u7     u8 

x5=u2     u4     u6      u8      

x6=u6     u8     

x7=u4     u8 

x8= u8 

u2 

u1 

u4 

u3 

u6 

u5 

u7 

u8 

Figure 3.4: 8-bit encoding diagram

We decode channel output yN1 using a successive cancellation (SC) decoder.

The SC decoder observes yN1 and the frozen bits uAc and will output ûN1 . If i ∈ Ac,

then ui is a frozen bit and the decoder sets

ûi := ui.
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If i /∈ Ac, then the decoder receives the previous decisions ûi−11 and computes

L
(i)
N (yN1 , û

i−1
1 ) :=

W
(i)
N (yN1 , û

i−1
1 | 0)

W
(i)
N (yN1 , û

i−1
1 | 1)

.

Then the decoder sets

ûi :=

 0 if L
(i)
N (yN1 , û

i−1
1 ) ≥ 1

1 otherwise.

Note that the decoder will not change any previous decisions.

3.2 Polarization and the exponent

In this section, we further explore polarization with arbitrary kernels and the

exponent.

3.2.1 Matrices that polarize

It is important to note that not all l× l matrices polarize a given channel W .

The next result describes some circumstances in which a lower triangular matrix L

over a finite field Fq polarizes a q-ary DMC.

Lemma 5 [19, Corollaries 13 and 14] Let W : X → Y be a q-ary DMC where

X = Fq. Consider a nonsingular lower triangular matrix L whose entries are elements

of Fq. Assume that L is not diagonal.

1. If q is a prime, then L polarizes the channel W .

2. Suppose that q is a prime power. Let k denote the largest row index of L such

that RowkL has at least two nonzero elements. If there exists j ∈ {1, . . . , k− 1}
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such that Lkj is a primitive element of X , then L polarizes the channel W .

We set out to translate these properties to an arbitrary matrix G as demon-

strated in the next two results.

Theorem 8 Let q be a prime and X be a finite field of order q. If G is a nonsingular

matrix and no column permutation of G is upper triangular, then G polarizes any

DMC W with input alphabet X .

Proof

Because G is nonsingular, there exists an LU factorization G = ULP where U is an

upper triangular matrix, L is a lower triangular matrix, and P is a permutation ma-

trix. Since no column permutation of G is upper triangular, L is not diagonal. Hence,

Lemma 5 applies, and L polarizes W . The statistical properties of channels W
(i)
N are

invariant under the operation G 7→ U−1GP−1 = L. Consequently, G polarizes W as

L does. �

Theorem 9 Let q be a prime power and X = Fq. Assume that G is a nonsingular

matrix and no column permutation of G is upper triangular. Let k denote the largest

row index of G such that RowkG has at least two nonzero elements. If there exists

j ∈ {1, . . . , k − 1} such that G−1kkGkj is a primitive element of X , then G polarizes

any DMC W with input alphabet X .

Proof

As in the proof of Theorem 8, write G = ULP where U is an upper triangular matrix,

L is a lower triangular matrix, and P is a permutation matrix. Observe that L is not

a diagonal matrix as no column permutation of G is upper triangular. Let k denote

the largest row index such that RowkG has at least two nonzero elements.
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First, consider the case where k corresponds to the last row of L. Notice that

the entries on last row of G are nonzero scalar multiples of those in the last row of

L; hence, we only need to multiply the last row of G by G−1kk to obtain the condition

Lkk = 1. If there exists a primitive element of X to the left of the diagonal in the

last row of G−1kk G, then L polarizes W according to Lemma 5. Thus, G polarizes W

as L does.

Next, consider the case where k does not correspond to last row of L. By the

definition of k and the fact that L is nonsingular, the rows of L with index greater

than k must only have nonzero entries along the diagonal. Thus, the rows of G with

index greater than k must also only have nonzero entries along the diagonal. We can

also note that RowkG must have a nonzero entry to the left of the diagonal, since it

has more than one nonzero entry in L. In applying Gaussian elimination to RowkG

using the rows below k, the only entries affected are entries to the right of the diago-

nal since rows of G below RowkG only have nonzero entries along the diagonal. Then

multiply G by G−1kk to satisfy the condition Lkk = 1. Hence, if there is a primitive

element of X to the left of the diagonal in Rowk(G
−1
kkG), then L satisfies Lemma 5.

Therefore, G polarizes W as L does. �

A natural question to consider is if Theorem 9 provides a characterization of

those matrices which polarize q-ary DMCs. When q is a prime, this is the case.

Theorem 10 Let q be a prime, and X be a finite field of size q. Suppose that G is a

nonsingular matrix with entries in X . If G polarizes any q-ary DMC W with input

alphabet X , then no column permutation of G is upper triangular.

Proof

Suppose that a column permutation of G is upper triangular. Write G = ULP where
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U is an upper triangular matrix, L is a lower triangular matrix, and P is a permu-

tation matrix. Then L is a diagonal matrix. Applying an argument similar to that

of [12, Lemma 1], we see that L does not polarize W . Hence G does not polarize W . �

However, as the following example shows when q is a prime power that is not

prime, whether or not a matrix polarizes a channel is channel dependent.

Example 12 Consider the DMC W : F4 → F2 defined by the transition probabilities

W (0|0) = W (0|α) = W (1|1) = W (1|α2) = 1,

where α is a primitive element of F4. According to Equation (3.1), I(W ) = log4(2).

Using the kernel matrix G2 as in Section 1, we can combine and split W into two

channels W
(1)
2 and W

(2)
2 . Observe that G2 does not fit the form of Theorem 9. Cal-

culating capacities as in Equation (3.1) gives I(W
(1)
2 ) = I(W

(2)
2 ) = log4(2); thus, G2

does not polarize the channel W .

Next, consider the DMC W ′ : F4 → F2 defined by the transition probabilities

W ′(0|0) = W ′(1|1) = W ′(α|α) = W ′(α2|α2) =
3

4

and

W ′(0|1) = W ′(1|0) = W ′(α|α2) = W ′(α2|α) =
1

4
,

where α is a primitive element of F4. Note, I(W ′) = 3
4

log4(3) + 1
4

log4(1). Again,

using the kernel matrix G2, we can construct W
′(1)
2 and W

′(2)
2 such that

I(W
′(1)
2 ) =

20

32
log4

(
5

2

)
+

12

32
log4

(
3

2

)
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and

I(W
′(2)
2 ) =

9

16
log4

(
18

5

)
+

6

16
log4(2) +

1

16
log4

(
2

5

)
.

Hence, G2 polarizes the channel W ′.

Therefore, we have constructed two DMCs W and W ′ with input alphabet

X = F4 such that the kernel matrix G2 polarizes one channel but not the other. It is

important to also note that when q is not prime a multi-level code construction may

be used as defined in [24].

Further information on polarization over finite fields may be found in [21].

3.2.2 Probability of error using SC decoding

The exponent gives a bound on the best achievable probability of block error

under SC decoding. Let Pe be the best achievable probability of block error under

SC decoding for polar coding over W using kernel G.

Theorem 11 [2, Theorem 1] For polar coding on a binary-DMC W with kernel G2

at any fixed rate 0 < R < I(W ) with block length N = 2n, and any fixed β < 1
2
,

Pe = o(2−2
nβ

).

We can also consider the probability of block error using polar coding over Fq

with an arbitary kernel matrix. Let W be a q-ary DMC. If G is a matrix that polar-

izes according to Theorems 8 and 9, then the exponent helps bound the block error

probability under successive cancellation (SC) decoding. Using techniques similar to

[1] and [22], the following result holds.

Theorem 12 Consider polar coding over a q-ary DMC W using kernel G at a fixed
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rate 0 < R < I(W ) with block length N = ln. Assume G polarizes W . Then

Pe = O(2−l
nβ

)

for 0 < β < E(G).

Proof

For any q-ary DMC W : X → Y with fixed rate 0 < R < I(W ) and 0 < β < E(G),

there exist a sequence {AN} of sets AN ⊆ {1, . . . , N} such that |AN | ≥ NR and

Z(W
(i)
N ) < 2−l

nβ

for all i ∈ {1, . . . , N}. Consider the block error event E = ∪i∈ANBi where

Bi = {(uN1 , yN1 ) ∈ XN × YN |ûi−11 6= ui−11 , ûi = ui},

so that block error probability of decoding is

Pe = P (E) = P (∪i∈ANBi).

