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ABSTRACT

Understanding speciation remains a holy grail of evolutionary biology.

One useful approach is studying the evolutionary mechanisms important in

population divergence to infer the mechanisms important in speciation. This

method is especially useful when closely related species can be compared to

determine whether intraspecific differences parallel interspecific differences. I

studied population divergence in two species of Mexican sailfin mollies, Poecilia

velifera and P. petenensis. These closely related species are particularly useful

for this type of study, as they live in habitats that may differ in the importance of

natural selection. In addition, these species may differ in the importance and

strength of sexual selection, as males exhibit secondary sexual morphological

and behavioral traits. To understand population divergence, I compared

morphology among populations in both species. In addition, I observed male

mating behaviors to understand the pattern of behavioral differences among

populations. Finally, I used microsatellite loci to determine neutral genetic

differentiation both within and between the two species. Morphologically, I found

that populations in both species were differentiated, and while some

morphological trait differences were shared among populations in both species,

important differences were also present. For example, caudal peduncle

differences among populations in P. petenensis, but not P. velifera, suggest that

habitat differences may shape some morphological differences. Males of P.
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velifera showed evidence of an alternative male mating strategy, with small

males performing only gonopodial thrusts, while large males performed both

courtship displays and gonopodial thrusts. Males of all sizes of P. petenensis

performed both mating behaviors, regardless of body length. In addition, little

variation existed between populations of P. velifera, however, males of P.

petenensis showed more population specific rates of mating behaviors. Finally,

microsatellite analysis revealed that while most populations were genetically

distinct, patterns of genetic variation were not concordant with patterns of

phenotypic variation, suggesting that selection, and not genetic drift, is likely

promoting population divergence in P. velifera and P. petenensis. These results,

taken together, suggest that differences in population divergence between these

species are the results of both natural and sexual selection, which have been

important evolutionary mechanisms in sailfin molly speciation.
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CHAPTER 1

INTRODUCTION TO SAILFIN MOLLIES AND

POPULATION DIVERGENCE

Evolutionary studies often center on questions related to speciation. What

promotes it and what prevents it? How do multiple evolutionary mechanisms

interact; are they in concert, or do they conflict? While certainly there is not a

single answer to these questions for all species, the understanding of

evolutionary mechanisms in a subset of species may reveal the potential

interactions of these mechanisms in a broader context. One important approach

to understanding the causes of speciation, especially the processes related to

local adaptation and the role of sexual selection in promoting divergence, is the

study of population divergence (Foster et al. 1998; Foster and Endler 1999).

Population differentiation is thought to be the initial stage in many models

of speciation (Verrell 1998; Coyne and Orr 2004). The study of differentiated

populations, especially in a geographic context, may expose the evolutionary

mechanisms that are important in promoting or maintaining this divergence.

These studies may, in turn, shed light on evolutionary mechanisms that were

also potentially significant in promoting differences at higher taxonomic levels

(Endler 1989; Foster et al. 1998; Foster and Endler 1999) and may avoid

confounding traits that have promoted speciation with those that have arisen

since its completion (Coyne and Orr 2004). A further benefit of comparisons of
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population divergence is the ability to compare intraspecific population

divergence among related taxa and to determine whether intraspecific

differences mirror those observed in interspecific comparisons. When such

patterns are observed, they provide evidence that inter- and intraspecific

differences may be promoted by at least some similar mechanisms (Foster et al.

1998; Coyne and Orr 2004)

While comparative studies of intraspecific population variation in both

phenotypic and genotypic traits can allow for a better understanding of the

evolutionary processes promoting and maintaining population divergence (Masta

and Maddison 2002), most studies are limited to describing divergence in either

phenotypic or genetic characters, but not both. Although such studies provide

evidence of the high degree of variation that can occur within a single species

(Houde 1993), they are unable to compare the levels of divergence in phenotypic

and genotypic traits or provide insight into the relative importance of selection

and drift in influencing population divergence, as well as the homogenizing

effects of gene flow between populations. A comparative study that incorporates

both phenotypic and genetic divergence is important, as it can suggest which

mechanisms shape divergence (Merilä 1997; Merilä and Crnokrak 2001; Masta

and Maddison 2002; McKay and Latta 2002), whether population divergence is

likely to be maintained without speciation (Magurran 1998), or whether

divergence may ultimately lead to speciation (Lande 1981; Iwasa and

Pomiankowski 1995).
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Male traits that function as mating signals are one set of phenotypic traits

that often show considerable inter-population variation. As targets of sexual

selection, these phenotypic traits are important to understanding the role of

sexual selection in promoting and maintaining population divergence (Lande

1981; Lande and Kirkpatrick 1988). In addition, genetic drift and chance founder

effects may lead to differences in populations (Schluter 2001), which may

differentially affect the divergence of male traits. Thus, understanding genetic

differentiation and gene flow between populations is crucial to determining the

relative importance of selection and drift in shaping population divergence in

mating signals. A comparison of these mechanisms can determine whether

there are concordant patterns of phenotypic and genetic divergence, the

determination of which is necessary to clarifying the relative contribution of these

evolutionary mechanisms.

The sailfin mollies Poecilia velifera and P. petenensis are excellent

candidates for a parallel study of population divergence among closely related

species (Fig. 1.1). Mollies are livebearing poeciliid fishes. Males of P. velifera

and P. petenensis show high levels of sexual dimorphism (Fig. 1.2; Hubbs 1933),

indicating that sexual selection may be important in maintaining intersexual

differences (Andersson 1994). This dimorphism is particularly evident in the

large size of the male dorsal fin. During courtship displays, used to elicit female

cooperation during mating, males erect their dorsal fin, and also generally curve

their body into a sigmoid shape and tilt towards the female (Parzefall 1969, 1989;

Luckner 1979; Farr and Travis 1986; Ptacek and Travis 1996; Ptacek et al.
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FIG. 1.1. Phylogenetic tree showing the relationships between the four sailfin
species and shortfin mollies. Relationships modified from a maximum likelihood
phylogeny in Ptacek and Breden (1998).

P. velifera

P. latipinna

P. latipunctata

P. petenensis

Shortfin mollies
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FIG. 1. Digital photographs of males of Poecilia velifera male (A) and female (B)
and P. petenensis male (C) and female (D).

(A) (B)

(C) (D)(D)
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2005). In contrast, males may circumvent female choice through gonopodial

thrusting. As in all poeciliid fishes, males posses a modified anal fin, the

gonopodium, which is used to transfer sperm packets to females’ gonopore

(urogenital opening) for internal fertilization (Constantz 1989). Gonopodial

thrusting is a type of forced insemination attempt, where the male orients himself

behind a female, brings the gonopodium to a forward position, and attempts to

insert the tip into the female’s gonopore (Rosen and Tucker 1961; Constantz

1989; Farr 1989). A third mating behavior, gonoporal nibbling, occurs when

males make nasal or oral contact with the female’s gonopore. The function of

this behavior is unclear, however it appears to aid a male in determining a

female’s reproductive status (Farr and Travis 1986; Constantz 1989; Sumner et

al. 1994).

Divergence in male mating behaviors may have important implications for

how population divergence is maintained (Foster et al. 1998; Foster and Endler

1999). For example, behavioral differences between populations may reflect

differences in female preferences, such as population-specific preferences for

rates of courtship (Endler and Houde 1995; Ptacek and Travis 1996, 1997). In

addition, differences in natural selection may also shape population difference.

Predation rates, flow rate, and light intensity, for example, have been shown to

strongly influence male courtship displays and rates of gonopodial thrusting in

guppies, P. reticulata (Endler 1987, 1995; Magurran et al. 1995; Nicoletto 1996;

Nicoletto and Kodric-Brown 1999).
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In addition to the opportunity to compare mating behaviors within and

between P. velifera and P. petenensis, males of these species also show high

levels of morphological variation. Because male size appears to be fixed at

maturity (for examples in related species see Kallman 1984, 1989; Zimmerer and

Kallman 1989; Travis 1994a, b), comparisons of male morphology can potentially

reveal much about the selective influences that have shaped morphological

differences. While both P. velifera and P. petenensis occur in habitats in and

immediately surrounding the Yucatán Peninsula in Mexico, they generally inhabit

very different habitat types (Fig. 1.3). The species P. velifera is generally found

in brackish coastal marshes, while P. petenensis is also found farther south into

Belize and Guatemala, in more inland rivers and streams (Schmitter-Soto 1998).

The differences in geographic range and preferred habitats between P.

velifera and P. petenensis may have important implications for differential levels

of migration between populations, and differences in natural selection regimes.

The degree of connectedness of saltwater habitats for P. velifera is more

continuous across coastal marshes, therefore gene flow rates may be higher for

this species than for P. petenensis. The freshwater species, P. petenensis, is

more restricted in distribution because of the patchy distribution of freshwater

habitats in the Yucatán peninsula and dispersal between drainages is less likely

(however, periodic flooding during the rainy season does promote some

interpopulation mixing, even between drainages, personal communication, J. J.

Schmitter-Soto). The different habitats occupied by P. velifera and P. petenensis

may also result in differential patterns of natural selection between the species.
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FIG. 1.3. Yucatán Peninsula showing the habitat range of Poecilia velifera (blue)
and P. petenensis (green). Inset map indicates the area that has been enlarged
for the range map.
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For example, cichlids are a common river predator that may influence

morphological and behavioral divergence among populations of P. petenensis,

but not among populations of P. velifera.

An important role for sexual selection in promoting divergence in male

morphology and mating behaviors has been demonstrated in a related sailfin

species P. latipinna (Farr and Travis 1986; Ptacek and Travis 1996, 1997; Ptacek

2005). Population-specific differences persist in the face of high gene flow

(Trexler 1988), suggesting that sexual selection is a strong evolutionary force in

these populations, overcoming the diluting effects of gene flow. These findings

illustrate the potential importance of sexual selection in a closely related species,

and provide an opportunity to determine whether similar patterns of divergence

are also observed in P. velifera and P. petenensis.

An additional benefit of using within and between species differences to

infer potentially important mechanisms of speciation is the ability to understand

the role of selection versus the role of neutral genetic forces, such as genetic

drift. Comparing intraspecific divergence in male mating behaviors and

morphology provides an opportunity to observe the range of behavioral and

morphological variation within a species. When comparisons can further be

made between related species, potentially important differences between the

species may also be inferred (Verrell 1998; Foster and Endler 1999). However, it

is important to distinguish between the role of selection, and its strength in

promoting population divergence, and that of historical differences as a result of

genetic drift. If divergence in both phenotypic and genetic traits is concordant,
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then genetic drift or ongoing gene flow may be important in predicting patterns of

population divergence (Foster et al. 1998; Verrell 1998; Coyne and Orr 2004;

Nicholls et al. 2006). However, when discordant patterns of neutral genetic and

phenotypic divergence are observed, or when there appear to be large

differences in the rates of divergence between these types of traits, selection

may be indicated to account for the differences (Endler 1977; Foster et al. 1998;

Coyne and Orr 2004).

One class of genetic marker particularly well suited to studies of

population differentiation is microsatellite DNA (reviewed in Dowling et al. 1996).

Microsatellites are short (generally 1-6 base pairs), tandemly repeated units of

nuclear DNA. They are codominantly inherited and highly polymorphic, allowing

for observation of large numbers of genotypes, and their relatively high mutation

rate (generally through polymerase slippage during DNA replication) makes them

ideal for population comparisons (Ashley and Dow 1994; Schlötterer and

Pemberton 1994; Slatkin 1995; Jarne and Lagoda 1996).

Microsatellite markers are the most useful markers to study neutral

genetic variation in mollies for several reasons. First, primers have already been

developed for several closely related species (Parker et al. 1998; Becher et al.

2002; Walter et al. 2004), which can easily be optimized for use in mollies.

Second, microsatellites are likely selectively neutral (Ashley and Dow 1994),

thus, providing a measure of population variation that is immune to the action of

selection, and a point from which to compare phenotypic traits for evidence of

divergence because of selection. Finally, microsatellites can be used to calculate
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both genetic differentiation and genetic distance (Lowe et al. 2004), which

provides a quantitative method for comparing phenotypic and morphological

divergence.

My dissertation research was designed to compare populations within and

between P. velifera and P. petenensis to gain insight into the relative importance

of different evolutionary mechanisms in promoting and maintaining population

divergence. I examine population divergence in both phenotypic and neutral

genetic traits, as described briefly above, and in more detail in the following

chapters. In Chapter 2, I examine morphological divergence within and between

P. velifera and P. petenensis using both linear and geometric morphometric

techniques. These analyses not only allow me to determine the patterns of

divergence, but to understand whether natural or sexual selection may be

shaping morphological divergence. In Chapter 3, I examine male mating

behavior variation within and between the two species, and describe an

alternative male mating strategy in P. velifera, and how sexual and natural

selection may have favored its evolution. Finally, in Chapter 4, I use

microsatellites to examine neutral genetic structure in P. velifera and P.

petenensis, and compare the patterns of genetic divergence to those observed in

phenotypic divergence in order to understand the roles of natural and sexual

selection in promoting or maintaining population divergence. Overall, this

research provides a better understanding of how and why populations of P.

velifera and P. petenensis differ, and allows for insight into how these same

mechanisms may have shaped speciation in sailfin mollies.
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CHAPTER 2

MORPHOLOGICAL DIVERGENCE IN

THE MEXICAN SAILFIN MOLLIES

Abstract.—This study examined the patterns of morphological variation

both between species, and between sexes and among populations within each

species, using geometric morphometrics and linear measures of morphological

traits. While sexes within each species differ in characteristics that may be

important in sexual selection, such as length of the dorsal fin, species differ in

traits, such as body depth, that may also be influenced by natural selection

because of differences in habitats. Within each species, many morphological

traits are similar among populations, but important differences, including caudal

peduncle depth in P. petenensis (but not in P. velifera), suggest that habitat

differences may also be important in shaping population divergence

independently within each species. Indeed, the evolutionary vectors of male

morphological population divergence for each species differed by an angle of

98.5°, representing nearly orthogonal vectors and suggesting independent shape

divergence between these two molly species. Finally, geographic isolation does

not explain the morphological differentiation seen among populations, suggesting

that natural and sexual selection are strong forces promoting morphological

diversification within these two species, despite the potential for a high degree of

population connectivity and gene flow.
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INTRODUCTION

Examining the pattern of morphological differentiation among populations

is one important method of understanding how divergent selective regimes can

generate and maintain phenotypic diversification (Langerhans and DeWitt 2004;

Ghalambor et al. 2003; Endler 2000; Schluter 2000; Rice and Hostert 1993;

Endler 1977; Ehrlich and Raven 1969). Morphology is relevant to nearly all

aspects of an organism’s biology and, thus, is often subject to strong natural and

sexual selection that may vary across a species’ range (Bels et al. 2003; Arnold

1983). Because natural and sexual selection may affect morphological traits

differently, comparing the kinds and degree of morphological changes may also

provide insight into the relative importance of these selective forces in shaping

population differences (Kirkpatrick and Ravigne 2002; Kirkpatrick 2001; Panhuis

et al. 2001; Schluter 2001). Finally, morphological differences can be quantified

and used to measure the amount of divergence among populations and to

evaluate the relationship between morphology and other factors such as

geographic distance and degree of isolation or biotic and abiotic habitat

characteristics.