Let

Ev =
{

(uN1 , y
N
1 ) ∈ XN × YN |W (i)

N (yN1 , u
i−1
1 |ui) ≤ W

(i)
N (yN1 , u

i−1
1 |ui + v)

}
.

Thus,

Bi ⊆ ∪v∈XEv.
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Then

P (Bi) =
∑
v∈X

P (Ev)

=
∑
v∈X

∑
uN1 ,y

N
1

1

qN
(
WN(yN1 |uN1 )1Ev(u

N
1 , y

N
1 )
)

≤
∑
v∈X

∑
uN1 ,y

N
1

1

qN
WN(yN1 |uN1 )

√√√√W
(i)
N (yN1 , u

i−1
1 |ui + v)

W
(i)
N (yN1 , u

i−1
1 |ui)

= (q − 1)Z(W
(i)
N ).

Hence,

P (E) = P (∪i∈AnBi)

≤
∑
i∈An

(q − 1)Z(W
(i)
N )

≤ N(q − 1)Z(W
(i)
N )

≤ N(q − 1)2−l
nβ

.

�

3.2.3 The exponent and partial distances

The exponent of a matrix can be found using partial distances, a method

introduced Korada, Şaşoğlu, and Urbanke for the binary case [12] and explored for

larger alphabets by Mori and Tanaka [19].

Definition 32 For i = 1, . . . , l, the ith partial distance of an l × l matrix G =
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[gT1 , . . . , g
T
l ]T over Fq is

Di := d (gi, 〈gi+1, . . . , gl〉) ,

the minimum Hamming distance between the vector gi and the Fq-vector space 〈gi+1, . . . , gl〉

spanned by gi+1, . . . , gl ∈ Flq.

Lemma 6 ([12, Theorem 4], [19, Theorem 19]) If G is an l× l matrix over Fq, then

the exponent of the polar code with kernel G is

E(G) =
1

l ln(l)

l∑
i=1

ln(Di).

Consider Arikan’s original kernel matrix

G2 :=

 1 0

1 1

 ∈ F2×2
2 .

Then D1 = 1 and D2 = 2. Applying Lemma 6, we see E(G2) = 1
2
. Korada, Şaşoğlu,

and Urbanke used repeated shortening of a BCH code to create the first binary kernel

G3 with exponent exceeding E(G2) = 1
2
. [12]
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G3 =



1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1

0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 1

0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0

0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 1

0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0

0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0

0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0

1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0

1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1

1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0

1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 1

1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0

1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1

1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


One may verify that the set of partial distances is

{16, 8, 8, 8, 8, 6, 6, 4, 4, 4, 4, 2, 2, 2, 2, 1}.

Applying Lemma 6 yields the exponent of G3 which is E(G3) = 0.51828.

This fact, together with the above lemma, leads one to consider kernels that

are generator matrices of linear codes. The partial distances of the kernel may then

be estimated by bounds on the minimum distances of the nested codes. As we see

in the next chapter, algebraic geometric codes lend themselves naturally to this con-
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struction.

55



Chapter 4

Algebraic geometric kernels

Let F be a function field over Fq of genus g. Recall from Chapter 2, an algebraic

geometric (AG) code C(D,A) is constructed using divisors A and D = P1 + · · ·+ Pn

on F with disjoint supports, where the Pi are distinct places of F of degree 1. The

algebraic geometric code C(D,A) is

C(D,A) = {(f(P1), . . . , f(Pn))|f ∈ L(A)} ⊆ Fnq ,

where

L(A) = {f ∈ F | (f) ≥ −A} ∪ {0}

is the Riemann-Roch space of A. An especially useful property of AG codes is their

nested structure. Given divisors A and B with supp(A) ∩ supp(D) = ∅ = supp(B) ∩

supp(D),

A ≤ B ⇒ L(A) ⊆ L(B) ⇒ C(D,A) ⊆ C(D,B).

In this chapter, we employ AG codes in the construction of polar code kernels. We

see that the nesting plays a key role in the construction as well as in the analysis of
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the exponent.

4.1 Construction of kernels using AG codes

4.1.1 Kernel construction and the exponent

Let F/Fq be a function field of genus g and P1, . . . , Pn be places of F of degree

one where n ≥ 2g. Suppose there exist a sequence of divisors

A1 ≤ · · · ≤ An

so that the supports of D := P1 + · · · + Pn and Ai are disjoint for all i, 1 ≤ i ≤ n,

and

C(D,A1) $ C(D,A2) $ · · · $ C(D,An) = Fnq . (4.1)

Then there exists an n × n generator matrix of C(D,An) such that for each i, 1 ≤

i ≤ n, the submatrix 
Rown−i+1G

...

RownG


of G is a generator matrix for C(D,Ai).

A sequence of divisors satisfying (4.1) can be constructed as follows. Fix a

divisor D = P1 + · · · + Pn, where each Pi is a place of F of degree one, and a place

P of F/Fq of degree one not in the support of D. First, let

0 = α1 < · · · < αn−g

be the least n− g elements of the Weierstrass semigroup at P . Then, by the Weier-
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strass Gap Theorem,

αi = i+ g − 1

for g + 1 ≤ i ≤ n− g. Next, set

αn = n+ 2g − 1.

According to the Riemann-Roch Theorem,

l(αnP )− l(αnP −D) = n,

because both αnP and αnP − D have degrees at least 2g − 1. Notice that for all

positive integers α,

l(αP )− l(αP −D) ≤ l((α + 1)P )− l((α + 1)P −D) ≤ l(αP )− l(αP −D) + 1.

Moreover,

l((n− 1)P )− l((n− 1)P −D) = n− g,

as the divisor (n−1)P−D has negative degree. As a result, there exists n ≤ αn−g+1 <

· · · < αn−1 < αn = n+ 2g − 1 such that

l(αiP )− l(αiP −D) 6= l(αi−1P )− l(αi−1P −D).

For 1 ≤ i ≤ n, set

Ai := αiP ;

note that

Ai := (i+ g − 1)P
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for g + 1 ≤ i ≤ n− g. Then the one-point codes from the sequence of divisors

α1P ≤ . . . ≤ αgP ≤ 2gP ≤ (2g + 1)P ≤ . . . ≤ (n− 1)P ≤ αn−g+1P ≤ . . . ≤ αnP

satisfy (4.1). We will consider the kernel matrix

G =



fn(P1) fn(P2) · · · fn(Pn)

fn−1(P1) fn−1(P2) · · · fn−1(Pn)

...
...

...

f1(P1) f1(P2) · · · f1(Pn)


,

where for each i, 1 ≤ i ≤ n, {f1, . . . , fi} is a basis for L(αiP ).

More generally, we may consider such a matrix where {f1, . . . , fi} is a basis

for L(Ai) and the Ai are sequence of nested divisors which give rise to a sequence of

nested codes satisfying (4.1) for all i.

Theorem 13 The exponent of the polar code with kernel G constructed using the

code C(D,αnP ) with nested codes C(D,αiP ) as above satisfies

E(G) ≥ 1

n ln(n)

[
ln((n− g)!) +

n∑
i=n−g+1

ln(di)

]
,

where di denotes the minimum distance of C(D,αiP ).

Proof Notice that C(D,αiP ) is a code over Fq of length n and dimension i; let di

denote its minimum distance. If αi < n, then

n+ 1− i− g ≤ di ≤ n+ 1− i.
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Then we may bound the partial distances Di of G by

Di ≥ di ≥ n− αi.

This bound combined with Lemma 6 yields the desired result. �

Remark 1 1. Theorem 13 provides a lower bound on the exponent, as the partial

distances associated with these matrices are not necessarily nondecreasing. Cer-

tainly, the matrix itself could be manipulated to satisfy this, but doing so would

obscure the structure given by the AG code and associated Riemann-Roch spaces.

This structure may prove useful in further studies, such as into shortened AG

code kernels, which will be discussed in Section 4.2.

2. One may use multi-level code construction with the AG code kernels constructed

above [24]; however, a manipulation of the kernel will ensure that these kernels

polarize according to Theorem 9. In the construction, we may assume

RownG = (1, . . . , 1)

by taking f1 = 1. Since C(D,A1) 6= C(D,A2), there exists j < n such that

Gn−1,j 6= Gn−1,n. Now, replace f1 with

f ′1 := (α− 1) (Gn−1,j −Gn−1,n)−1 (f2 −Gn−1,n) + 1,

where α is a primitive element of Fq, to create a new matrix G′; that is, G′ is
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an n× n matrix with

RowiG
′ :=


RowiG if 1 ≤ i ≤ n− 1

(f ′1(P1), . . . , f
′
1(Pn)) if i = n.

One may check that G′nj = α and G′nn = 1; hence, the new kernel G′ polarizes

by Theorem 9. The exponent of G′ may be bounded as well. Indeed, note that

the proof of Theorem 13 applies except for the term dn. Even so, Dn ≥ 2 since

G′nj = α and G′nn = 1.

3. In general, it is hard to determine minimum distances of AG codes and exact

values are only known for a few cases such one-point and two-point Hermi-

tian codes [[8], [29]] (See sections 4.1.2 and 4.2.1). Thus, one may bound the

exponent by

E(G) ≥ 1

n ln(n)
[ln((n− g)!)] .

An immediate corollary of Theorem 13 is the exponent of a kernel based on a

Reed-Solomon code; this is computed by Mori and Tanaka [19]. Here, we take F to be

the rational function field over Fq. Applying the construction above yields a matrix

GRS ∈ Fq×qq whose submatrices correspond to generator matrices of Reed-Solomon

codes over Fq. That is, let Fq = {0, α, α2, . . . , αq−1}, then

GRS =



1 1 · · · 1 1 0

α(q−2)(q−2) α(q−3)(q−2) · · · αq−2 1 0

α(q−2)(q−3) α(q−3)(q−3) · · · αq−3 1 0

...
... · · · ...

...
...

α(q−2) α(q−3) · · · α 1 0

1 1 · · · 1 1 γ


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where γ is nonzero element in Fq [19]. Note that GRS will polarize if γ 6= 0 when q is

a prime and γ is a primitive element when q is a prime power [19].

Corollary 7 The exponent of a Reed-Solomon kernel GRS over Fq is

E(GRS) =
ln(q!)

q ln(q)
.

Proof This follows directly from Theorem 13 using the fact that F has genus g = 0. �

Another consequence of Theorem 13 is the asymptotic behavior of exponents

of kernels constructed from codes over maximal function fields. Recall that a function

field over Fq of genus g is said to be maximal provided its number of places of degree

one meets the Hasse-Weil bound; that is, the number of places of F/Fq of degree one

is q + 1 + 2g
√
q.

Theorem 14 Let F/Fq be a maximal function field of genus g, and let G be a gen-

erator matrix of an one-point AG code on F of length n = q + 2g
√
q constructed as

in (4.1). Then

lim
q→∞

E(G) = 1.

Proof Suppose F/Fq is a maximal function field, then

g ≤ q − q1/2

2
,

and

n = q + 2gq1/2 ≤ q + 2

(
q − q1/2

2

)
q1/2 ≤ q3/2.
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In addition,

n− g = q + 2gq1/2 − g

= q − g(1− 2q1/2)

≥ q −
(
q − q1/2

2

)
(1− 2q1/2)

= q3/2 +
q

2
+
q1/2

2
.
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Then

E(G) ≥ 1

n ln(n)

(
ln((n− g)!) +

n∑
i=n−g+1

ln(di)

)

≥ ln((n− g)!)

n ln(n)

≥ 1

q3/2 ln(q3/2)
ln

((
q3/2 +

q

2
+
q1/2

2

)
!

)

=
1

q3/2 ln(q3/2)

q3/2+ q
2
+ q1/2

2∑
i=2

ln(i)

≥ 1

q3/2 ln(q3/2)

∫ q3/2+ q
2
+ q1/2

2

1

ln(x)dx

=
q3/2 + q

2
+ q1/2

2

q3/2 ln(q3/2)
ln

(
q3/2 +

q

2
+
q1/2

2

)
−
q3/2 + q

2
+ q1/2

2
− 1

q3/2 ln(q3/2)

=

(
1 +

1

2q1/2
+

1

2q

) ln
(
q3/2 + q

2
+ q1/2

2

)
ln(q3/2)

− 1

ln(q3/2)
− 1

2q1/2 ln(q3/2)

− 1

2q ln(q3/2)
+

1

q3/2 ln(q3/2)
.

Therefore, limq→∞E(G) = 1. �
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In the next subsection, we more closely examine kernels from codes over a

particular maximal function field, the Hermitian function field.

4.1.2 Kernels from Hermitian codes

Let F = Fq2(x, y) be the function field of the curve

yq + y = xq+1

where q is a power of a prime; that is, let F/Fq2 be the Hermitian function field.

Recall that the Hermitian function field over Fq2 has genus q(q−1)
2

and q3 + 1 places

of degree one; hence, it is a maximal function field. A Hermitian one-point code is of

the form C(D, aP∞), where D =
∑

α,β∈Fq2 ,βq+β=αq+1 Pα,β and Pα,β is a common zero

of x − α and y − β. Mori and Tanaka considered generator matrices for Hermitian

codes over fields of even characteristic, that is, over F2m , as kernels of polar codes in

[20]. Applying Theorem 13 and the exact distances of one-point Hermitian codes [29]

provides a lower bound on the exponent of the resulting kernel for any characteristic.

Let GH ∈ Fq
3×q3
q2 denote a matrix constructed from the Hermitian code C(D,αnP∞)

as in (4.1).

Corollary 8 The exponent of a Hermitian kernel GH over Fq2 satisfies

E(GH) ≥ 1

q3 ln(q3)
ln

(
(q3 − q2 + q)!

q−1∏
j=1

(q3 − (j − 1)q)j(q − 1)j(q2 − jq)j∏j
i=1(q

2 − jq − i)

)
,

where ai := a!
(a−i)! .
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Proof For the Hermitian function field over Fq2 , the set of minimum distances of the

one-point codes C(D,αiP ) constructed as in (4.1) is

{q3 − aq − b : 0 ≤ b ≤ a ≤ q − 2} ∪ {q3 − g − i+ 1 : g + 1 ≤ i ≤ q3 − q2 − g}

∪{q2 − jq − (j + 1), . . . , q2 − (j + 1)q + 1 : 0 ≤ j ≤ q − 1}

∪{[q2 − jq]j+1 : 0 ≤ j ≤ q − 1} ∪ {[a]a : 1 ≤ a ≤ q − 1},

where g = q(q−1)
2

and [a]t denotes the multiset {a, . . . , a} of cardinality t [?]. Hence,

E(GH) is bounded below by

1

q3
logq3

(
(q3 − q2 + q)!(q − 1)!q−1

q−2∏
j=0

f(j, q)

)

where

f(j, q) :=
(q3 − jq)(q3 − jq − 1) . . . (q3 − jq − j)(q2 − (j + 1)q)j+1

j!(q2 − (j + 1)q − 1) . . . (q2 − (j + 1)q − (j + 1))
.

Thus,

E(GH) ≥ 1

q3
logq3

(
(q3 − q2 + q)!

q−1∏
j=1

(q3 − (j − 1)q)j(q − 1)j(q2 − jq)j∏j
i=1(q

2 − jq − i)

)
.

�

Table 1 displays comparisons between the exponents of Reed-Solomon kernels

and lower bounds on the exponents of Hermitian kernels. Note that the size of the

kernel based on Reed-Solomon codes over Fq2 is q2 × q2, while the size of the kernel

produced from Hermitian one-point codes over Fq2 is q3 × q3.
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The table suggests that the exponent of the kernel based on the Hermitian

code is greater than that based on the Reed-Solomon code over Fq2 , provided q 6= 2.

Indeed, the proof follows immediately from Theorem 13, Corollary 7, and Corollary

8.

Proposition 3 Let GH be a Hermitian kernel over Fq2, and let GRS be a Reed-

Solomon kernel also over Fq2. Then

E(GRS) ≤ E(GH)

for q ≥ 3.

Proof Let GH be a Hermitian kernel over Fq2 , and let GRS be a Reed-Solomon kernel

also over Fq2 . Recall, from Corollary 7, E(GRS) = ln(q2!)
q2 ln(q2)

. Also, since the Hermitian

function field over Fq2 has genus q(q−1)
2

, we may bound E(GH) using Theorem 13 by

E(GH) ≥
ln
((
q3 − q(q−1)

2

)
!
)

q3 ln(q3)
=

ln
((
q3 − q2

2
+ q

2

)
!
)

q3 ln(q3)
.