Comparative studies among closely related species are useful for

understanding general patterns and causes of phenotypic diversification among

lineages that share common evolutionary histories (McKinnon and Rundle 2002;

Holtmeier 2001; Day et al. 1994). Similarities between species may be because

of persistent ancestral traits, while differences are likely to reflect varying
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selective forces associated with ecological and mating signal divergence

(Panhuis et al. 2001; Schluter 2001; Ptacek 2000). Furthermore, by comparing

intraspecific variation to interspecific variation, one can make inferences with

respect to how forces of evolution promoting population-level divergence may

also influence speciation (Kirkpatrick and Ravigne 2002; Magurran 1998; Ptacek

and Travis 1998).

This study examined the degree of morphological differentiation within and

between two species of poeciliid fishes, the Mexican sailfin mollies Poecilia

velifera (Regan) and Poecilia petenensis (Günther). Poecilia velifera is endemic

to the Yucatán peninsula region of Mexico, while P. petenensis is also found

farther south into Belize and Guatemala (Fig. 2.1). Sailfin mollies are an

interesting group in which to compare inter- and intraspecific divergence in

morphology for several reasons. First, sailfin mollies are highly sexually

dimorphic; males possess a greatly enlarged dorsal fin that is presented to the

female in a courtship display (Farr 1989; Farr and Travis 1986; Parzefall 1969;

Rosen and Tucker 1961; Hubbs 1933; Regan 1913). Furthermore, male mollies,

as in all poeciliids, possess a modified anal fin, the gonopodium, which serves as

an intromittent organ during internal fertilization in these livebearing fishes

(Constantz 1989; Rosen and Tucker 1961). Geographic variation in gonopodium

length has been reported for several poeciliid species (Jennions and Kelly 2002;

Kelly et al. 2000).

In addition, the two Mexican sailfin species vary in their degree of

exaggeration of sexually selected dimorphic fin characteristics; males of P.
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FIG. 2.1. Collecting sites of Poecilia velifera (�) and P. petenensis (�) in the
Yucatán Peninsula. Letters represent collecting sites in different states: Tabasco
(T), Chiapas (CH), Campeche (C), Yucatán (Y), and Quintana Roo (QR).
Numbers identify individual sites within states. Both species were collected
together at one site (C2). Ranges are indicated by solid (P. velifera) and dotted
(P. petenensis) lines.
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velifera have much larger dorsal fin length and area (P. velifera: 15 – 19 dorsal

fin rays, P. petenensis: 12 – 16 dorsal fin rays; Miller, 1983). Larger dorsal and

caudal fins (Schmitter-Soto 1998; Basolo 1990; Bischoff et al. 1985; Miller 1983),

leading to increased overall apparent size or lateral projection area (the lateral

area of the fish including the body and fins), have been shown to be important

targets of sexual selection through female mating preferences (MacClaren et al.

2004; Karino and Matsunaga 2002; Rosenthal and Evans 1998), and, thus,

sexual selection has led to population divergence in body shape in some poeciliid

species (Ptacek 2005; Ptacek and Travis 1997).

Sailfin molly species also vary in their preferred habitats; P. velifera is

restricted to coastal habitats, such as anchialine cenotes, tidal pools and salt

marshes, never higher than ca. 20 meters above sea level, while P. petenensis is

more abundant in interior waters of the Yucatán peninsula, being found in

freshwater rivers and impoundments (Schmitter-Soto 1998). Habitat differences

lead to variation between the two species in the suite of piscine predators they

encounter, as well as environmental differences, such as the degree of salinity

and flow regimes. For example, inland populations of P. petenensis are more

often found in streams that can experience fairly substantial flow regimes,

especially during the rainy season (García-Gil et al. 2002; INEGI 1989) and their

primary predators include cichlids such as Petenia splendida Günther (Schmitter-

Soto 1998), juvenile crocodiles (Crocodylus moreletii) and kingfishers

(Chloroceryle spp.). Populations of P. velifera, on the other hand, are found in

habitats with substantially lower flow regimes, including marshes and cenotes
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closer to the coast, where they experience a wider range of piscine predators

(not only cichlids, but also many marine fishes, such as Megalops atlanticus

Valenciennes, Arius spp., Strongylura spp., Lutjanus spp., Gobiomorus dormitor

Lacepède, Centropomus spp., etc.; Schmitter-Soto 1998; Reséndez-Medina,

1981; Hubbs 1936) and bird predation from wading species, such as storks,

herons and egrets (Ramo and Busto 1992) as well as crocodiles such as

Crocodylus moreletii and C. acutus (Schmitter-Soto et al. 2002).

In addition to differences in abiotic and biotic features of the habitats

characteristic of these sailfin molly species, the degree of spatial isolation and

potential gene flow among populations of each species may also contribute to

morphological divergence. Coastal, salt marsh habitats characteristic of P.

velifera offer few barriers to dispersal, and gene flow between contiguous

populations may be high (Schmitter-Soto 1998). In contrast, populations of P.

petenensis occupy geographically separated river drainages in southern Yucatán

(Schmitter-Soto 1998) and may experience lower levels of gene exchange,

although rivers do connect through flooding during hurricanes and through

underground links (Schmitter-Soto et al. 2002). Thus, by comparing the level of

morphological divergence between these species, as well as the traits that vary

among populations within each species, the relationships between morphological

divergence, habitat differences and geographic separation can be assessed.

Three specific questions are addressed in this study. First, which

morphological traits best distinguish P. petenensis and P. velifera and do these

traits vary between males and females of each species? Sexual dimorphism in
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traits known to be important in sexual selection, such as the dorsal fin, suggests

a potential role of sexual selection, while sexual dimorphism in other traits, such

as those relating to livebearing roles between the sexes, may indicate that

natural selection or historical constraints are stronger in promoting or maintaining

both intra- and interspecific morphological differences.

Second, do populations of each species differ in particular morphological

traits and is the degree of interpopulation variation comparable between the two

species? If natural selection and sexual selection regimes were similar between

the two species, one would predict that morphological divergence would proceed

along similar lines of evolutionary diversification. Alternatively, if different

morphological traits contribute to interpopulation differences between the two

species, this would suggest that variation among populations in female mating

preferences and environmental features of different habitats result in differences

in the strength and direction of sexual and natural selection, leading to

independent evolutionary trajectories of morphological change for each species.

Third, to what degree does geographical separation contribute to

observed morphological differentiation among populations of each species?

Here one would predict that greater geographic isolation (such as between

different river drainages for P. petenensis) would lead to greater morphological

divergence among populations if gene flow were reduced and more isolated

populations differ in selective regimes. To answer these questions, the degree of

morphological variation between the two species, between sexes within species,

and among populations of each species, was assessed using geometric
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morphometrics and linear measurements. Using both geometric and linear

measurements allows for more detailed analyses of fish morphology, and for

comparisons to be made between the results obtained by these different

methods and those from previous studies of morphological divergence in mollies

(Kittell et al. 2005; Ptacek 1998; Ptacek and Travis 1998).

METHODS

Fish Collection

Live individuals of both species were collected within their native ranges

across five states in Mexico (Fig. 2.1, Table 2.1): Campeche (C), Chiapas (CH),

Quintana Roo (QR), Tabasco (T), and Yucatán (Y). The sites were chosen to

cover a wide range of locales across the distribution of each species and to

include sites from each major drainage (Usumacinta-Grijalva, Laguna de

Términos systems, Champotón, and Hondo) for P. petenensis. Fish were

collected using seine nets (6.1 X 1.2 m), cast nets (1.2 m), and minnow traps.

Following collection, fish were either photographed and returned to the site, or

shipped live to Clemson University where they were photographed and

maintained in 568-L stock tanks for additional study. A total of 336 individuals of

P. velifera (237 males and 99 females) from 10 populations and 259 individuals

of P. petenensis (152 males and 107 females) from seven populations were used

in morphological analyses (Table 2.1).
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TABLE 2.1. Sample sizes and site locations for populations of sailfin mollies used
in this study. Dashed lines in cells indicate that females from that population
were not photographed.

Sex (n)Species Population
M F

Site Coordinates

Poecilia velifera Campeche 2 21 21 N 19°14.230', W 90°50.110'
Campeche 4 22 --- N 18°53.274', W 91°23.866'
Campeche 5 15 --- N 19°34.998', W 90°40.002'
Quintana Roo 2 39 19 N 20°17.305', W 87°22.549'
Quintana Roo 3 14 17 N 21°13.910', W 86°44.330'
Quintana Roo 5 28 --- N 20°17.420', W 87°22.666'
Yucatán 1 21 20 N 21°15.807', W 89°39.648'
Yucatán 2 27 22 N 21°21.561', W 89°06.072'
Yucatán 3 27 --- N 20°51.438', W 90°22.983'
Yucatán 4 24 --- N 21°34.043', W 88°13.780'

P. petenensis Campeche 1 18 19 N 19°08.620', W 90°57.400'
Campeche 2 33 21 N 19°14.230', W 90°50.110'
Campeche 3 30 13 N 18°55.925', W 91°05.350'
Chiapas 1 26 14 N 17°48.482', W 91°48.779'
Quintana Roo 4 16 20 N 18°36.678', W 88°48.713'
Quintana Roo 6 10 --- N 18°30.337', W 88°49.280'
Tabasco 3 19 20 N 17°58.000', W 92°31.315'
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Landmark-Based Morphometrics

To estimate morphological trait values, euthanized or anesthetized live

fish (buffered 0.50% MS-222 in the laboratory, or chilled water in the field) were

placed on a dissection mat, with the dorsal and caudal fins spread and the

gonopodium (for males) pinned away from the body. An image of the left side of

each individual was captured using a digital camera (Sony DSC-F707) at 2560 x

1920 resolution. Live fish were revived and either returned to stock tanks at

Clemson University (C1, C2, C3, CH1, QR2, QR3, QR4, T3, Y1, Y2, Y4) or to

their original collection sites in the field (C4, C5, QR5, QR6, Y3). Individuals from

populations collected in the field, but returned to the lab, were held in captivity for

varying amounts of time prior to being photographed, with the possibility that

progeny were born in the laboratory. A small number of fish included in the study

may have been representatives of these lab-raised progeny, rather than wild-

caught individuals. It might be expected that laboratory rearing conditions would

change the direction of trait differences among these populations, compared to

exclusively wild-caught fish. However, most of the fish included in the analyzed

populations were field caught, thus the greatest influence on population-specific

morphology would be based on these fish. Moreover, any change in the

direction of trait divergence, resulting from the inclusion of lab-reared individuals,

would lead to greater variability within populations and, thus, a decrease in the

ability to distinguish among them. Yet, in this study, it has been possible to

significantly distinguish between populations. In addition, I used regression
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analysis to test whether time spent in captivity significantly influenced changes in

composite shape variables (generated from discriminant scores). I found no

such relationships (linear regression, r = 0.000-0.790, df = 5-10, P = 0.949-

0.088). Growth under laboratory conditions, therefore, did not appear to

eliminate the natural shape differences among populations.

Landmark-based geometric morphometric techniques (Adams et al. 2004;

Rohlf and Marcus 1993) were used to analyze body shape differences among

fish from different populations, species, and sexes. Unlike conventional linear

measurements, these morphometric measurements retain information on spatial

covariation among landmarks (Rohlf and Marcus 1993) and the position of each

landmark relative to all others. TpsDig software (version 1.37) was used to

digitize 13 (females) or 14 (males) landmarks onto each image (Fig. 2.2a). Note

that while landmarks are difficult to define on most unfixed points, I was able to

use landmark three (maximum extent of the caudal fin directly opposite to the

maximum curvature of caudal peduncle) because it could be placed on the outer

edge of the caudal fin directly opposite the outer curvature of the caudal

peduncle. In addition, the insertion of the anal fin (landmark 14) on females was

difficult to visualize on digital pictures, this landmark was not digitized on females

and thus was not included in comparisons including females. The landmarks

were used to calculate geometric shape variables describing uniform and

localized variation in landmark positions (uniform components and partial warps)

for statistical analysis using tpsRegr software (version 1.26). TpsRegr rotates,

translates, and scales landmark coordinates into alignment through generalized
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least squares superimposition (Bookstein 1991). The resulting uniform

component and geometric shape variables were used as the shape variables in

the statistical analyses.