Thus, we want to find for what values of q

ln(q2!)

q2 ln(q2)
≤

ln
((
q3 − q2

2
+ q

2

)
!
)

q3 ln(q3)
.

Note

ln(q2!)

q2 ln(q2)
≤

ln
((
q3 − q2

2
+ q

2

)
!
)

q3 ln(q3)

if and only if

ln(q2!)

2q2 ln(q)
≤

ln
((
q3 − q2

2
+ q

2

)
!
)

3q3 ln(q)
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if and only if

3q

2
ln(q2!) ≤ ln

((
q3 − q2

2
+
q

2

)
!

)
.

Since ln(x) is a continuous and increasing function for x > 0,

ln

((
q3 − q2

2
+
q

2

)
!

)
=

q3− q
2

2
+ q

2∑
i=1

ln(i)

=

q3− q
2

2
+ q

2∑
i=2

ln(i)

≥
∫ q3− q

2

2
+ q

2

1

ln(x)dx

=

(
q3 − q2

2
+
q

2

)(
ln

(
q3 − q2

2
+
q

2

)
− 1

)
+ 1.

Similarly,

3q

2
ln
(
q2!
)

=
3q

2

q2∑
i=1

ln(i)

≤ 3q

2

∫ q2+1

1

ln(x)dx

=
3q

2

((
q2 + 1

) (
ln
(
q2 + 1

)
− 1
)

+ 1
)
.

Computational one may check that

3q

2

((
q2 + 1

) (
ln
(
q2 + 1

)
− 1
)

+ 1
)

=

(
q3 − q2

2
+
q

2

)(
ln

(
q3 − q2

2
+
q

2

)
− 1

)
+ 1

for q ≈ 0.7453 and q ≈ 7.0545, and

3q

2

((
q2 + 1

) (
ln
(
q2 + 1

)
− 1
)

+ 1
)
<

(
q3 − q2

2
+
q

2

)(
ln

(
q3 − q2

2
+
q

2

)
− 1

)
+ 1
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m 2 4 6 8

q = 2
Reed-Solomon 0.57312 0.69141 0.77082 0.82226

Hermitian 0.56216 0.70734 0.80276 0.85930

q = 3
Reed-Solomon 0.64737 0.78120 0.84917 0.88631

Hermitian 0.65248 0.81459 0.88634 0.91988

q = 5
Reed-Solomon 0.72079 0.84569 0.89648 0.92233

Hermitian 0.74345 0.88296 0.92819 0.94767

Table 4.1: Lower bounds on exponents of Reed-Solomon and Hermitian kernels over
Fqm

for q ≥ 8. Using Corollary 8, one may check E(GRS) < E(GH) for 3 ≤ q ≤ 7. �

Remark 2 It should be observed that the kernel matrices in Proposition 3 are over

the same field, Fq2, but are not of the same size. Indeed, GH is a q3× q3 matrix while

GRS is of size q2 × q2.

For the purposes of polar coding, it might be just as relevant, if not more so, to

compare exponents of matrices of the same size, though over different fields. In this

situation, we conclude that the exponent of the Reed-Solomon kernel over Fq3 exceeds

the lower bound on the exponent of the Hermitian kernel over Fq2 given in Corollary

8.

4.1.3 Kernels from Suzuki codes

In this subsection, we see that the asymptotic behavior of the exponent in

Theorem 14 may occur for kernels constructed from function fields that are not max-

imal. To do so, we investigate codes from the Suzuki function field, a function field

which is not maximal yet is optimal (according to the explicit formulas of Weil).

Let F = Fq(x, y) be the function field of the Suzuki curve which has defining
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equation

y2
2r+1 − y = x2

r

(x2
2r+1 − x)

over Fq where q = 22r+1 and r is a positive integer. Then the genus of F is g =√
q
2
(q− 1), and F has exactly q2 + 1 places of degree one. The Suzuki one-point code

is of the form C(D, aP∞), where D =
∑

α,β∈F22r+1
Pα,β and Pα,β is a common zero of

x − α and y − β. Theorem 13 then yields the following result. Let GSuz denote a

Suzuki kernel over Fq where q = 22r+1 and r is a positive integer as in (4.1).

Corollary 9 Let GSuz be a Suzuki kernel over Fq where q = 22r+1. Then

E(GSuz) ≥
1

q2 ln(q2)
ln

((
q2 −

√
q

2
(q − 1)

)
!

)
.

Proof This follows directly from Theorem 13 using the fact that F has genus g =√
q
2
(q − 1). �

The exact minimum distances of Suzuki one-point codes over F8 are known

according to the work of Chen and Duursma [5]. We further explore this function

field in the example below.

Example 13 Let F = F8(x, y) be the function field of the Suzuki curve with defining

equation y8−y = x4(x8−x), and let α be a primitive element of F8. A one-point code

over this function field, called a Suzuki one-point code, is of length 64. The Suzuki
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one-point codes

C(D,P∞) $ C(D, 8P∞) $ C(D, 10P∞) $ C(D, 12P∞) $ C(D, 13P∞)

$ C(D, 16P∞) $ C(D, 18P∞) $ C(D, 20P∞) $ C(D, 21P∞)

$ C(D, 22P∞) $ C(D, 23P∞) $ C(D, 24P∞) $ C(D, 25P∞)

$ C(D, 26P∞) $ C(D, 28P∞) $ C(D, 29P∞) $ · · · $ C(D, 63P∞)

$ C(D, 65P∞) $ C(D, 66P∞) $ C(D, 67P∞) $ C(D, 68P∞)

$ C(D, 69P∞) $ C(D, 70P∞) $ C(D, 71P∞) $ C(D, 73P∞)

$ C(D, 75P∞) $ C(D, 78P∞) $ C(D, 79P∞) $ C(D, 81P∞)

$ C(D, 83P∞) $ C(D, 90P∞) $ C(D, 91P∞) = F64
8

satisfy (4.1).. The resulting kernel matrix is



(0, 0) (0, 1) . . . (0, α) . . . (α6, α5) (α6, α6)

0 1 . . . 1 . . . (1 + α6)(1 + α5 + α3)5 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . 0 . . . α6 α6

1 1 . . . 1 . . . 1 1


.

The partial distances of this matrix are bounded by the exact minimum distances of

the Suzuki one-point codes, which are

64, 56, 56, 52, 51, 48, 46, 44, 43, 42, 42, 40, 39, 38, 36, 35, 34, 33, 32, 31, 30, 29, 28,

28, 26, 25, 24, 24, 22, 21, 20, 20, 18, 18, 16, 16, 16, 13, 12, 12, 12, 12, 8, 8, 8, 8, 8, 8,

8, 8, 7, 7, 6, 6, 4, 4, 4, 4, 4, 3, 3, 2, 2, 1

according to [5]. Hence, Theorem 13 implies E(GSuz) ≥ 0.65555.

Table 2 compares the exponents of Reed-Solomon kernels and lower bounds

on the exponents of Suzuki kernels. As with Hermitian kernels, Suzuki kernels yield

larger exponents than Reed-Solomon kernels over the same field; however, the larger
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q = 8 q = 32

Kernel Exponent Size of Kernel Exponent Size of Kernel

Reed-Solomon 0.63747 8× 8 0.73540 32× 32
Suzuki 0.65555 64× 64 0.73635 1024× 1024

Table 4.2: Lower bounds on exponents of Reed-Solomon and Suzuki kernels over Fq
where q = 22r+1

exponent comes at the price of a larger kernel size.

Proposition 4 Let q = 22r+1 where r is positive integer. Let GSuz be a Suzuki kernel

over Fq, and let GRS be a Reed-Solomon kernel also over Fq. Then

E(GRS) ≤ E(GSuz)

for all q = 22r+1 where r ≥ 1.

Proof Let GSuz be a Suzuki kernel over Fq, and let GRS be a Reed-Solomon kernel

also over Fq. Recall, from Corollary 7, E(GRS) = ln(q!)
q ln(q)

and from Corollary 9

E(GSuz) ≥
1

q2 ln(q2)
ln

((
q2 −

√
q

2
(q − 1)

)
!

)
.

We want to find for what values of q

ln(q!)

q ln(q)
≤ 1

q2 ln(q2)
ln

((
q2 −

√
q

2
(q − 1)

)
!

)

Then

ln(q!)

q ln(q)
≤ 1

q2 ln(q2)
ln

((
q2 −

√
q

2
(q − 1)

)
!

)
if and only if

ln(q!)

q ln(q)
≤ 1

2q2 ln(q)
ln

((
q2 −

√
q

2
(q − 1)

)
!

)
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if and only if

2q ln(q!) ≤ ln

((
q2 −

√
q

2
(q − 1)

)
!

)
.

Since ln(x) is a continuous and increasing function for x > 0,

ln

((
q2 −

√
q

2
(q − 1)

)
!

)
=

q2−
√

q
2
(q−1)∑

i=1

ln(i)

=

q2−
√

q
2
(q−1)∑

i=2

ln(i)

≥
∫ q2−

√
q
2
(q−1)

1

ln(x)dx

=

(
q2 −

√
q

2
(q − 1)

)(
ln

(
q2 −

√
q

2
(q − 1)

)
− 1

)
+ 1.

Similarly,

2q ln (q) = 2q

q∑
i=1

ln(i)

≤ 2q

∫ q+1

1

ln(x)dx

= 2q ((q + 1) (ln (q + 1)− 1) + 1) .

Computational one may check that

2q ((q + 1) (ln (q + 1)− 1) + 1) =

(
q2 −

√
q

2
(q − 1)

)(
ln

(
q2 −

√
q

2
(q − 1)

)
− 1

)
+1.

for q ≈ 0.5385 and q ≈ 44.0382, and

2q ((q + 1) (ln (q + 1)− 1) + 1) <

(
q2 −

√
q

2
(q − 1)

)(
ln

(
q2 −

√
q

2
(q − 1)

)
− 1

)
+1.
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for q ≥ 45. One may check E(GRS) < E(GH) for q = 8 and q = 32 as shown in Table

4.2. �

Remark 3 It should be observed kernel matrices in Proposition 4 are over the same

field but are not of the same size. Indeed, GSuz is a q2 × q2 matrix while GRS is of

size q × q.

As discussed in Remark 2, comparing exponents of matrices of the same size,

though over different fields, may also be meaningful for polar coding. In this situation,

we conclude that the exponent of the Reed-Solomon kernel over Fq exceeds the lower

bound on the exponent of the Suzuki kernel over Fq2 given in Corollary 9.

The limiting behavior of the exponent in Theorem 14 is not restricted to

maximal function fields. In fact, kernels from Suzuki one-point codes display similar

asymptotics.

Theorem 15 Let q = 22r+1 where r is positive integer. Let GSuz be a Suzuki kernel

over Fq. Then

lim
q→∞

E(GSuz) = 1.

Proof Let G be a Suzuki kernel over Fq where q = 22r+1 and r is a positive integer.

Then

E(G) ≥ 1

q2
logq2

((
q2 −

√
q

2
(q − 1)

)
!

)
.
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Also,

1

q2
logq2

((
q2 −

√
q

2
(q − 1)

)
!

)
=

1

q2

q2−
√

q
2
(q−1)−1∑

i=0

logq2(i+ 1)

≥ 1

q2 ln(q2)

∫ q2−
√

q
2
(q−1)

1

ln(x)dx

=

(
1− 1√

2q1/2
+

1√
2q3/2

)
ln
(
q2 −

√
q
2
(q − 1)

)
ln(q2)

−
(

1

ln(q2)
− 1√

2q1/2 ln(q2)
+

1√
2q3/2 ln(q2)

− 1

q2 ln(q2)

)
.

By L’Hôpital’s rule,

lim
q→∞

1

q2
logq2

((
q2 −

√
q

2
(q − 1)

)
!

)
≥ lim

q→∞

(
1− 1√

2q1/2
+

1√
2q3/2

)
ln
(
q2 −

√
q
2
(q − 1)

)
ln(q2)

−
(

1

ln(q2)
− 1√

2q1/2 ln(q2)
+

1√
2q3/2 ln(q2)

− 1

q2 ln(q2)

)
= (1− 0 + 0)(1)− 0 = 1.

Therefore, the exponent of the Suzuki kernel tends to 1 as q →∞. �

4.2 Shortening an AG code kernel

The method of shortening can be used to create smaller kernels with large

exponent. In [12], Korada, Şaşoğlu, and Urbanke used repeated shortening of a BCH

code to create the first binary kernel with exponent exceeding E(G2) = 1
2
.

To shorten an l × l kernel G, first find the column j with the longest run of

zeros at the top of the column. Then find the row i with the first nonzero element
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of column j. Add RowiG to all the rows with a nonzero element in ColjG. Finally,

remove ColjG and RowiG to obtain an (l − 1) × (l − 1) matrix. As the next result

shows, shortening applied to AG code kernels is a special case of a multipoint code

construction.

Theorem 16 Let α1 ≤ · · · ≤ αn be integers such that

C(D,α1P ) $ · · · $ C(D,αnP ) = Fnq

and G be a generator matrix of C(D,αnP ) constructed according to (4.1). Suppose

G′ is the matrix obtained by shortening applied to the jth column of G. Then

C(D − Pj, α1P − Pj) $ · · · $ C(D − Pj, αnP − Pj) = Fn−1q ,

and G′ corresponds to the generator matrix of C(D − Pj, αnP − Pj), which is a two-

point code.

Proof Let α1 ≤ . . . ≤ αn be integers such that

C(D,α1P ) $ · · · $ C(D,αnP ) = Fnq

and {f1, . . . , ft} be a basis for L(αtP ) for all t, 1 ≤ t ≤ n. Let G denote a generator

matrix of C(D,αnP ) constructed according to (2). Suppose j is the column with the

longest run of zeros at the top and fi(Pj) 6= 0 but ft(Pj) = 0 for all 1 ≤ t ≤ i − 1.

Define {h1, . . . , hi−1, hi+1, . . . , hn} as

hs :=


fs if fs(Pj) = 0

fs + fi if fs(Pj) = 1.
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Then hs ∈ L(αsP −Pj)\L(αs−1P −Pj). Hence, {h1, . . . , hi−1, hi+1, . . . , hn} is a basis

for L(atP − Pj) for all t, 1 ≤ t ≤ i− 1, i+ 1 ≤ n. Thus,

C(D − Pj, αiP − Pj) $ · · · $ C(D − Pj, αi−1P − Pj)

$ C(D − Pj, αi+1P − Pj) $ · · · $ C(D − Pj, αnP − Pj) = Fn−1q

is a sequence of codes satisfying (4.1). �

Note that we can apply this method repeatedly, which will result in other

multipoint codes.

Example 14 Consider the following generator matrix GH for the Hermitian code

C(D, 9P∞) over F4, where α is a primitive element of F4 satisfying α2 + α+ 1 = 0:

GH =



(0, 0) (0, 1) (1, α) (1, α2) (α, α) (α, α2) (α2, α) (α2, α2)

X3Y 0 0 α α2 α α2 α α2

X2Y 0 0 α α2 1 α α2 1

X3 0 0 1 1 1 1 1 1

XY 0 0 α α2 α2 1 1 α

X2 0 0 1 1 α2 α2 α α

Y 0 1 α α2 α α2 α α2

X 0 0 1 1 α α α2 α2

1 1 1 1 1 1 1 1 1



.

The columns of GH are indexed by (α, β) such that Pα,β is a place of degree one of

the Hermitian function field over F4, and the rows are indexed by functions in a basis

of the Riemann-Roch space L(9P∞).

For 1 ≤ i ≤ 7, the last i rows are indexed by functions which form a basis for

L(αiP∞).
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Pick the column with the longest run of zeros on the top, which is the first

column of GH . Since the last row of GH is the only row with a nonzero entry in the

first column, we will remove the last row and the first column of GH . The resulting

kernel is



(0, 1) (1, α) (1, α2) (α, α) (α, α2) (α2, α) (α2, α2)

X3Y 0 α α2 α α2 α α2

X2Y 0 α α2 1 α α2 1

X3 0 1 1 1 1 1 1

XY 0 α α2 α2 1 1 α

X2 0 1 1 α2 α2 α α

Y 1 α α2 α α2 α α2

X 0 1 1 α α α2 α2


which may be obtained from a generator matrix of the two-point Hermitian code C(D−

P0,0, 9P∞ − P0,0).