Shape differences described by discriminate function analysis (DFA),

while numerically displayed by the uniform component and geometric shape

variables, are visually displayed by a deformation grid showing how the shape is

changed relative to the consensus (average) fish. The three landmarks (e.g.

landmarks 4, 7, and 10) that are most highly correlated with the shape

deformation between species or populations are reported here, in addition to the

general morphological areas associated with those changes in body shape, as

estimated from the deformation diagrams (e.g. body depth).

Linear Morphometrics

Because fin characteristics in male poeciliid fishes are often targets of

sexual selection (MacClaren et al. 2004; Basolo and Trainor 2002; Karino and

Matsunaga 2002; Rosenthal and Evans 1998; Basolo 1990; Bischoff et al.,

1985), a further examination of shape variation in males was made using

traditional linear-distance measures. Some fin landmarks in mollies are not fixed

points (for example the upper, anterior tip of the dorsal fin is free to rotate about

the origin of the first dorsal fin ray, thus the position of this point is variable);

therefore, landmarks are difficult to accurately assign to these morphological

features or traits (Bookstein 1991). These traits may vary among populations,
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however, and provide additional insight into morphological differences. The

program NIH Image (version 1.6) was used to measure 16 (P. velifera) and 19

(P. petenensis) linear characteristics for males of each species (Fig. 2.2b).

These measurements included measures of dorsal fin, caudal fin, and body area

(left side of fish only, for each measurement), determined by tracing the outline of

the body or fins from the digital photograph and using the program’s estimate of

area. Total lateral projection area of the left side of the fish was determined by

adding together dorsal fin, caudal fin, and body areas. Although this method

does not correct for body curvature, differences in shape because of curvature

are likely similar among male fish and likely are negligible in contributing to

differences in relative body area. The additional measures in P. petenensis were

associated with caudal fin characteristics, as males of this species often possess

more elaborate caudal fin shape compared to P. velifera. The linear

measurement values were transformed into morphological shape values of the

form (ln (trait length or area) minus ln (standard length or body area) (Mosimann

and James 1979; Ptacek 1998; Ptacek and Travis 1996; Farr et al. 1986) to

determine whether intraspecific differences exist in morphological shapes

independent of body size.
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FIG. 2.2. (a) Landmarks used in morphometric analyses. The landmarks
represent the following morphological features: (1) insertion point of the ventral
most caudal fin ray into the caudal peduncle, (2) insertion point of the caudal fin
ray at the maximum curvature of the caudal peduncle, (3) maximum extent of the
caudal fin ray directly opposite to the maximum curvature of the caudal peduncle,
(4) insertion point of the dorsal most caudal fin ray, (5) posterior insertion point of
the dorsal fin, (6) anterior insertion point of the dorsal fin, (7) interorbital margin of
body, dorsal to the center of the eye, (8) anterior most point of fish (tip of jaw at
the dentary symphysis), (9) origin of the lower jaw, (10) edge of body, ventral
from the center of the eye, (11) center of the eye, (12) anterior (dorsal) insertion
of pectoral fin, (13) anterior insertion point of the gonopodium, and (14) posterior
insertion point of the gonopodium. (b). Linear measurements on male Poecilia
velifera and P. petenensis: PDD- pre-dorsal distance, PAD- pre-anal distance,
SL- standard length, LG- gonopodium length, DMB- depth at mid-body measured
from the anterior insertion point of the dorsal fin to the anterior insertion point of
the gonopodium, LDF- length of dorsal fin, LFFR- length of first fin ray, LMFR-
length of middle fin ray, LLFR- length of last fin ray, DCP- depth at caudal
peduncle, LCF- length of caudal fin at mid point, HCF- height of caudal fin, BA-
body area, DFA- dorsal fin area, CFA- caudal fin area. Fin ray number was also
recorded. Linear measurements on P. petenensis males only: LUCF-length of the
upper part of the caudal fin measured along the dorsal margin, LLCF-length of
the lower part of the caudal fin measured along the ventral margin, and LNCF-
length to the notch in the caudal fin measured from the insertion point of the
ventral most caudal fin ray into the caudal peduncle to most anterior point of the
notch in the caudal fin.
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Statistical Analysis

Separate canonical discriminant analyses (SYSTAT version 10) were

performed using the geometric shape variables generated by TpsRegr and the

size-adjusted linear trait measurements. Keeping the geometric and linear

analyses separate (e.g. Manier 2004; Valenzuela et al. 2004; Parsons et al.

2003; Larson 2002; Monteiro et al. 2002; Adams and Rohlf 2000) allows for the

comparison of results from the two types of analyses and a determination of

whether each yields similar morphological features that best separates the

species, or populations within each species. Further, this approach allows

comparisons to be made with prior studies of the U.S. sailfin molly, Poecilia

latipinna (LeSueur), where linear measures were used to examine differences

between populations and species (Ptacek 1998) and to other studies of variation

in fish morphology that have only utilized a single technique (e.g. Neves and

Monteiro 2003). Finally, combining the linear and geometric measures into a

single analysis would lead to difficulty in interpreting the results, as importance of

traits in distinguishing populations would be confounded by the method of

measurement.

Discriminant function analysis (DFA) was used to find the combination of

either geometric or linear shape variables that best describes differences

between groups being compared (either species and sex, or population as the

independent variable). This analysis also provides an estimate of the amount of

total morphological variation explained by each discriminant axis. Pearson

correlation analyses were used to determine the partial warp landmarks and
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linear shape variables that most strongly correlate with each discriminant

function. The Procrustes coordinates (landmarks) or linear shape variables that

most strongly correlate with the discriminant functions were used to estimate

which aspects of shape vary along each discriminant axis. Discriminant analyses

also provided jackknifed measures of how well individuals could be re-classified

back to their actual group, and to which group they were assigned if

misclassified. An advantage of thin-plate-spline analysis is the ability to regress

superimposed landmark coordinates onto discriminant functions to obtain thin-

plate spline diagrams, illustrating body shape differences between the species

and sexes and among populations of P. velifera and P. petenensis. Finally,

MANCOVA (geometric, with centroid size as a covariate) and MANOVA (linear)

provided an F-score matrix to discern whether populations differed significantly

from one another in morphology. All analyses were performed on five different

data sets: (1) all individuals, both males and females, both species combined, (2)

females of P. velifera, all populations combined, (3) males of P. velifera, all

populations combined, (4) females of P. petenensis, all populations combined,

and (5) males of P. petenensis, all populations combined.

Because within population differences may obscure differences between

populations, it is important to determine the overall evolutionary trajectories of the

species in morphological space. The angle (θ) between two vectors that

represents morphological differences in P. petenensis and P. velifera males was

calculated as follows: if a1 is the first scaled eigenvector for P. petenensis and b1
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is the first scaled eigenvector for P. velifera (a2 is the second scaled eigenvector

for P. petenensis, etc.), then for x eigenvectors,

cos θ = a•b

a × b
(where a•b = ab

x

1∑ = a1b1 + a2b2 + … + axbx,

and |a| x |b| = the absolute value (length) of vector “a” multiplied by the absolute

value of vector “b”) (Hamilton 1989). The angle between these vectors indicates

the degree to which these species are morphologically different. Orthogonal, or

independent, trajectories of morphological diversification are represented by an

angle of 90°.

Mantel tests were used to examine the degree of association between

geographic distance and morphological distance from pairwise comparisons of all

possible pairs of populations for males of each species separately. To determine

morphological distance, Mahalanobis distance was calculated (SAS version 9.0)

from discriminant scores (both geometric and linear shape) for both species

independently. Mahalanobis distance was then compared to hydrological

distance, i.e. a path through wetlands or along water courses between sites, as

measured from appropriate hydrological, altitudinal and flood-risk maps (Instituto

de Geografía 1990; INEGI 1989). In P. petenensis physical barriers may

separate some sites, even those that are geographically close. Yearly flooding,

however, generally connects these sites (and even rivers within the Yucatán)

making movement possible, if not likely (Schmitter-Soto et al. 2002). Significant

Mantel correlations would suggest that the morphological distance between
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populations is predicted by the geographical distance between them and would

provide evidence of a potential role of spatial isolation in contributing to

morphological differentiation among populations.

RESULTS

Species Comparisons

As expected, the two species of sailfin mollies show significant

morphological shape differences (Table 2.2; discriminant function two (DF2),

18.0% of the total variation in shape among all fish in DFA space, Fig. 2.3).

Deeper bodies and differences in caudal peduncle shape (landmarks four, six,

and ten; Fig. 2.2a) of both males and females distinguish P. velifera from P.

petenensis (Pearson correlation, r = -0.61 – 0.61, P < 0.01 for all; Fig. 2.4).

While these landmarks do not fully cover body depth and caudal peduncle shape,

they represent the landmarks whose change in position relative to other

landmarks captures the most variation between populations. More interestingly,

sexes differ along the same discriminant axis (discriminant function one (DF1),

79.0% of the total variation in shape in DFA space, Fig. 2.3) for both species.

Anterior body/head shape (differences in the depth indicated by differences in the

position of landmarks ten and eleven along the vertical axis, and the relative

position of these landmarks to the remaining landmarks; Fig. 2.2a) and position
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TABLE 2.2. Morphological differences among populations based on discriminant
function analyses (both species and sexes together, Poecilia velifera males, P.
velifera females, P. petenensis males, and P. petenensis females) and
MANCOVA (geometric measures with centroid size as a covariate) or MANOVA
(linear measurements). ‘Correctly assigned (%)’ represents the percent of fish
correctly classified back to their native population based on discriminant analysis
jackknife results.

Measure Species Sex d.f. F P Correctly
Assigned (%)

Geometric Both Both 66, 1700 11.95 <0.001 97
P. velifera M 216, 1737 10.95 <0.001 86

F 88, 295 7.88 <0.001 79
P. petenensis M 144, 715 6.46 <0.001 75

F 110, 391 4.05 <0.001 63
Linear P. velifera M 117, 1680 4.63 <0.001 43

P. petenensis M 84, 641 4.63 <0.001 54
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FIG. 2.3. Discriminant scores one and two among Poecilia velifera (blue) and P.
petenensis (green); males (closed symbols) and females (open symbols). Circles
represent 95% confidence intervals.
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FIG. 2.4. Consensus landmark configurations illustrating morphological
differences between species (Poecilia velifera and P. petenensis) and sexes.
Landmarks were used to superimpose body shape onto figures. Arrows point to
the landmarks most correlated with difference in sex (10, 11, and 13) and
species (4, 6, and 10). Landmarks associated with the origin of the lower jaw (9),
eye (11), and pectoral fin (12) are also visible.

Poecilia velifera

FemalesMales

Poecilia petenensis

Factor 1

F
ac

to
r

2



38

of the anal fin (gonopodium, landmark 13; Fig. 2.2a) are the three most important

geometric characteristics associated with differences in the sexes (Pearson

correlation, r = -0.99 – 0.97, P < 0.01 for all), with longer dorsal and caudal fins

(landmarks six and three) also important in discriminating males from females in

both species (Pearson correlation, r = -0.80 – 0.93, P < 0.01 for all). Males of

both species have relatively larger heads, more anteriorly positioned anal fins

(gonopodium, based on landmark 13 only), and longer dorsal fins than do

females (Fig. 2.4). Thus, discriminant function one (DF1) distinguishes the sexes

for both species suggesting parallel morphological trait differences.

Population Differences

Discriminant analyses of geometric shape data show significant

differences among populations for both males and females of each species, and

male populations within each species are also separated by different shape

characteristics based on linear measures. In both species, females show less

overall variation among populations and are less often correctly classified to their

population of origin (Table 2.2). Between the two species, populations of P.

velifera males are more strongly differentiated (DF1, 41.1% of the total variation

in shape among P. velifera males in DFA space; DF2, 19.9% of the total variation

in shape among P. velifera males in DFA space) and individuals are more often

correctly classified back to their population of origin than are individuals from

different populations of P. petenensis (DF1, 29.5% of the total variation in shape
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among P. petenensis males in DFA space; DF2, 26.9% of the total variation in

shape among P. petenensis males in DFA space; Fig. 2.5, Table 2.2). In

addition, males of both species show more variation in morphological traits that

are potential targets of sexual selection (landmarks associated with insertion

points of the dorsal fin and gonopodium) compared to females, so further

population analyses focused solely on males.

While changes in dorsal fin length (landmark five, Fig. 2.2a) contribute to

population separation in DF1 in P. velifera (Pearson correlation, r = -0.57, P

<0.01), caudal fin shape (landmark two, Fig. 2.2a) is more important in

distinguishing males of P. petenensis from different populations (Pearson

correlation, r = 0.61, P < 0.01; Fig. 2.5). Populations of both species differ in the

position of the gonopodium (landmark 14, Fig. 2.2a; Pearson correlation, r = -

0.61 – 0.42, P <0.01), and anterior body/ head shape (relative position of

landmark ten to remaining landmarks, Fig. 2.2a; Pearson correlation, r = -0.37 –

0.60, P < 0.01). Overall, changes in body depth (relative vertical positions of

landmarks) are important in distinguishing populations of P. petenensis, while

changes in the relative length of traits (relative horizontal positions of landmarks)

tend to distinguish populations of P. velifera.