4.2.1 Kernels from Two-Point Hermitian Codes

Let F = Fq2(x, y) be the Hermitian function field, meaning that it is given by

the curve

yq + y = xq+1

where q is a power of a prime. A Hermitian two-point code is of the form C(D,m1P∞+

m2P0,0), where D =
∑

α,β∈Fq2 ,βq+β=αq+1 Pα,β and Pα,β is a common zero of x− α and

y − β. We may assume the two-point Hermitian codes is of this form since the

automorphism group of the Hermitian curve is doubly transitive. Applying Theorem

13 and the exact distances of two-point Hermitian codes [8] provides a lower bound

on the exponent of the resulting kernel. Let GH2 ∈ F(q3−1)×(q3−1)
q2 denote a matrix
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constructed from the two-point Hermitian code C(D,m1P∞ +m2P0,0).

Proposition 5 The exponent of a two-point Hermitian kernel GH2 over Fq2 is bounded

below by

E(GH2) ≥
1

(q3 − 1) ln(q3 − 1)
ln

[(
(q3 − 1)(q3 − 2q + 1)!(∏q−2

i=2

(∏q−2
k=i(q

3 − iq − k)
))

(q3 − (q2 − q + 1)q + 1)!

)
(
q−2∏
i=0

(
((q − i)(q − 1)− i)!

((q − i)(q − 1)− (q − 1))!

))(q−2∏
i=1

[(q − i)(q − 1)]i
)(

q−1∏
i=2

((q − 1)q)

)]
.

Proof Let A = αiP∞ + (q − 1)P0,0 and D = P1 + · · ·+ Pn. We will use the notation

C(αi, q − 1) for C(D,A). Note that αi = {sq − 1, . . . , s(q + 1) | s = 0, 1, . . . , q − 2}

and αi = i + g − q for g ≤ i ≤ n − g. In addition, by Homma and Kim [8], we may

determine the minimum distances for C(αi, q − 1). Let αi = aq + b with 0 ≤ b < q

and p = q2 − a. According to [8], the minimum distances are as follows.

1. If b = a = 0, then d(C(αi, q − 1)) = q3 − αi - 1.

2. If αi satisfies either:

(a) 0 ≤ b ≤ q − 2 and q2 − 1 ≤ a ≤ b+ q2 + 1, or

(b) b = q − 1 and q2 − 1 ≤ a ≤ q2 − 2,

then d(C(αi, q − 1)) = q2 + q − αi − 2.

3. If αi satisfies either:

(a) b = 0 and 1 ≤ a ≤ q2 − q,

(b) 1 ≤ b ≤ q − 2 and b ≤ a ≤ q2 − q − 1, or

(c) b = q − 1 and 0 ≤ a ≤ q2 − q − 1,
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then d(C(αi, q − 1)) = q3 − q − αi.

4. If 1 ≤ b, q ≤ p, and p+ b ≤ q, then d(C(αi, q − 1)) = pq − q.

5. If p ≤ q and q < p+ b, then d(C(αi, q − 1)) = p(q − 1)− (b− 1).

6. If 2 ≤ p ≤ q − 1 and p+ b < q, then d(C(αi, q − 1)) = p(q − 1).

7. If 2 ≤ p ≤ q − 1 and p+ b = q, then d(C(αi, q − 1)) = (p− 1)q.

Using these conditions, we may determine d(C(αi, q− 1)) for 1 ≤ i ≤ n− g as

shown in the table.
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αi a b p d(C(αi, q − 1)) Condition

0 0 0 q2 q3 − 1 1

q − 1 0 q − 1 q2 q3 − 2q + 1 3

q 1 0 q2 − 1 q3 − 2q 3

q + 1 1 1 q2 − 1 q3 − 2q − 1 3

2q − 1 1 q − 1 q2 − 1 q3 − 3q + 1 3

2q 2 0 q2 − 2 q3 − 3q 3

2q + 1 2 1 q2 − 2 q3 − 3q − 1 3

2q + 2 2 2 q2 − 2 q3 − 3q − 2 3

3q − 1 2 q − 1 q2 − 2 q3 − 4q + 1 3

3q 3 0 q2 − 3 q3 − 4q 3

3q + 1 3 1 q2 − 3 q3 − 4q − 1 3

3q + 2 3 2 q2 − 3 q3 − 4q − 2 3

3q + 3 3 3 q2 − 3 q3 − 4a− 3 3

...
...

...
...

...
...

(q − 2)q − 1 q − 3 q − 1 q2 − q + 3 q3 − (q − 1)q + 1 3

(q − 2)q q − 2 0 q2 − q + 2 q3 − (q − 1)q 3

(q − 2)q + 1 q − 2 1 q2 − q + 2 q3 − (q − 1)q − 1 3
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αi a b p d(C(αi, q − 1)) Condition

...
...

...
...

...
...

(q − 2)q + (q − 1) q − 2 q − 1 q2 − q + 2 q3 − (q − 1)q − (q − 1) 3

(q − 1)q q − 1 0 q2 − q + 1 q3 − q2 3

...
...

...
...

...
...

(q2 − q − 1)q q2 − q − 1 0 q + 1 q3 − (q2 − q)q 3

(q2 − q − 1)q + 1 q2 − q − 1 1 q + 1 q3 − (q2 − q)q − 1 3

...
...

...
...

...
...

(q2 − q − 1)q + (q − 1) q2 − q − 1 q − 1 q + 1 q3 − (q2 − q)q − (q − 1) 3

(q2 − q)q q2 − q 0 q q3 − (q2 − q + 1)q 3

(q2 − q)q + 1 q2 − q 1 q q(q − 1) 5

(q2 − q)q + 2 q2 − q 2 q q(q − 1)− 1 5

...
...

...
...

...
...

(q2 − q)q + (q − 1) q2 − q q − 1 q q(q − 1)− (q − 2) 5

(q2 − q + 1)q q2 − q + 1 0 q − 1 (q − 1)(q − 1) 6

(q2 − q + 1)q + 1 q2 − q + 1 1 q − 1 (q − 2)q 7

(q2 − q + 1)q + 2 q2 − q + 1 2 q − 1 (q − 1)(q − 1)− 1 5

...
...

...
...

...
...

(q2 − q + 1)q + (q − 1) q2 − q + 1 q − 1 q − 1 (q − 1)(q − 1)− (q − 2) 5

(q2 − q + 2)q q2 − q + 2 0 q − 2 (q − 2)(q − 1) 6

(q2 − q + 2)q + 1 q2 − q + 2 1 q − 2 (q − 2)(q − 1) 6

(q2 − q + 2)q + 2 q2 − q + 2 2 q − 2 (q − 3)q 7
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(q2 − q + 2)q + 3 q2 − q + 2 3 q − 2 (q − 2)(q − 1)− 2 5

...
...

...
...

...
...

(q2 − q + 2)q + (q − 1) q2 − q + 2 q − 1 q − 2 (q − 2)(q − 1)− (q − 2) 5

...
...

...
...

...
...

(q2 − 2)q q2 − 2 0 2 2(q − 1) 6

(q2 − 2)q + 1 q2 − 2 1 2 2(q − 1) 6

...
...

...
...

...
...

(q2 − 1)q + (q − 3) q2 − 2 q − 3 2 2(q − 1) 6

(q2 − 1)q + (q − 2) q2 − 2 q − 2 2 q 7

(q2 − 1)q + (q − 1) q2 − 2 q − 1 2 2(q − 1)− (q − 2) 5

Using these minimum distances, we may bound the exponent by
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E(GH2) ≥
1

(q3 − 1) ln(q3 − 1)

[
ln(q3 − 1) +

1∑
i=−1

ln(q3 − 2q − i) +
2∑

i=−1

ln(q3 − 3q − i)

+
3∑

i=−1

ln(q3 − 4q − i) +
4∑

i=−1

ln(q3 − 5q − i) + . . .+

q−3∑
i=−1

ln(q3 − (q − 2)q − i)

+

q−1∑
i=−1

ln(q3 − (q − 1)q − i) +

q−1∑
i=0

ln(q3 − (q)q − i) +

q−1∑
i=0

ln(q3 − (q + 1)q − i) + . . .

+

q−1∑
i=0

ln(q3 − (q2 − q)q − i) + ln(q3 − (q2 − q + 1)q)

+

q−2∑
i=0

ln(q(q − 1)− i) + ln((q − 1)(q − 1))

+ ln((q − 2)q) +

q−2∑
i=1

ln((q − 1)(q − 2)− i) + 2 ln((q − 2)(q − 1))

+ ln((q − 3)q) +

q−2∑
i=2

ln((q − 2)(q − 1)− i) + . . .

+(q − 2) ln(2(q − 1)) + ln(q) + ln(2(q − 1)− (q − 2)]

=
1

(q3 − 1) ln(q3 − 1)

[
ln

((
(q3 − 1)(q3 − 2q + 1)!(∏q−2

i=2

(∏q−2
k=i(q

3 − iq − k)
))

(q3 − (q2 − q + 1)q + 1)!

)
(
q−2∏
i=0

(
((q − i)(q − 1)− i)!

((q − i)(q − 1)− (q − 1))!

))(q−2∏
i=1

[(q − i)(q − 1)]i
)(

q−1∏
i=2

((q − 1)q)

))]
.

�

Using bounds on minimum distances, we may compare the bounds on the

minimum exponent of two-point Hermitian kernels to Reed-Solomon and one-point

Hermitian kernels. Table 4.3 compares these kernels over F9 and F16. One may note

that the kernel and exponent for the two-point Hermitian code C(D,m1P∞+m2P(0,0))

depends on the value of m2. This dependance gives us freedom when constructing a
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q = 9 q = 16

Kernel Exponent Size Exponent Size

Reed-Solomon 0.6474 9× 9 0.6914 16× 16
One-Point Hermitian 0.6525 27× 27 0.7073 64× 64
Two-Point Hermitian 0.6622 26× 26 0.7235 63× 63

Table 4.3: Lower bounds on exponents of Reed-Solomon, One-Point Hermitian, and
Two-Point Hermitian kernels over Fq

sequence of nested codes, and we may construct a kernel by picking nested codes that

have the largest minimum distance. Tables 4.4 and 4.6 the minimum distance for two-

point Hermitain codes for various m2 over F9 and F16. Tables 4.5 and 4.8 use these

bounds to give bounds for the exponent for two-point Hermitain kernels for various

m2 over F9 and F16. Included in Tables 4.5 and 4.8 are bounds for the exponent for

the kernel constructed by picking the codes that have the largest minimum distance

but still are nested. The codes chosen to construct this new kernel, called the mixed

kernel, are shown in bold in Tables 4.4 and 4.6. It is also important to note that

two-point Hertimian codes may not always give a larger exponent as shown in Table

4.5 for m2 = 1.
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Dimension m2 = 3 m2 = 2 m2 = 1
1 26 26 26
2 23 22 23
3 21 21 22
4 20 20 20
5 19 19 19
6 18 18 18
7 17 17 17
8 16 16 16
9 15 15 15
10 14 14 14
11 13 13 13
12 12 12 12
13 11 11 11
14 10 10 10
15 9 9 9
16 8 8 8
17 7 7 7
18 6 6 6
19 6 6 5
20 4 5 4
21 3 4 4
22 3 3 3
23 3 3 2
24 2 2 2
25 2 2 2
26 2 1 1

Table 4.4: Minimum distances of two-point Hermitian codes over F9

m2 = 3 m2 = 2 m2 = 1
Exponent 0.6556 0.6530 0.6445

Mixed Kernel
Exponent 0.6622

Table 4.5: Lower bounds on the exponent of two-point Hermitian codes over F9

86



Dimension m2 = 4 m2 = 3 m2 = 2 m2 = 1
1 63 63 63 63
2 59 57 59 59
3 56 56 58 58
4 55 55 54 55
5 54 53 53 54
6 52 52 52 53
7 51 51 51 51
8 50 50 50 50
9 49 49 49 49
10 48 48 48 48
11 47 47 47 47
12 46 46 46 46
13 45 45 45 45
14 44 44 44 44
15 43 43 43 43
16 42 42 42 42
17 41 41 41 41
18 40 40 40 40
19 39 39 39 39
20 38 38 38 38
21 37 37 37 37
22 36 36 36 36
23 35 35 35 35
24 34 34 34 34
25 33 33 33 33
26 32 32 32 32
27 31 31 31 31
28 30 30 30 30
29 29 29 29 29
30 28 28 28 28
31 27 27 27 27
32 26 26 26 26
33 25 25 25 25
34 24 24 24 24
35 23 23 23 23
36 22 22 22 22
37 21 21 21 21
38 20 20 20 20
39 19 19 19 19

Table 4.6: Minimum distances of two-point Hermitian codes of dimension at most 39
over F16
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Dimension m2 = 4 m2 = 3 m2 = 2 m2 = 1
40 18 18 18 18
41 17 17 17 17
42 16 16 14 16
43 15 15 14 15
44 14 14 14 14
45 13 13 13 13
46 12 12 12 12
47 12 12 11 11
48 10 11 10 10
49 9 10 9 10
50 8 9 9 8
51 8 8 8 7
52 8 8 7 6
53 5 7 6 6
54 4 6 6 6
55 4 6 6 4
56 4 4 4 3
57 4 4 3 3
58 3 3 3 3
59 3 3 3 3
60 3 3 3 2
61 3 2 1 2
62 1 2 1 2
63 1 2 1 2

Table 4.7: Minimum distances of two-point Hermitian codes of dimension at least 40
over F16

m2 = 4 m2 = 3 m2 = 2 m2 = 1
Exponent 0.7044 0.7178 0.7018 0.7053

Mixed Kernel
Exponent 0.7235

Table 4.8: Lower bounds on the exponent of two-point Hermitian codes over F16

88



4.2.2 Three-point Hermitian kernels and Hermitian triples

A natural next step would be to continue to shorten a kernel until the exponent

no longer increases. This shortening process would result in a nesting of multipoint

algebraic geometric codes. However, even shortening a two-point Hermitian kernel

to a three-point Hermitian kernel proves to be difficult to analyze as not as much

is known about three-point Hermitian codes. Since the automorphism group of the

Hermitian curve is doubly transitive, the one- and two-point codes C(D,G) do not

depend on the choice of support for the divisor G. However, the situation is more

intricate for m-point codes with m > 2 and leads to the study of triples of rational

points on the Hermitian curve.

We will consider triples of rational points on the Hermitian curve Xq which

has defining equation yq + y = xq+1 over Fq2 . Note, that the associated homogeneous

polynomial associated with f(x, y) = xq+1 − yq − y is

F (X, Y, Z) = Xq+1 − Y qZ − Y Zq.

Let (a : b : c) := {(αa, αb, αc) | α ∈ Fq2 \ {0}}. Then Fq2-rational points of Xq

are {Pab | bq + b = aq+1} and the point at infinity. Thus, the curve Xq is maximal

over Fq2 , having genus g = q(q−1)
2

and q3 + 1 Fq2-rational points. In particular,

for each a ∈ Fq2 , there are q distinct Fq2-rational points Pab on Xq and a unique

point at infinity P∞. Let Aut(Xq) denote the automorphism group of Xq; that it,

Aut(Xq) = {σ : Xq → Xq | σ is an isomorphism and σ(Xq) = Xq}.

We are interested in m-point codes on Xq, which are those of the form

C

(
D,

m∑
i=1

aiQi

)
.
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When m = 1, 2, the codes are well-understood and do not depend on the choice of

Qi (see, for instance, [8, 18, 30, 29]). Hence, we consider the case m = 3.

Given a prime power q, let

Tq := {(P,Q,R) : P,Q,R are distinct Fq2-rational points on Xq} ,

be the set of triples of distinct Fq2-rational points on Xq. Define ∼ on Tq by

(P,Q,R) ∼ (P ′, Q′, R′)

if and only if C(D, aP + bQ + cR) is isometric to C(D, aP ′ + bQ′ + cR′) for all

a, b, c ∈ N with respect to the Hamming distance. It is immediate that ∼ is an

equivalence relation on Tq. We wish to determine the equivalence classes of ∼ in

pursuit of the classification of families of three-point Hermitian codes.

Proposition 6 [13, Little] Let (β : δ : γ) and (λ : µ : ν) be any two distinct

rational points on Xq, and let ε ∈ F∗q2 be any nonzero field element. There exist an

automorphism σ of Xq induced by the linear mapping on P2 defined by the following

matrix

M =



ε(δqµq − γqνq) εq+1ξλ β

ε(βqµq − γqλq) εq+1ξµ δ

ε(δqλq − βqνq) εq+1ξν γ


where ξ = −λqβ + νqγ + µqδ. Moreover, every element of Aut(Xq) can be written in

this form for some choice of the two rational points and ε.