In contrast to results from geometric shape data, discriminant analysis of

linear shape variables (Fig. 2.6, Table 2.2) show that males of P. petenensis

(DF1, 46.2% of the total variation in shape among P. petenensis males in DFA

space; DF2, 23.9% of the total variation in shape among P. petenensis males in



FIG. 2.5. Differences in geometric-based morphology ( X ± S.E.) across DF1 and DF2 for Poecilia petenensis (C1- �C2-
�, C3- �, CP- �, QR4- �, QR6- �, T3- �) and P. velifera (C2- �, C4- �, C5- �, QR2- �, QR3- �, QR5- �, Y1- �, Y2-
�, Y3- �, Y4- �). Transformation grids show the differences in morphology across the discriminant function. The fish
figures are constructed by drawing curves connecting the landmarks generated from TPSRegr.
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FIG. 2.6. Differences in linear-based morphology ( X ± S.E.) across DF1 and DF2
for Poecilia petenensis (C1- �C2- �, C3- �, CP- �, QR4- �, QR6- �, T3- �)
and P. velifera (C2- �, C4- �, C5- �, QR2- �, QR3- �, QR5- �, Y1- �, Y2- �,
Y3- �, Y4- �). Fish diagrams show the three most important linear shape
variables in discriminant functions one and two (see text for correlation
coefficients and significance levels). Solid lines represent positive correlations
and dotted lines signify negative correlations. For example in P. petenensis, a
higher value for factor one indicates a deeper caudal peduncle and taller caudal
fin, but a smaller overall caudal fin area.
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DFA space) were more often correctly classified back to their native population

than males from different populations of P. velifera (DF1, 40.0% of the total

variation in shape in deformed DFA space; DF2, 19.6% of the total variation in

shape in deformed DFA space). Like geometric measures, however, linear

measures reveal significant differences among male populations of each species

(with the exception of the Y1 and Y2 populations of P. velifera), with different

morphological traits best differentiating populations of males of the two species.

For example, DF1 primarily differentiates populations of P. petenensis based

upon height of the caudal fin (r = -0.725, P < 0.01), depth of the caudal peduncle

(r = -0.507, P < 0.01), and caudal fin area (r = -0.486, P < 0.01), while DF2

differentiates populations based on gonopodium length (r = 0.646, P <0.01), pre-

dorsal fin distance (r = 0.445, P < 0.01), and, again, caudal fin area (r = 0.565, P

< 0.01; Fig. 2.6). In contrast, DF1 in P. velifera primarily differentiates

populations based upon length of the caudal fin (r = 0.478, P < 0.01), depth at

mid-body (r = -0.472, P < 0.01), and pre-anal distance (r = -0.463, P < 0.01),

while DF2 differentiates populations based on the length of the middle dorsal fin

ray (r = -0.799, P < 0.01), dorsal fin area (r = -0.794, P < 0.01), and length of the

last dorsal fin ray (r = -0.768, P < 0.01; Fig. 2.6).

Overall, there is less variation among populations of either species based

on linear measurements compared to geometric traits; therefore, populations are

better distinguished using geometric shape. Linear measures, however, can be

used to identify some important morphological characteristics that vary among

populations, such as dorsal fin characteristics in P. velifera and caudal fin
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characteristics in P. petenensis, that were not easily obtainable using only

geometric analyses.

Quantitative support for these qualitative patterns, suggesting a different

evolutionary trajectory of divergence among populations within each species,

was obtained by determining the morphological evolutionary vector of population

divergence for each species. The species were found to differ in their

evolutionary trajectories by an angle of 98.5° (Fig. 2.7). Ninety degrees

represents orthogonal (independent) vectors, so the morphological vectors of

population divergence between these two species were nearly independent.

Role of Spatial Isolation

There was no evidence for a strong role of geographic isolation in

contributing to population differences in morphology of males of either species.

Mantel tests show no correlation between geographical distance between

populations and Mahalanobis distance, based on either geometric or linear

measures for either P. velifera or P. petenensis (Mantel tests, P = 0.06-0.50).

Thus, individuals misclassified in the discriminant analyses are not more likely to

be classified to a neighboring population than to a geographically distant

population. For example, males of P. velifera from a Quintana Roo population

(QR5) were not misclassified to neighboring Quintana Roo populations (QR2 or

QR3), but rather, to populations in Yucatán (Y2, Y4).
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FIG. 2.7. Evolutionary vectors of the angles of morphological evolution in Poecilia
petenensis and P. velifera. Axes X, Y, and Z represent the first three canonical
axes based on partial warps in n-dimensional morphometric space. The angle
between the vectors is 98.5°, representing nearly independent evolutionary
trajectories.
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DISCUSSION

Species Comparisons

Poecilia velifera shows similar morphological differences between the

sexes compared to males and females of P. petenensis. Such a parallel pattern

in sexual dimorphism between the species suggests that sexual selection, in

addition to developmental differences historically present in livebearing fishes,

may play a role in certain morphological differences between the sexes in both

species, including the relative position of the dorsal fin and anal fin (gonopodium

in males), the length of the dorsal fin, and the shape of the fish anterior to the

anal fin as it relates to brooding in females. Previous studies in the sailfin molly,

P. latipinna, have shown that differences in dorsal fin size are important in female

choice, especially as they relate to increasing overall lateral projection area

(Ptacek 2005; MacClaren et al. 2004; Ptacek and Travis 1997). Thus, the

increased length of the dorsal fin in males of both P. velifera and P. petenensis

may be the result of strong female mating preferences for larger males in both

species. Phylogenetic constraints cannot be entirely ruled out as a factor

influencing the evolution of dorsal fin dimorphism in P. velifera and P. petenensis,

which are both part of a monophyletic sailfin clade (Ptacek and Breden 1998).

These species are not sister taxa, however, and the closest relative to P.

petenensis, the Tamesí molly, Poecilia latipunctata Meek is not sexually

dimorphic in dorsal fin characteristics, indicating that sexual dimorphism in this
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trait is not under strong phyletic constraints (Ptacek et al. 2005). The difference

in the position of the anal fin (gonopodium) between males and females would

also be important in males, as it is used to transfer sperm to females during

mating and for this reason differs developmentally from the anal fin in females

(Rosa-Molinar et al. 1998; Rosa-Molinar et al. 1994). Although late-term females

were excluded from the study, the differences between males and females in the

ventral shape of the body anterior to the anal fin is likely caused by internal

retention of embryos by females (Ghalambor et al. 2003; Neves and Monteiro

2003).

Differences between the two species may reflect differences in the natural

selection pressures of their respective environments. Flow regime and

vegetative characteristics have been shown to influence a variety of body

characteristics including the shape of the caudal region, dorsal fin position, and

body depth (Langerhans and DeWitt 2004; Langerhans et al. 2003). For

example, fishes that inhabit faster flowing stream environments generally have

shallower bodies (less deep, top to bottom) than fishes in lentic environments

(Endler 1995; Wood and Bain 1995; Webb 1984; Webb 1982), a characteristic

that distinguishes P. petenensis (which are generally found in higher flow

environments) from P. velifera. In addition, piscivorous fish predators have also

been shown to influence body and caudal peduncle shape, selecting for

morphologies that correlate with better escape performance (Langerhans and

DeWitt 2004; Ghalambor et al. 2003; Walker 1997; Poleo et al. 1995). For

example, populations of western mosquitofish (Gambusia affinis (Baird & Girard))



47

under high predation have larger caudal peduncles and more elongate bodies

compared to populations without predators (Langerhans et al. 2004). Again, a

larger caudal peduncle and narrower, more streamlined body also characterizes

P. petenensis, which primarily are exposed to cichlid predators, compared to P.

velifera, which face more diverse predator assemblages. The different habitat

and predation influences on P. velifera and P. petenensis may, therefore, be

responsible for some of the divergence in morphology between these species.

Population Differences

Evolutionary trajectories of morphological divergence within each species,

as examined by vector analyses, indicate that the two species are nearly

orthogonal, or independent from one another, in morphological space. Such a

dramatic difference in the vectors of interpopulation shape differentiation

suggests that the relative roles of natural selection and sexual selection in

promoting population divergence in male morphology vary substantially between

them.

Differences in certain traits that best separate populations of each species

may reflect the different roles of natural and sexual selection in promoting

population divergence within each species. Anterior body/head shape (as

determined by changes in the relative positions of landmarks 10 and 11) and, in

particular, body depth in the ventral region anterior to the gonopodium, vary

among populations in both species (Fig. 2.5); however, only populations of P.
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velifera differ in dorsal fin characteristics (both in geometric and linear analyses).

Population divergence in dorsal fin characteristics is more likely because of

sexual selection, where females consistently prefer males with larger fins

compared to males with smaller fins (MacClaren et al. 2004; Karino and

Matsunaga 2002; Ptacek and Travis 1997). In addition, previous studies on

other fishes have shown a strong role for natural selection acting on the caudal

fin, but not on dorsal fin shape. Webb (Webb 1978), for example, found that

complete amputation of the dorsal fins of rainbow trout (Oncorhynchus mykiss

(Walbaum)) did not result in a decline in fast-start performance. Preliminary

studies of fast-start performance in males of P. velifera found no difference in

either velocity (linear or angular) or acceleration (linear or angular) of fast-starts

when compared to these same measures in males of a shortfin molly species,

which lack enlarged dorsal fins (Poecilia orri Fowler) (M. B. Ptacek & R. W. Blob

unpubl. data). Thus, there does not appear to be a large cost (or benefit), at

least in escape swimming performance, of the enlarged dorsal fin, suggesting

that variation in this trait may be primarily because of the influence of sexual

selection. Enlarged dorsal fins may incur a natural selection cost in other types

of swimming performance, however, such as endurance swimming in fast-flow

environments.

The length of the gonopodium is only important in differentiating among

populations of P. petenensis. Previous studies have shown that gonopodium

length varies among populations in other poeciliid species as well (Langerhans

unpublished data; Jennions and Kelly 2002; Kelly et al. 2000). In addition, in two
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species of Gambusia (G. affinis and Gambusia hubbsi Breder) males exhibited

longer gonopodia in predator-free environments and females of both species

preferred males with longer gonopodia (Langerhans et al. 2005). Thus, both

natural selection and sexual selection may contribute to population differentiation

in gonopodium length in P. petenensis.

Caudal fin length is important in separating male populations of P.

petenensis, but not P. velifera, based on both geometric and linear measures.

The size and position of the caudal fin and caudal peduncle affect thrust

generation and maneuverability in other species of fishes and thus, may vary

among different habitats depending upon intensity of predation or water velocity

at different sites (Langerhans et al. 2004). For example, varying predation rates

on poeciliid fishes such as G. affinis and Poecilia reticulata Peters have led to

population divergence in some of the same morphological traits, such as body

depth, caudal fin characteristics, and head shape that separate populations of P.

petenensis (Langerhans and DeWitt 2004; Endler 1995). Similarly, variation in

predation pressure across habitats of varying sizes may also be important in the

morphological differences observed here. The lake and river habitats of P.

petenensis are more spatially and temporally variable than the habitats of P.

velifera in terms of water velocity: most streams in southern Yucatán are

intermittent, turning into a series of isolated ponds during the dry season (García-

Gil et al. 2002; Schmitter-Soto 1998; INEGI 1989). Moreover, while P. velifera

may encounter a wider diversity of predators in salt marsh habitats, it is likely that

cichlid abundance, and hence predation intensity, is higher in larger water bodies
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(larger rivers and lakes) and hence exerts a stronger selection pressure on some

populations of P. petenensis (as similarly observed in Salaria fluviatilis (Asso)

(Neat et al. 2003). Indeed, cichlid piscivores like Petenia splendida Günther and

Parachromis friedrichsthalii (Heckel) attain larger sizes in larger water bodies

(Martínez-Palacios and Ross 1994) and these larger predators have the potential

to feed on all size classes of mollies, even large males. The rivers in Tabasco

and Campeche from which fish were collected were nearer the coast and larger

compared to the Chiapas and Quintana Roo interior locales. Population

divergence in shape based on geometric morphometrics for P. petenensis shows

that males from the Tabasco and Campeche populations generally have longer

caudal fins and narrower bodies compared to males from the smaller rivers in

Quintana Roo and Chiapas (Fig. 2.5, Factor 2). These changes parallel those

observed in guppies (as reviewed in Endler 1995) and Gambusia (Langerhans et

al. 2004).

Role of Spatial Isolation

While males of both P. velifera and P. petenensis vary in morphology

among populations, current results show that geographical separation does not

predictably explain the morphological patterns of divergence in either species.

This result may be explained by the high degree of connectivity between

populations. For example, many of the salt marsh habitats where populations of

P. velifera are found are relatively contiguous; this pattern is similar to that seen
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in P. latipinna, which occupy salt marsh habitats along the coastal region of the

southeastern United States. Males of P. latipinna populations are

morphologically differentiated despite a high degree of gene flow among them,

suggesting a strong influence of natural and sexual selection in promoting these

morphological differences (Ptacek 2005; Trexler 1988). In addition to the

continuous nature of coastal salt marsh habitats, rivers in the Yucatán connect

through flooding during heavy rains and hurricanes, and as well as through

karstic tunnels (Schmitter-Soto et al. 2002), however, no sailfins are present in

the ancient cenotes of Yucatán, indicating that sailfins do not disperse

underground (J. J. Schmitter-Soto, pers. comm. 2002). For example, the

shortest distance between the uppermost tributaries of the Río Hondo

(Caribbean versant) and Río Candelaria (Laguna de Términos system) is about

12 km, with no ridges in between, but rather a low zone subject to flooding. The

Río Champotón itself is continuous only as far as about 47 km from its mouth;

farther inland it becomes a series of aguadas (surface water pools), however,

seasonally these become connected through bajos or valleys between the typical

cone-shaped hills of the Río Bec geographic district (Wilson 1980) facilitating a

high degree of movement between populations within this drainage.