Lemma 7 [16, Theorem 5.4] Each equivalence class of ∼ contains a triple of the
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form (P0,0, P∞, P1,b) or (P0,0, P∞, P0,b). Consequently, there are at most q + 1 classes

of triples of rational points on the Hermitian curve over Fq2.

Note that we can reduce the number of classes of triples even further. One

can also show that there exists σ ∈ Aut(Xq) such that

(σ(P0,0), σ(P∞), σ(P1,b)) = (P0,0, P∞, P1,c)

if and only if b and c are congugates under the map b↔ bq.

The next result immediately follows.

Theorem 17 There are at most
⌊
q+1
2

⌋
+ 1 classes of triples of rational points on the

Hermitian curve over Fq2.

We now turn to the Weierstrass semigroup to gain further information on

three-point Hermitian codes. Recall that the Weierstrass semigroup of an m-tuple

(P1, . . . , Pm) on X is

H(P1, . . . , Pm) =

{
(α1, . . . , αm) ∈ Nm : ∃f ∈ F with (f)∞ =

m∑
i=1

αiPi

}
.

Hence, (α1, . . . , αm) ∈ H(P1, . . . , Pm) if and only if

L

(
m∑
i=1

αiPi

)
6= L


(αj − 1)Pj +

m∑
i = 1

j 6= i

αiPi


for all j, 1 ≤ j ≤ m. Takingm = 3 and (P,Q,R) ∈ Tq, we see that (P,Q,R)∼(P ′, Q′, R′)
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implies H(P,Q,R) = H(P ′, Q′, R′). Therefore,

# {H(P,Q,R) : (P,Q,R) ∈ Tq} ≤ # equivalence classes of triples in Tq ≤
⌊
q + 1

2

⌋
+1.

In light of this, it is interesting to consider the number of distinct Weierstrass

semigroups H(P,Q,R) for (P,Q,R) ∈ Tq. Let Z+ denote the set of positive inte-

gers. Note we may define a partial ordering on Zn+ with the relation ≤ defined as:

(x1, . . . , xn) ≤ (y1, . . . , yn) if and only if xi ≤ yi for all i ∈ 1, . . . , n. When we refer

to a minimal element of Zn+ (or a subset of Zn+), we mean with respect to this partial

ordering. Clearly, H(P,Q,R) is completely determined by P and Q, and the set

Γ(P,Q,R) :=

v ∈ Z3
+ :

v is minimal in {p ∈ H(P,Q,R) : pi = vi}

for some i, 1 ≤ i ≤ 3

 .

If the rational points P , Q, and R are collinear, then Γ(P,Q,R) is known [15]; other-

wise, for small values of q, one can compute Γ(P,Q,R) using kash [6] and Sage [25].

As a result, we obtain the number of Weierstrass semigroups as displayed in Table

4.2.2 [16]. Examples of Γ(P,Q,R) for q = 4 and 5 are given below.

q upper bound on # of equivalence classes of triples # Weierstrass semigroups
4 2 3
5 4 4
7 4 5
8 3 5
9 4 6

Table 4.9: Number of Weierstrass semigroups of triples on the Hermitian curve Xq

over Fq2

Example 15 Consider the Hermitian curve X4 given by y4 + y = x5 over F16. Let
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α be a primitive element of F16. One can compute that

Γ (P0,0, P∞, P1,α) =

 (1, 1, 7), (1, 2, 6), (1, 6, 2), (1, 7, 1), (2, 1, 6), (2, 2, 3),

(2, 3, 3), (2, 6, 1), (3, 2, 2), (6, 1, 2), (6, 2, 1), (7, 1, 1)

 ,

whereas

Γ (P0,0, P∞, P0,1) = {(1, 1, 6), (1, 6, 1), (2, 2, 2), (6, 1, 1)}

Then there are exactly two Weierstrass semigroups of triples of F16-rational rational

points on X4:

H(P0,0, P∞, P0,1) 6= H(P0,0, P∞, P1,α).

Thus, there are at least two equivalence classes of triples over F16, and at most⌊
4+1
2

⌋
+ 1 = 3 equivalence classes of triples over F16.

Example 16 Consider the Hermitian curve X5 given by y5 + y = x6 over F25. Let

α be a primitive element of F25. Then there are exactly four Weierstrass semigroups

of triples of F25-rational points on X5:

H(P0,0, P∞, P0,1), H(P0,0, P∞, P1,α4), H(P0,0, P∞, P1,α6), H(P0,0, P∞, P1,α7).

Indeed, (2, 2, 8) ∈ Γ (P0,0, P∞, P1,α4) whereas

(2, 2, 9) ∈ Γ (P0,0, P∞, P1,α6) ∩ Γ (P0,0, P∞, P1,α7) .

In addition, Γ (P0,0, P∞, P1,α6) \ Γ (P0,0, P∞, P1,α7) = {(3, 3, 4), (3, 4, 3), (4, 3, 3)}, and

Γ (P0,0, P∞, P1,α7) ∩ Γ (P0,0, P∞, P1,α6) = {(3, 3, 3)}. In addition, there are at most⌊
5+1
2

⌋
+ 1 = 4 equivalence classes of triples over F25. Thus, we conclude that there

are exactly four equivalence classes of triples over F25.
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Chapter 5

Conclusions and Discussion

In this thesis, we provide applications of algebraic geometric codes to stopping

sets and to polar codes. We also connect open problems concern triples of rational

places on the Hermitian curve to polar coding and three-point Hermitian kernels.

However, there are still many open questions and problems to be considered in all

three of these topics.

For stopping sets, it remains to be shown if stopping sets of sizes m − 1 and

m exist for algebraic geometry codes over hyperelliptic curves of genus 2 as well as

the existence of stopping sets consisting of groups of noncollinear points of Hermitian

codes. In addition, stopping sets of algebraic geometric codes from other curves

remain to be studied.

There are also still many open questions in polar coding. For example, fur-

ther investigation of Hermitian triples leads to greater insight to three-point Heritian

kernels and shortening. In addition, shortening may increase the exponent while de-

creasing the size of the kernel; however, shortening may also decrease the exponent. A

hybrid approach might allow one to balance these competing goals. There are many

other open problems not discussed in this thesis, such as finite block-length analysis

94



and other decoding techniques. It would be interesting to see how one might use the

underlying algebraic structure of the kernel in decoding.
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[12] S. Korada, E. Şaşoğlu, and R. Urbanke, Polar codes: characterization of expo-
nent, bounds, and constructions, IEEE Trans. Inform. Theory 56 (2010), no. 12,
6253–6264.

96



[13] J. Little, private communication, 2002.

[14] N. Goela, S. Korada, and M. Gastpar, On LP decoding of polar codes, IEEE
Inform. Theory Workshop, Dublin, Ireland, 30 Aug - 3 Sept 2010, 1–5.

[15] H. Maharaj, G. Matthews, and G. Pirsic, Riemann-Roch spaces of the Hermitian
function field with applications to algebraic-geometric codes and low-discrepancy
sequences, J. Pure Appl. Algebra 195 (2005), no. 3, 261–280.

[16] J. Marshall, On the number of Weierstrass semigroups of triples on the Hermitian
curve, M.S. thesis, Clemson University, 2007.

[17] E. Martinez-Moro, Advances in algebraic geometry codes, World Scientific, Vol.
5., 2008.

[18] G. L. Matthews, Weierstrass pairs and minimum distance of Goppa codes, Des.
Codes and Cryptog. 22 (2001), 107–121.

[19] R. Mori and T. Tanaka, Channel Polarization on q-ary discrete memoryless chan-
nels by arbitrary kernels, IEEE ISIT, Austin, Texas, 13 June - 18 June 2010, 894
– 898.

[20] R. Mori and T. Tanaka, Non-binary Polar codes using Reed-Solomon codes and
algebraic geometry codes, IEEE Inform. Theory Workshop, Dublin, Ireland, 30
Aug - 3 Sept 2010, 1–5.

[21] R. Mori and T. Tanaka, Source and channel polarization over finite fields and
Reed-Solomon matrices, IEEE Trans. Inform. Theory 60 (2014), no 5, 2720–2736.

[22] W. Park and A. Barg, Polar codes for q-ary channels, q = 2r, IEEE Trans.
Inform. Theory 59 (2013), no 2, 955–969.
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