In conclusion, while this study provides predictions of particular

morphological traits that may be important targets of natural and sexual selection

in these sailfin molly species, additional work is needed to determine the relative

importance of these evolutionary forces in shaping intra- and interspecific

differences in both species. Previous studies have shown interpopulation
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variation in male courtship behaviors and female mating preferences in the

closely related sailfin species, P. latipinna (Ptacek and Travis 1997; Ptacek and

Travis 1996). Future studies should focus on the role of divergent female mating

preferences among populations of P. velifera and P. petenensis to test for a

similar contribution to population divergence. In addition, much more information

is needed with respect to the ecological differences that exist among populations

of these two species and the role of ecological selection in promoting

morphological divergence. The morphological patterns uncovered in this study

provide a priori predictions regarding how sites may be expected to differ in water

velocity or predator regimes; future studies should focus on whether or not such

predictions are supported. Finally, estimating the levels of gene flow among

populations of each species, and comparing the degree of neutral genetic

divergence to that seen in morphology would provide additional evidence to

better understand the relative strength of selective forces versus genetic drift in

shaping the observed levels of population differentiation in morphological traits.
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CHAPTER 3

BEHAVIORAL DIVERGENCE IN THE

MEXICAN SAILFIN MOLLIES

Abstract.— I characterized the mating behavior profiles both within and

between Poecilia velifera and P. petenensis in order to better understand mating

signal evolution in the sailfin molly lineage. In addition, I examined whether

differences between these species in the size range of mature males and the

strength of allometry between dorsal fin size and body length could explain the

variation observed in their expression of different mating behaviors. I determined

each male’s mating behavior profile by observing the behavior of a single male in

the presence of a receptive female. I found that P. velifera showed evidence of

an alternative male mating strategy, with small males generally performing only

gonopodial thrusts (forced insemination attempts) towards receptive females,

while large males performed courtship displays as well as gonopodial thrusts.

Males of P. petenensis performed similar rates of courtship displays and

gonopodial thrusts regardless of body length. Little variation existed between

different populations of P. velifera in mating behaviors, while males from different

populations of P. petenensis showed population-specific average rates of each

mating behavior. Variation among individuals in the mating repertoire of P.

velifera, but not P. petenensis, suggests that the greater range of variation in

male size at maturity, as well as considerably stronger allometry between dorsal
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fin size and body length, may explain why males of P. velifera show the greatest

degree of expression of alternative male mating behaviors when compared to

other sailfin species.



61

INTRODUCTION

A common theme in the evolution of male mating behaviors is the

occurrence of polymorphism in behavioral phenotypes. Numerous examples of

alternative male phenotypes have been described and occur throughout a range

of taxa (Taborsky 1994; Gross 1996; Brockmann 2001; Lee 2005). Fixed

variation in male mating behaviors can arise as a consequence of genetic

polymorphisms for alternative mating behaviors, and may be maintained by

frequency dependant selection when these alternative strategies have equal

fitness at equilibrium frequencies (Maynard Smith 1982; Ryan et al. 1992; Gross

1996). Alternatively, environmentally based behavioral variation may be

frequency or status dependant, and male behavior may depend on such

conditions as social environment, nutritional state, or maternal effects (e.g. Travis

& Woodward 1989; Andersson 1994; Scheuber et al. 2004; Hedrick 2005;

Kodric-Brown & Nicoletto 2005; Leary et al. 2006).

Polymorphism in mating behavioral phenotypes is often associated with

dimorphic morphological variation where one phenotype exhibits exaggerated

morphological features (e.g. larger body size, elongated fins or plumes, brighter

coloration) while the other phenotype shows reduced forms of these

morphological traits, and may even mimic female or juvenile phenotypes (e.g.

marine isopods: Shuster & Wade 1991; fishes: Warner 1984; Gross 1982, 1985,

1991a, b; ruff: Lank & Smith 1987). Such dimorphism in male morphology is

often correlated with expression of the alternative behavioral tactics of
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courtship/territorial defense versus cuckoldry or satellite male behavior (sneaker

male strategy; Gross 1996; Moczek & Emlen 2000). While a number of studies

have examined the environmental factors that can influence the expression of

alternative male mating behaviors (Gross 1996; Brockmann 2001; Lee 2005),

fewer have addressed the relationship between behavioral polymorphisms and

morphological polymorphisms. Does morphological variation actually predict the

level of behavioral polymorphism in a population, or are behavioral tactics

independent of the range of morphological variation that exists within and

between species?

The poeciliid fishes commonly known as sailfin mollies (Poecilia velifera,

P. petenensis, P. latipinna, and P. latipunctata) provide a unique system in which

to explore how variation in male morphology and male mating behaviors are

related. Variation among males in the expression of certain mating behaviors is

both environmentally dependent (e.g. influenced by relative size and social

conditions such as operational sex ratio) and correlated with an underlying

genetic polymorphism for male size at maturity (Farr et al. 1986; Travis 1989,

1994a; Ptacek & Travis 1996). Males of all sizes in two species of sailfin mollies,

P. latipinna and P. latipunctata, have been found to perform a similar suite of

mating behaviors, however, variation among individual males exists in the degree

to which social interactions and male size influence the expression of these

behaviors (Travis & Woodward 1989; Ptacek & Travis 1996; Ptacek et al. 2005).

My objectives in this study were (1) to characterize and compare mating

behaviors both within and between two species of sailfin mollies, P. velifera and
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P. petenensis, and (2) to determine whether differences in morphology within and

between these species predict the degree of behavioral polymorphism that exists

for each species. These two sailfin species are ideal for making comparisons of

this type for several reasons. First, quantifying the mating behavior repertoire of

P. velifera and P. petenensis allows for a comparison with the other sailfin

species, P. latipinna (Farr et al. 1986; Ptacek & Travis 1996) and P. latipunctata

(Ptacek et al. 2005). Second, P. velifera and P. petenensis vary in several

morphological characteristics that could potentially influence their expression of

behavioral polymorphisms, including differences in the range of male sizes at

maturity and the size and shape of their exaggerated dorsal fin, i.e. sailfin, based

on differences in the level of positive allometry between male standard length

(SL) (tip of the snout to the end of the last vertebra) at maturity and dorsal fin size

(Miller 1983; Schmitter-Soto 1998; Hankison et al. 2006; Chapter 2). I

hypothesized that the degree of differentiation in male mating behaviors would

correlate positively with morphological variation. Therefore, mating behavior

variation would be greatest in P. velifera, the species with the widest range of

variation in male size at maturity and the strongest allometry between dorsal fin

area and male SL.
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METHODS

Mating Behaviors and Associated Morphological Traits

Three characteristic mating behaviors are performed by males of all four

sailfin molly species: courtship displays, gonopodial thrusts and gonoporal

nibbles (Parzefall 1969, 1989; Farr et al. 1986; Ptacek & Travis 1996; Niemeitz et

al. 2002; Ptacek et al. 2005). A courtship display, a behavior used by males to

elicit cooperation from females during internal fertilization, occurs when a male

orients in front of or alongside of a female and erects the dorsal fin, often

accompanied by a sigmoid curving of the body and tilting towards the female

(Parzefall 1969, 1989; Farr et al. 1986; Ptacek & Travis 1996; Niemeitz et al.

2002; Ptacek et al. 2005). In three of the four sailfin molly species (P. latipinna,

P. velifera and P. petenensis), the dorsal fin (i.e. sailfin) in males is greatly

enlarged, which accentuates the courtship display, potentially making it more

visible to females (Regan 1913; Hubbs 1933; Parzefall 1969; MacClaren et al.

2004). A second mating behavior, gonopodial thrusting, is a type of forced

insemination attempt, where the male orients himself behind a female, brings the

gonopodium (fused anal fin that serves as an intromittent organ for internal

fertilization) to a forward position, and swimming forward, attempts to insert the

tip into the female’s gonopore for sperm transfer. A third mating behavior,

gonoporal nibbling, occurs when males make nasal or oral contact with the

female’s gonopore. The function of this behavior is unclear, however it appears
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to aid a male in determining a female’s reproductive status (Farr & Travis 1986;

Sumner et al. 1994).

Males of all sailfin molly species vary in the range of male sizes at maturity

(Farr et al. 1986; Ptacek & Travis 1996; Ptacek et al. 2005; Hankison et al.

2006). Size at maturity for males is a fixed phenotype in mollies; once the anal

fin has fused to form the gonopodium, little to no further growth in body length

occurs. A pattern of Y-linkage is known to influence the inheritance of male size

at maturity in at least one species of sailfin molly, P. latipinna, (Travis 1994b) and

in other poeciliid fishes such as the swordtails Xiphophorus nigrensis and X.

multilineatus, (Kallman 1984, 1989; Zimmerer & Kallman 1989). In several

species of Xiphophorus, size at maturity is controlled by a Y-linked multiple-allelic

series (up to six different size at maturity alleles) at the P (pituitary) locus, which

controls the onset of sexual maturity (Kallman 1984, 1989). Males with small

body-size P alleles mature much sooner (weeks to months) than males with large

body-size P alleles. A similar pattern of male size at maturity is exhibited by

males of sailfin molly species and for one species (P. latipinna) the slope of the

relationship between a sire’s size at maturity and that of his sons is nearly 1.0

(Travis 1994b).

Male size at maturity is phenotypically correlated with the degree of

exaggeration of the sailfin; larger males have relatively larger sailfins (Ptacek

2002; Hankison et al. 2006; Chapter 2). In addition male size can influence the

relative rates of two of the three male mating behaviors. In P. latipinna, for

example, while males of all sizes perform all three mating behaviors, there is a
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tendency for larger males to perform higher rates of courtship displays, while

smaller males perform higher rates of gonopodial thrusts (Farr et al. 1986;

Ptacek & Travis 1996). In Xiphophorus, such mating behavior polymorphisms

have been shown to be under the influence of additional Y-chromosome loci,

linked with alleles at the P locus, leading to the expression of alternative mating

behaviors (courters versus sneakers) in X. nigrensis (Zimmerer & Kallman 1989).

A similar pattern of Y-linked inheritance for courtship displays has been

demonstrated in two species of sailfin mollies (P. velifera: Parzefall 1989; P.

latipinna: Ptacek 2002). These results imply an underlying genetic

polymorphism, which may contribute to the expression of alternative mating

behaviors observed in male sailfin mollies.

Experimental Animals

Fish used in this study (Table 3.1) were wild caught with the exception of

P. velifera from the Tulum site in the state of Quintana Roo (PvQRT), which has

been maintained in the laboratory since 1993 (the wild population at this

collection site has been extirpated). Single populations of approximately 150

adults were kept in mixed sex, 150-gallon Rubbermaid stock tanks with a

recirculating filtration system. Stock tanks were maintained at 6ppt seawater, 25-

28°C in a research greenhouse, and thus, were exposed to natural lighting

conditions. Prior to behavior testing, individual sexually mature females or

male/female pairs were acclimated to 19 l glass aquaria at 6ppt seawater, at
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approximately 28° C for at least one week. Light was provided by Sylvania Gro-

lux fluorescent bulbs (20-W, full spectrum 350–750 nm, with spectral peaks at

400, 440 and 540 nm; Danvers, Massachusetts, USA.) and kept at a controlled

14 : 10 h light : dark cycle, which is similar to summer light conditions in natural

habitats. All fish were fed a mixture of freshwater (60%), brine shrimp (38%),

and spirolina (2%) flakes (Ocean Star International, Burlingame, CA, USA) once

per day. Following use in the experiments, fish were returned to greenhouse

stock tanks.

Male Behavior Trials

To record male sexual behaviors, I observed single male-female pairs in direct

contact (free swimming) mating trials. Males were generally within 10 mm SL of

females (P. velifera: 11.5 ± 0.9; P. petenensis: 10.8 ± 1.2). To standardize

female receptivity, I used receptive females (<48 h postpartum; e.g. Farr & Travis

1986) as stimuli. I also isolated males 24 h prior to tests to standardize male

sexual responses. This protocol produces species-typical behavior rates in the

closely related sailfin species P. latipinna (Ptacek & Travis 1996). Fish were

tested in 19 l aquaria that were covered on three sides with black paper and on

the fourth side with one-way film (Gila brand privacy window film, model PRS361,

Martinsville, VA, USA) to minimize disturbance from the observer during the trial.
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TABLE 3.1. Sampling locales and sample sizes for behavior trials.

Population Location n Size range of tested
males (mm)

P. petenensis
Campeche #1 N 19°08.620', W 90°57.400' 15 41 – 74
Campeche #2 N 19°14.230', W 90°50.110' 19 52 – 92
Quintana Roo #4 N 18°36.678', W 88°48.713' 13 44 – 90
Tabasco #3 N 17°58.000’, W 92°31.315’ 2 54 – 64

P. velifera
Campeche #2 N 19°14.230', W 90°50.110' 19 20 – 80
Quintana Roo #2 N 20°17.305', W 87°22.549' 21 25 – 71
Quintana Roo Tulum Laboratory Population 15 38 – 70
Yucatan #1 N 21°15.807', W 89°39.648' 15 42 – 75
Yucatan #2 N 21°21.561', W 89°06.072' 15 41 – 75
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The male fish was acclimated in the test tank for 15 min, followed by the

introduction of the receptive female for an additional 15 min acclimation. I

observed male sexual behaviors for a 10 min trial and recorded behaviors using

a Tandy (model 102) event recorder.

I recorded the following behaviors (described above): number of courtship

displays, gonoporal nibbles, and gonopodial thrusts, and courtship display

duration in seconds. The start of the courtship display was recorded when the

male’s dorsal fin was completely erect, and the display ended when the dorsal fin

was lowered. To standardize observations across all trials, a single observer

(SJH) recorded all observations.

I tested a total of 85 males from five populations of P. velifera: Campeche

#2, Quintana Roo #2, Quintana Roo Tulum, Yucatan 1, and Yucatan 2 (Table

3.1). For P. petenensis, a total of 49 males from four populations (Campeche #1,

Campeche #2, Quintana Roo #4 and Tabasco #3) were included as part of the

species comparisons, however the Tabasco #3 population was excluded from

population comparisons because of small sample size (n = 2, Table 3.1).

Populations were compared within each species, then combined to compare

between the species. Although populations may differ in trait values or variance,

this method allows the species to be compared, and the determination of whether

difference between samples (between species), despite potentially high levels of

variation, is greater than within samples (between populations).
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Morphology and Allometry

To estimate and compare allometry between the sailfin species, I

measured standard length and dorsal fin areas of males. Photographs of

euthanized or anesthetized live fish (buffered 0.50% MS-222 in the laboratory, or

chilled water in the field) were captured using a digital camera (Sony DSC-F707)

at 2560 x 1920 resolution. Live fish were revived and either returned to stock

tanks at Clemson University or to their original collection sites in the field if

individuals were not collected for return to the laboratory. I used the public

domain NIH Image program (developed at the U.S. National Institutes of Health

and available on the Internet at http://rsb.info.nih.gov/nih-image/) (version 1.6) to

measure standard length and dorsal fin area for P. velifera and P. petenensis

(left side of fish only). For standard length, I measured the straight-line distance

from the tip of the snout to the end of the last vertebra (base of the caudal fin)

(Trautman 1981) of mature males from each species and population within each

species. The main distinguishing characteristic of the smallest males compared

to juvenile fish or small females was the presence of a fully fused gonopodium,

indicating that these small males were mature (Constantz 1989). I determined

dorsal fin area for P. velifera and P. petenensis by tracing the outline of the fully-

extended fin from the digital photograph and using the NIH Image estimate of

area (males fully erect their fins during courtship displays). Morphological

measurements were made on all fish in the collection (not only those used in

behavior testing) to encompass the full range of sizes present in each population.
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The morphology of these fish was then compared to previously recorded

measurements of the same morphological characters in P. latipinna (M. B.

Ptacek & J. Travis, unpublished data) and P. latipunctata (Ptacek et al. 2005).

Data Analyses

To ensure that only sexually motivated fish were included in behavior trial

analyses, I excluded trials where there were fewer than five thrusts and/or

seconds of display. I square root transformed all count data to correct for

normality. A key difference in behavior between P. petenensis and P. velifera

was the presence of two distinct behavioral classes of P. velifera males; males

that performed courtship displays and those that did not. Thus, for P. velifera, I

used logistic regression to determine the point of inflection of the logistic

regression line, based on standard length, between males that did and did not

display. This inflection point was found to be between males that were ≥45 mm

(generally performed courtship displays; hereafter referred to as large) and males

with a standard length <45mm (generally did not display; hereafter referred to as

small). Based on this behavioral difference, I analyzed mating behavior of large

and small males of P. velifera separately. I used ANOVA to test for differences in

behavior rates both within species and between P. petenensis and both large

and small P. velifera, and Fisher’s least-square difference of means tests for

post-hoc comparisons. For population comparisons of display rate and times, I

included only large P. velifera. Pearson correlations were used to look for
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relationships between behaviors, and between body size and behaviors. With

the exception of the logistic regression, for which I used a web-based logistic

regression program (Pezzullo, version 05.07.20), all analyses were done using

the program Systat (version 10, 2000).

I used model II reduced major axis (RMA) regression to estimate the

allometric relationship between standard length and dorsal fin area (ln-

transformed). RMA is the most appropriate analysis to compare the relationship

between variables when both variables are subject to error (McArdle 1988;

LaBarbera 1989; Blob 2000). The slopes of the RMA regressions equal typical

least-squares linear regression slopes divided by r, the correlation coefficient. I

compared body-dorsal fin allometry between the sailfin mollies by determining

whether (asymmetric) 95% confidence intervals (calculated using custom

computer routines by N. Espinoza and M. LaBarbera) around the slopes of the

regression lines overlapped (Blob 2000).

RESULTS

Behavior: Species Comparisons

The most striking difference between the two Mexican sailfin species was the

presence of both displaying and non-displaying males in P. velifera, but not in P.

petenensis (Fig. 3.1). Among males of P. velifera smaller than 45 mm (our cut-

off based on logistic regression analysis), only 6 of the twenty performed any
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courtship displays. Males smaller than 40 mm appeared to show little or no

sexual dimorphism of the dorsal fin or coloration often observed in larger males

and only 2 out of 14 of these males performed any displays. I found differences

between P. velifera (large and small) and P. petenensis in number of displays

(Table 3.2, Fig. 3.1) and in the total time spent displaying during trials (large P.

velifera: 18.7 ± 1.0, small P. velifera: 6.6 ± 5.1, P. petenensis: 30.0 ± 4.9). The

average display duration (total amount of time spent displaying divided by the

number of displays) of large P. velifera and P. petenensis did not differ, however

both performed longer displays compared to small P. velifera (P. velifera large:

1.5 ± 0.2, P. velifera small: 0.4 ± 0.2, P. petenensis: 1.4 ± 0.1; Table 3.2). In

contrast, males of all sizes of P. petenensis performed courtship displays at

similar rates and retained the sexually dimorphic dorsal fin morphology and male

coloration observed in larger males.

Despite the marked lack of courtship displays in small males, the rate of

gonopodial thrusting towards females in males <45 mm was the same as in

larger P. velifera (Fisher’s LSD post-hoc = 0.65) and higher than that seen in P.

petenensis (Fisher’s LSD post-hoc = 0.02; Table 3.2, Fig. 3.1). In addition, I

found differences between P. velifera (large and small) and P. petenensis in the

number of gonoporal nibbles (Table 3.2, Fig. 3.1).

There were no relationships between the rate of displays, thrusts, or

nibbles and male S.L. in P. petenensis, large P. velifera or small P. velifera

(Table 3.2). However, there were significant positive correlations between rates
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FIG. 3.1: Mean mating behavior rates (± SE) of Poecilia petenensis and P.
velifera. Different letters represent significantly different behavioral rates within a
behavior type.
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TABLE 3.2. Comparisons of mating behavior between species (Poecilia
petenensis and large and small P. velifera), linear regression analysis comparing
standard length to mating behaviors, and Pearson correlations of behavior rates.
Significant values are indicated by an asterisk.

Comparison df F p r2

ANOVA
display rate 2, 125 22.38 <0.01*
total display time 2, 125 12.81 <0.01*
ave. display duration 2, 125 14.61 <0.01*
thrust rate 2, 125 4.73 0.01*
nibble rate 2, 125 6.90 0.01*

Linear regression: P. petenensis
standard length & ave. display time 1, 40 1.37 00.25 0.03
standard length & display rate 1, 40 2.10 00.16 0.05
standard length & thrust rate 1, 40 0.02 00.89 0.01
standard length & nibble rate 1, 40 0.32 00.57 0.01

Linear regression: P. velifera (large)
standard length & ave. display time 1, 64 1.70 00.20 0.03
standard length & display rate 1, 64 1.50 00.23 0.02
standard length & thrust rate 1, 64 3.02 00.09 0.05
standard length & nibble rate 1, 64 2.42 00.12 0.04

Linear regression: P. velifera (small)
standard length & ave. display time 1, 18 3.49 00.08 0.16
standard length & display rate 1, 18 3.46 00.08 0.16
standard length & thrust rate 1, 18 0.96 00.34 0.05
standard length & nibble rate 1, 18 0.63 00.44 0.02

Pearson Correlations n r P
P. petenensis thrust & nibble rate 42 0.57 <0.01*
P. velifera (large) thrust & nibble rate 54 0.77 <0.01*
P. velifera (small) thrust & nibble rate 20 0.85 <0.01*
P. petenensis display & thrust rate 42 -0.15 >0.05*
P. velifera (large) display & thrust rate 66 -0.53 <0.01*
P. velifera (large) display & nibble rate 20 -0.48 <0.01*



76

of thrusts and nibbles in P. petenensis, and in both large and small P. velifera

(Table 3.2). There was a significant negative correlation between rate of displays

and rate of thrusts or nibbles in large P. velifera, indicating that males that

performed more thrusts (or nibbles) displayed less (Table 3.2). I did not observe

this trade-off between displays and thrusts in P. petenens (Table 3.2).

Behavior: Population Comparisons

The Mexican sailfin molly species P. velifera and P. petenensis differed

considerably in their degree of population variation in mating behaviors.

Populations of P. velifera differed only in the rate of nibbles, but no differences

were found between populations in rates of thrusting, or in any courtship

characteristics (only large males were included in courtship comparisons; Table

3.3, Fig. 3.2). For the population comparison of display rate, the assumption of

equality of variances was violated. Thus, ANOVA results were confirmed with a

Kruskal-Wallis nonparametric one-way analysis of variance test and found to

correspond to those found using ANOVA (Kruskal-Wallis: test statistic = 1.92, d.f.

= 4, p = 0.75). In contrast, populations of P. petenensis differed in total display

time, display rate, thrust rate, and nibble rate (Table 3.3, Fig. 3.2). For the

population comparison of thrust rate, the assumption of equality of variances was

violated, thus ANOVA results were confirmed with a Kruskal-Wallis

nonparametric one-way analysis of variance test and found to correspond to

those found using ANOVA (Kruskal-Wallis: test statistic = 9.00, d.f. = 2, p = 0.01).
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Morphology and allometry

Males of P. velifera and P. petenensis exhibited a striking difference in the

lower limits of the range of male size at maturity (Fig. 3.3). While males of P.

petenensis matured at standard lengths of 39 mm and greater, some P. velifera

males matured at lengths as small as 21 mm. Both species possessed males

that matured at greater than 85 mm, showing a broad range of overlap in size at

maturity between these species, with P. petenensis merely lacking the smallest

male size classes observed in P. velifera.

All four sailfin species (P. velifera, P. petenensis, P. latipinna, and P.

latipunctata) exhibited significant positive allometry between standard length and

dorsal fin area (Fig. 3.4). Males of P. velifera had the highest slope for this

relationship, which differed from the other three species based on non-

overlapping confidence intervals (Table 3.4). The second highest slope was

found in P. latipinna, which also differed from the other species. Slopes between

P. petenensis and P. latipunctata did not differ, however these slopes did differ

from those of the other two sailfin species. Although the slopes of P. petenensis

and P. latipunctata did not differ, some caution must be used when comparing

these species, as the size distributions of the males of these two species do not

overlap. Similar results for all regressions were obtained using standard

regression analysis.
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TABLE 3.3. Population comparisons of behavior within Poecilia petenensis and P.
velifera based on ANOVA.

Population comparison d.f. F p

P. petenensis
total display time 2, 43 4.08 0.02*
display rate 2, 43 3.64 0.03*
average display duration 2, 42 2.00 0.15*
thrust rate 2, 43 4.12 0.02*
nibble rate 2, 43 3.72 0.03*

P. velifera
total display time (large males) 4, 58 0.19 0.94*
display rate (large males) 4, 58 0.25 0.91*
average display duration (large males) 4, 44 1.94 0.12*
thrust rate 4, 78 1.24 0.30*
nibble rate 4, 78 6.19 <0.01*
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FIG. 3.2. Mean mating behavior rates (± SE) among populations for (a) Poecilia
petenensis and (b) P. velifera. Different letters represent significantly different
behavioral rates within a species.
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FIG. 3.3. Size frequency histogram for Poecilia velifera (11 populations, n = 281)
and P. petenensis (7 populations, n = 162).
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DISCUSSION

Males of the sailfin species P. velifera differed markedly from P.

petenensis and other sailfin molly species in possessing a class of small males

that relied almost exclusively on gonopodial thrusting, and a larger class of males

that, like those observed in the other sailfin species, performed both courtship

displays and gonopodial thrusting. In marked contrast, males of P. petenensis

generally lacked males of the smallest sizes present in P. velifera, and even the

smallest males of P. petenensis (39 mm SL) performed courtship displays as well

as gonopodial thrusts in response to receptive females. Similarly, in the sailfin

molly P. latipinna, males of all sizes (even as small as 22 mm SL) perform

courtship displays, although in some populations there is a tendency for small

males to perform higher rates of gonopodial thrusts and lower rates of courtship

displays, with the opposite pattern being characteristic of larger males (Farr et al.

1986; Ptacek & Travis 1996).

In addition to the difference between the two species in the degree of size-

specific behavioral variation, the rate and duration of mating behaviors varied

between the two species. Males of P. petenensis performed higher rates of

courtship displays and lower rates of gonopodial thrusts and gonoporal nibbles

than did males of both displaying and non-displaying size classes of P. velifera.

The average rate of courtship displays in P. petenensis was similar to that

reported for two other sailfin species, P. latipinna (Ptacek & Travis 1996) and P.

latipunctata (Ptacek et al. 2005), while rates of gonopodial thrusts and gonoporal
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nibbles were somewhat lower than rates reported for these other sailfin species.

Average courtship display rates for males of P. velifera, even for the large

courting size class, were the lowest reported among all four sailfin species (Table

3.4) (Ptacek & Travis 1996; Ptacek et al. 2005). This low courtship display rate

exists despite P. velifera being the species which exhibits the highest level of

sexual dimorphism in dorsal fin area (for example, a male with a standard length

of 50-55 mm has a dorsal fin that is 5 -10X larger than that of a similarly sized

female) and the strongest allometry between male body length and dorsal fin size

(slope = 4.5). Thus, in this sailfin species, female preferences for male size may

be more important in mating decisions than preferences based upon the rate of

courtship displays. Indeed, female preference for larger male size and larger

dorsal fin size has been shown to be considerably stronger in P. velifera than in

P. petenensis, with females of P. velifera consistently preferring larger males

(either larger because of body size or dorsal fin size), even when those males

were heterospecific sailfin males (Kozak 2005).

In addition to differences in mating behavior rates and male strategies

between the Mexican sailfin mollies, P. velifera and P. petenensis also differ in

the degree of divergence among populations within each species. While

populations of P. petenensis differed in the rate of displays, thrusts, and nibbles,

populations of P. velifera differed only in rates of nibbles. One explanation for

this pattern may be differences in the magnitude of natural selection in these two

species based upon their differences in habitat (Hankison et al. 2006; Chapter 2).
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FIG. 3.4. Log-transformed standard lengths and associated dorsal fin areas of
the four species of sailfin mollies. The r2 values for the lines are shown in the
legend.
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TABLE 3.4. Range of male sizes and the slope representing the allometric relationship between standard length (ln
transformed) and dorsal fin area (ln transformed), and the confidence intervals surrounding those regressions. Different
superscript letters show slopes that are different based on non-overlapping confidence intervals (all showed significant
allometry, p < 0.001). Behavior rates for each sailfin molly species are also shown. Samples sizes for morphology are
listed under standard length. Samples sizes for behavior studies are listed under display rate.

Species Standard length in
mm (range)

Dorsal fin area
in mm2 (range)

Slope Confidence
interval

display rate
(range*)

Thrust rate
(range*)

Nibble rate
(range*)

P. velifera 21.7 – 89.0 (n = 281) 13.8 – 2384.0 4.5A 4.3 – 4.7 0 – 051 (n = 085) 0 – 098 0 – 113
P. petenensis 40.5 – 91.7 (n = 162) 75.6 – 1532.6 2.9B 2.7 – 3.2 2 – 078 (n = 049) 0 – 059 0 – 066
P. latipinna† 21.8 – 62.3 (n = 208) 09.9 – 0571.5 4.1C 4.0 – 4.3 0 – 112 (n = 189) 0 – 132 0 – 119
P. latipunctata‡ 24.2 – 46.9 (n = 029) 14.4 – 0121.5 3.1B 2.9 – 3.5 6 – 070 (n = 021) 0 – 184 0 – 150

* during a 10 min. trial †behavior rates from Ptacek & Travis (1996) ‡behavior rates from Ptacek et al. (2005)

84
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The saltwater P. velifera occupies coastal marshes and tidal pools, while

freshwater P. petenensis is found in freshwater rivers and impoundments

(Schmitter-Soto 1998). Habitat characteristics such as stream flow rate and

predation pressure have been shown to influence courtship rates in other

poeciliid species (Farr 1975; Magurran & Seghers 1994a, b; Nicoletto 1996) and

greater variability in flow regimes and predation intensity between river and lake

habitats in Yucatán may lead to greater variability in mating behavior rates in P.

petenensis. Such habitat variability has been hypothesized to lead to

interpopulation variation in male morphology in this species as well (Hankison et

al. 2006; Chapter 2).

Aside from behavioral differences, small and large males of P. velifera

exhibited striking morphological differences correlated with their size. Small

males lacked the high degree of sexual dimorphism exhibited by larger males in

dorsal fin area and body and fin coloration. Indeed, large males had body-size

normalized dorsal fin areas up to 51 times larger than small males (comparison

of the largest to smallest ratios of dorsal fin area to standard length squared).

The phenotypic result is that small, mature males of P. velifera are much more

similar in shape and coloration to juveniles than they are to large males (Fig.

3.5). Such strong phenotypic differentiation has led to behavioral polymorphisms

in other fish species, where small males adopt a sneak strategy (Gross 1982,

1985, 1991a, b; Warner 1984; Zimmerer & Kallman 1989; Ryan et al. 1990). In

contrast, even the smallest males of P. petenensis (39 mm) had exaggerated
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dorsal fin areas and the bright coloration characteristic of large males of this

species (Fig. 3.5).

The considerably stronger allometric relationship between body size and

dorsal fin area in P. velifera means that the difference between a small male and

a large male is vast compared to that for the other three sailfin species. A

smaller male has a much smaller dorsal fin relative to his body size compared to

larger males and thus is at a considerable disadvantage in attracting females

(MacClaren et al. 2004; Kozak 2005). A similar situation occurs in some

Xiphophorus species, where small males also lack courtship displays and

primarily employ a sneaking tactic to circumvent female choice (for large,

courting males) and gain copulations (Ryan & Causey 1989; Ryan & Rosenthal

2001). Like the dorsal fin in mollies, the sword of swordtails (Xiphophorus)

scales allometrically with body size (Ryan & Rosenthal 2001), thus, the small

swords of small males would contribute relatively less to an apparent increase in

body size, compared to swords in larger males. Small males are not generally

attractive to female swordtails (Ryan et al. 1990; Basolo 1998a, b; Rosenthal &

Evans 1998; Ryan & Rosenthal 2001) or mollies (Ptacek & Travis 1997;

MacClaren et al. 2004), thus any investment in courtship would be wasted, and a

more effective strategy would likely be to attempt sneak-copulations.

Behavioral polymorphisms in sailfin mollies appear to span the range from

alternative mating tactics in small versus large males of P. velifera to

environmental-dependent strategies found in P. petenensis and large P. velifera

where reliance on courtship versus sneaking may depend on social environment,
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FIG. 3.5. Untransformed standard lengths and fin areas of P. velifera and P. petenensis demonstrating the difference in
allometry for these two species. Inset outlines are size-scaled relative to one another and demonstrate the difference in
lateral projection area between large (70 mm SL, P. velifera and P. petenensis) and small (20 mm SL, P. velifera; 40 mm
SL, P. petenensis) fish in each species. Outlines of P. velifera are shown in blue, and P. petenensis in green.
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relative male size, female receptivity, and abiotic environmental conditions (Farr

& Travis 1986; Travis & Woodward 1989; Sumner et al. 1994; Ptacek et al.

2005). Throughout the entire molly clade (Ptacek & Breden 1998), mating signal

evolution appears to involve a switch from the total reliance of males on sneaking

(such as in the shortfin molly ancestor (Farr 1989)) to courtship displays that elicit

female cooperation, characteristic of all species of sailfin mollies (Farr 1989;

Niemeitz et al. 2002). Yet, within a single species, the degree of variation in

male size at maturity and the degree of phenotypic difference between small,

nondescript males and large, courting males may drive the level of variation

between reliance on different mating behaviors, especially in P. velifera where

both alternative mating strategies based on a genetic polymorphism in male size

and environmentally-dependent male strategies in larger males appear to have

evolved.
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CHAPTER 4

GENETIC DIVERGENCE IN THE

MEXICAN SAILFIN MOLLIES

Abstract. – Comparing population divergence using both neutral genetic

and phenotypic traits provides a method to examine the relative importance of

various evolutionary mechanisms in shaping population differences. Concordant

patterns of variation in both types of traits suggest a strong role of genetic drift or

ongoing gene flow, while dissimilar divergence patterns suggest that diversifying

selection may be important in phenotypic trait divergence. I used eight

microsatellite markers to examine genetic population structure in two species of

Mexican sailfin mollies, Poecilia velifera (N = 9 populations) and P. petenensis (N

= 9 populations), sampled from across their entire geographic distribution in the

Yucatán Peninsula of Mexico. I then compared patterns of genetic structure and

divergence to patterns of interpopulation divergence observed in two types of

phenotypic traits, morphological characters and rates of two different mating

behaviors. Populations of each species were genetically distinct, and conformed

to a model of isolation by distance. Based on genetic markers, populations

within different geographic regions (which may serve as barriers to gene flow)

were more similar to one another than were populations from different regions.

Both Bayesian clustering and barrier analysis provided additional support for

population separation, especially between geographic regions. In contrast, none

of the phenotypic traits showed any type of geographic pattern and population
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divergence in these traits was uncorrelated with that in neutral markers. In

addition, there appeared to be a weaker pattern of regional differences among

geographic regions than was observed based on neutral genetic divergence.

These results suggest that while divergence in neutral traits is likely a product of

population history and genetic drift, phenotypic divergence is governed by

different mechanisms, such as natural and sexual selection, and arises at spatial

scales independent from those of neutral markers.
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INTRODUCTION

Geographic variation among conspecific populations in particular types of

phenotypic traits provides key insights into the action of selection and its role in

speciation. The divergence of characters in response to local adaptation to

either natural or sexual selection in different populations is constrained, however,

by the historical degree of population separation and the relative influences of

genetic drift and ongoing gene exchange between contemporary populations. In

order to disentangle the relative roles of selection, drift and gene flow in shaping

patterns of population divergence, one useful approach is to characterize

phenotypic variation among populations in traits that are known targets of

selection and compare such phenotypic divergence to that observed in neutral

genetic markers (e.g. Ryan et al. 1996; Masta and Maddison 2002; Nicholls et al.

2006; Pröhl et al. 2006). Such an approach uses divergence in neutral molecular

markers to uncover the evolutionary history of populations, which can then

provide the framework for testing hypotheses with respect to the roles of natural

and sexual selection in the origin and maintenance of population-specific traits.

Divergence among populations in traits associated with mating signals can

be rapid in response to sexual selection favoring features of a signal that best

propagate in a particular environment (Ryan et al. 1990; Boughman 2002), as by-

products of adaptive divergence in response to natural selection (Schluter 2001;

Nosil et al. 2005), or as arbitrary targets of divergent female mating preferences

(Lande 1981; Ptacek 2000; Panhuis et al. 2001). Natural selection can promote
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population divergence in traits that are indirectly linked to mating signals, such as

morphological characters that increase crypsis or aposematic coloration, or traits

that improve performance (e.g., body and fin shape in fishes) that are then co-

opted to serve as or enhance behavioral mating signals (Rundle and Schluter

1998; Hatfield and Schluter 1999; Jiggins et al. 2004; Boughman et al. 2005;

Nosil et al. 2005). These selective forces, however, may be constrained by the

degree of historical separation of populations, which can promote phenotypic

differentiation among populations because of drift or selection (Schluter 2001),

and the degree of ongoing gene flow between geographically proximate

populations that should homogenize phenotypic differences and retard the

degree of local adaptation.

Neutral molecular markers can be used to examine the underlying genetic

structure of populations, such as the amount of genetic divergence and gene flow

between populations, and such data can then be used to test for genetic

correlations with contemporary differences in mating signals. Divergence in

mating signals and genetic markers may covary for example, if populations are

diverging randomly, as a result of genetic drift. Alternatively, incongruent

patterns of genetic and phenotypic trait divergence suggest that different

mechanisms, such as sexual or natural selection, may be important in promoting

population differences in mating signals. Previous studies have shown that such

a comparison between genetic and phenotypic traits may illuminate the role of

multiple evolutionary processes in shaping population divergence (e.g. Merilä

1997; Merilä and Crnokrak 2001; Thorpe and Murielle 2001; Waldmann et al.
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2005). Populations of the túngara frog (Physalaemus pustulosus), for example,

have been shown to have diverged both genetically and acoustically, and some

evidence for prezygotic isolation between regionally isolated populations exists

(Ryan et al. 1996; Pröhl et al. 2006). Comparison of genetic and phenotypic

traits in the satin bowerbird (Ptilonophynchus violaceus) has shown how habitat

differences may have shaped call characteristics across the range of this species

independent from the historical pattern of divergence in neutral genetic markers

(Nicholls et al. 2006).

In this study, I test whether phenotypic divergence in morphological traits

and mating behaviors is correlated with genetic divergence in order to infer the

relative importance of selection, gene flow, and drift in the maintenance of

population differences in the Mexican sailfin mollies, Poecilia velifera and P.

petenensis. Sailfin mollies are an interesting group in which to examine the

factors promoting and maintaining geographic variation in phenotypic traits

because variation among populations occurs primarily in morphological and

behavioral traits of males that are associated with mating signals and swimming

performance and therefore are likely targets of both natural and sexual selection

(Hankison et al. 2006; Hankison and Ptacek in review; Chapters 2 and 3). In

addition, sailfin species in the Yucatán region of Mexico have a broad geographic

range, occupying different geographic regions (sensu Wilson 1980; Schmitter-

Soto et al. 2002) and habitat types (Schmitter-Soto 1998; Schmitter-Soto et al.

2002). Thus, both genetic and phenotypic divergence may be shaped by

geographic barriers to gene flow and historical differences in regional patterns of
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colonization. I use this correlational approach to address the following questions

regarding population divergence in each species of sailfin molly: 1) Do

populations show significant genetic divergence based on neutral microsatellite

loci? 2) Do geographic regions serve as barriers that may constrain gene flow

between populations leading to a pattern of isolation by distance? 3) Do the

geographical patterns of genetic differences predict the patterns of phenotypic

differences in morphological traits or mating behaviors? 4) What is the role of

historical versus ongoing evolutionary processes, such as gene flow and

selection, in shaping levels of contemporary population divergence?

Study System

Biogeography

The Mexican sailfin mollies P. velifera and P. petenensis are livebearing

fishes (family Poeciliidae) found throughout the Yucatán Peninsula and

surrounding areas in Mexico (Fig. 4.1). The two species are primarily allopatric

in distribution, separated by differences in their preferred habitats. P. velifera is

generally restricted to coastal habitats, such as anchialine cenotes (coastal salt

water cenotes with no surface connection to the sea), tidal pools and salt

marshes, whereas P. petenensis is more abundant in interior freshwater rivers

and impoundments (Schmitter-Soto 1998). The coastal habitats of P. velifera
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FIG. 4.1. Map of the Yucatán Peninsula showing the collection sites of P. velifera
(blue) and P. petenensis (green). Names next to the sites show the sampling IDs
of each site; Campeche (C), Yucatán (Y), Quintana Roo (QR), Chiapas (CH),
and Tabasco (T). Genetic data were collected from all sites. Morphological data
were collected from fish at a subset of sites. Behavioral and morphological data
were collected from a smaller subset of sites. Sites within the same geographic
region are circled. Blue lines are major rivers, while grey lines surround drainage
basins. Note that in this and subsequent maps, the distance between QR5 and
QR2 is exaggerated on the map so that they can be compared (accurate points
overlap completely).
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offer few obvious barriers to dispersal, although the species range crosses three

geographic districts (Wilson 1980; Schmitter-Soto et al. 2002) that potentially

differ in ocean current dynamics, which may limit gene flow between them (Fig.

4.1). In contrast, populations of P. petenensis occupy geographically separate

river drainages in southern Yucatán (Schmitter-Soto 1998) that may serve as

potential barriers to gene flow, although these rivers do connect during flooding

and through underground links (Schmitter-Soto 2002). Like P. velifera, the range

of P. petenensis crosses three geographic districts (Wilson 1980; Schmitter-Soto

et al. 2002), which also correspond to the three major drainages in which P.

petenensis is found in the southern interior regions of the Yucatán Peninsula

(Fig. 4.1).

Phenotypic traits

Previous studies have found differences in morphological traits and rates

of different mating behaviors in males between populations of both P. velifera

and P. petenensis. For example, Hankison et al. (2006; Chapter 2) found that

populations in P. velifera differed primarily in characteristics related to the size

and shape of the enlarged dorsal fin, a sexually selected character in males

(Kozak et al. in review), while populations of P. petenensis differed in

characteristics related to the size and shape of the caudal fin, a trait where

changes in shape enhance swimming performance in other species of fish (e.g.

Langerhans et al. 2003; Langerhans and DeWitt 2004). Vector analysis showed
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that populations of these two species were diverging along independent lines of

morphological evolution (Hankison et al. 2006; Chapter 2), supporting the idea

that sexual selection may be promoting differences in fin size among populations

of P. velifera, while natural selection may be more important in P. petenensis,

shaping the caudal fin to a match the flow environment. In addition, populations

of P. petenensis were found to differ in rates of mating behaviors (Hankison and

Ptacek in review; Chapter 3). These included courtship displays, a mating

behavior used to elicit female cooperation during insemination (mollies have

internal fertilization) (Parzefall 1969, 1989; Farr and Travis 1986; Ptacek and

Travis 1996; Niemeitz et al. 2002; Ptacek et al. 2005), and gonopodial thrusts, a

type of forced insemination attempt, where the male orients himself behind a

female, brings the gonopodium (fused anal fin that serves as an intromittent

organ for internal fertilization) to a forward position, and swimming forward,

attempts to insert the tip into the female’s gonopore for sperm transfer.

Populations of P. velifera, however, did not differ in these mating behaviors

(Hankison and Ptacek in review; Chapter 3).

METHODS

Molecular Sampling

During the early summer months (April – June) of 2002 – 2003, live

individuals of P. velifera and P. petenensis were collected within their native
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TABLE 4.1. Site coordinates and population sample sizes for each analysis.
Dashed columns indicate that data was not collected for that population.

Analysis (n)
Population Site Coordinates Genetics Morphology Behavior

P. velifera
C2 N 19˚14.232’, W 90˚50.110’ 20 21 19
C5 N 19˚34.998’, W 90˚40.002’ 20 15 —
Y1 N 21˚15.807’, W 89˚39.648’ 20 21 15
Y2 N 21˚21.561’, W 89˚06.072’ 20 27 15
Y3 N 21˚51.438’, W 90˚22.983’ 17 27 —
Y4 N 21˚34.043’, W 88˚13.780’ 13 24 —
QR2 N 20˚17.305’, W 87˚22.548’ 20 39 21
QR3 N 21˚13.910’, W 86˚44.330’ 20 14 —
QR5 N 20˚17.420’, W 87˚22.666’ 13 28 —

P. petenensis
C1 N 19˚08.620’, W 90˚57.400’ 20 18 15
C2 N 19˚14.232’, W 90˚50.110’ 20 33 19
C3 N 18˚55.925’, W 91˚05.350’ 20 30 —
T3 N 17˚58.000’, W 92˚31.315’ 20 19 —
CH1 N 17˚48.482’, W 91˚48.779’ 20 26 —
QR1 N 18˚26.7000’, W 89˚6.102’ 11 16 13
QR4 N 18˚36.678’, W 88˚48.713’ 10 10 —
QR7 N 18˚29.412’, W 89˚15.000’ 08 — —
QR8 N 19˚16.734’, E 88˚1.548’ 05 — —



104

ranges across five states in Mexico (Table 4.1): Campeche (C), Chiapas (CH),

Quintana Roo (QR), Tabasco (T) and Yucatán (Y). The sites were chosen to

cover a wide range of locales across the distribution of each species and to

include sites from each major river drainage for P. petenensis (Fig. 4.1). Fish

were collected using seine nets (6.1 X 1.2 m), cast nets (1.2 m), and minnow

traps. Following collection, live fish were shipped to Clemson University where

they were maintained in 568-L stock tanks for additional study. Individuals used

for DNA study were euthanized with an overdose of buffered MS-222 and placed

in 95% ethanol. Samples were stored in ethanol at -20˚C. Both males and

females were used in genetic analyses based on microsatellites.

Genotyping

DNA was extracted from muscle tissue by incubating ~5 mg of tissue with

160 µl of a 5% Chelex solution and 20 µl protinease K at 65˚C (Walsh et al.

1991). After incubating overnight, the sample was centrifuged and 70 µl of

supernatent was transferred to a new tube (the remainder was discarded),

diluted to 25 ng/µl and stored at -20˚C until amplified. Using primers developed

for Poecilia reticulata and Xiphophorus spp., conditions were optimized for

mollies (by adjusting magnesium concentration and annealing temperatures) and

individuals were genotyped at eight microsatellite loci (Table 4.2). Primers were

purchased fluorescently labeled (reverse primer only) and PCR products were

sized using an ABI 3130 capillary analyzer and scored using GeneMapper

version 3.0.



TABLE 4.2. Details of primers used in this study.

Size rangePrimer
name

Genbank
ID

Annealing
temperature

Mg2+

concentration P. petenensis P. velifera
Reference

G10 AF026454 56.0°C 2.5 mM 189-191 191-193 (Parker et al. 1998)
CA25 AY258696 58.2°C 2.5 mM 0000113 109-115 (Walter et al. 2004)
CA34 AY258652 58.8°C 1.8 mM 116-126 118-130 (Walter et al. 2004)
G49 AF026459 56.0°C 2.0 mM 164-192 144-200 (Parker et al. 1998)
Pr80 AF467905 56.0°C 2.5 mM 096-102 090-106 (Becher et al. 2002)
Pr92 AF467906 56.0°C 3.0 mM 143-151 135-151 (Becher et al. 2002)
CA120 AY258788 59.3°C 2.5 mM 102-108 100-108 (Walter et al. 2004)
Pr172 AF467908 58.0°C 2.5 mM 0000176 0000176 (Becher et al. 2002)

105
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Microsatellite Analysis

Genetic diversity was estimated for each population by determining the

mean number of alleles, observed heterozygosity, and the expected

heterozygosity using Arlequin version 2.0 (Schneider et al. 2000). Loci were

tested for Hardy-Weinberg equilibrium and for linkage disequilibrium using the

program GenePop version 3.4 (Raymond and Rousset 1995) using a Markov

Chain approximation with 100,000 iterations with 1000 steps. Sequential

Bonferroni corrections (Rice 1989) were performed on the probability values of

each test, using a testwide significance value of 0.05.

Population differentiation measures from the microsatellite data were

estimated using both Wright’s F-statistic (Wright 1951), which examines the

identity of state between alleles, and R-statistics (Slatkin 1995), which uses the

number of repeat units in the microsatellites as additional information (assuming

a stepwise mutation model). The program Arlequin was used to calculate both F- 

and R- statistics between all pairwise population comparisons. Pairwise

comparisons were also performed between geographic regions (combined

populations sharing a geographic region). Values from all pairwise comparisons

were checked against sequential Bonferroni corrections (Rice 1989) to ascertain

significance. The allele permutation test in the program SPAGeDi version 1.2

(Hardy and Vekemans 2002; Hardy et al. 2003) was used to determine whether

RST was more informative than FST based on a comparison of observed RST to a

distribution of permutated RST values. If observed RST falls within 5% of
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permutated RST values, it should be used; non-significant tests indicate that FST

should be used. Molecular analysis of variance (AMOVA as implemented in

Arlequin) was used to describe how genetic variance was partitioned between

and within geographic regions, and to compare variance in microsatellite allele

frequencies to that observed in morphological traits.

Geographic Information System (GIS) analysis was used to calculate

fluvial distance between populations (map layers from

http://edc.usgs.gov/profucts/elevation/gtopo30/hydro/namerica.html). For P.

velifera, this distance is the distance around the Peninsula, as these populations

inhabit coastal marshes (Appendix C). For P. petenensis, this is the distance of

the most direct water route, or, for populations unconnected by water, the straight

line distance between populations that, during floods, may allow for passage

between sites (Schmitter-Soto et al. 2002) (Appendix D). The habitats of both

species are approximately linear (movement was along rivers or coasts), thus

fluvial distances were not log transformed in later comparisons (Rousset 1997).

Genetic distances determined by FST and RST were transformed to FST/(1- FST)

(or RST/(1-RST) to obtain linear relationships between geographic and genetic

distances (Rousset 1997). Transformed values were then compared to fluvial

distance using Mantel tests (Mantel version 1.01; Bohonak 2002) with 10,000

permutations to determine the presence of significant associations between

genetic and geographical distance. Pairwise DA values were also used in a

barrier analysis (Barriers version 2.2; Manni et al. 2004). The barriers analysis

constructs a network of adjacent populations and then uses Monmonier’s
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maximum-difference algorithm (Monmonier 1973) to place barriers between

populations indicating reduced gene flow (for an additional example of the use of

this program see Nicholls et al. 2006).

I used the program BAPS (Bayesian Analysis of Population Structure)

version 2.0 (Corander et al. 2003, 2004) to provide an additional method of

examining population structure, and to compare the population structure from

BAPS to that hypothesized by separate geographic groups (Fig. 4.1). The

program BAPS employs a Bayesian clustering method to group populations that

have statistically similar allele frequencies, as well as calculating the marginal

likelihood of the clusterings, thus providing an estimate of how well the data fit

the proposed model.

Comparison of Genetic and Phenotypic Divergence

The correlation between neutral genetic variance and phenotypic traits

(morphology and behavior; Table 4.1) was examined using Mantel tests (Mantel

version 1.01; Bohonak 2002). Mahalanobis distance was calculated both for

overall body shape measurements (size-transformed linear measures) and for

dorsal fin characteristics in P. velifera and caudal fin characteristics in P.

petenensis which were found previously to be important targets of selection in

the two species (Hankison et al. 2006; Chapter 2). Morphological measures

were taken from males from all populations of P. velifera (Appendix E) and from

a subset of six populations (C1, C2, C3, T3, CH1, and QR4) for P. petenensis
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(Appendix F). In addition, Mahalanobis (or Euclidean) distance was calculated

for two different mating behaviors: courtship displays and gonopodial thrusts.

Because individuals or populations may differ in both the average rate and the

average duration of courtship displays (Hankison and Ptacek in review; Chapter

3), these variables were both included in the calculation of Mahalanobis distance

between four populations of P. velifera (C2, QR2, Y1, and Y2) (Appendix G) and

three populations of P. petenensis (C1, C2, and QR4) (Appendix H). Euclidean

distances were likewise calculated for average rates of gonopodial thrusts for

each population tested for both species. Pairwise phenotypic trait values were

then compared to pairwise estimates of Nei’s net genetic distance, DA (Nei and Li

1979) from the same populations that were sampled for phenotypic data, using

Mantel tests with 10,000 permutations to determine the presence of significant

associations (Mantel version 1.01; Bohonak 2002). I used DA instead of Nei’s

standard genetic distance (DS; Nei 1978, 1987) because DA includes the

difference in number of repeats between alleles at the same locus.

As additional methods to visualize comparisons between genotypic and

phenotypic traits, I also used barrier analysis to visualize barriers between

populations based on morphological traits (Manni et al. 2004). In addition, I used

non-metric multidimensional scaling to plot populations using both genetic

clusters (based on DA) and morphological clusters (based on linear

morphological Mahalanobis distances) in a two-dimensional space.

Multidimensional scaling analyses were performed using SAS version 9.0.

These two types of analyses were not performed on mating behaviors because
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of the limited number of populations tested for each species. Finally, I compared

morphological and behavioral distance using Mantel tests to determine whether

these phenotypic traits were correlated, or whether natural and sexual selection

may potentially act on different suites of phenotypic traits independently.

RESULTS

Genetic Population Structuring

For P. petenensis, I found a total of 32 different sized alleles across the eight

loci examined (Appendix A). Two loci were monomorphic (CA25, Pr172) and all

other loci were polymorphic showing one to seven alleles within a single

population. All loci were in Hardy-Weinberg equilibrium in all populations of P.

petenensis. No loci were in linkage disequilibrium (with Bonferroni corrections)

either within populations or among a global comparison. For P. velifera, I found a

total of 57 different sized alleles across the eight loci examined (Appendix B). All

loci, with the exception of Pr172, were polymorphic showing one to twelve alleles

within a single population. Four loci exhibited significant departure from Hardy-

Weinberg equilibrium in one to five populations. No loci were in linkage

disequilibrium (with Bonferroni corrections) either within populations or among a

global comparison. Populations of each species appear to be similar in their

overall levels of heterozygosity and mean number of alleles per locus (Table 4.2),
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TABLE 4.3. Measures of genetic diversity (Nei’s unbiased genetic diversity, He;
observed heterozygosity, Ho; and the mean number of alleles per locus) in nine
populations of P. velifera and nine populations of P. petenensis.

Population ID Ho He Mean no.
alleles

No. private
alleles

P. velifera
C2 0.344 0.466 2.6 0
C5 0.319 0.222 2.8 0
Y1 0.325 0.298 3.3 1
Y2 0.258 0.215 2.6 1
Y3 0.258 0.215 2.6 2
Y4 0.258 0.215 2.6 4

QR2 0.275 0.152 2.3 2
QR3 0.352 0.251 2.9 1
QR5 0.192 0.141 1.9 0

P. petenensis
C1 0.242 0.273 2.1 0
C2 0.224 0.229 2.0 0
C3 0.218 0.199 1.8 0
T3 0.310 0.294 2.6 2

CH1 0.230 0.243 2.3 2
QR1 0.220 0.182 2.1 4
QR4 0.234 0.139 1.9 1
QR7 0.181 0.156 1.4 0
QR8 0.058 0.025 1.1 0
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indicating that population differences may be because of fixed differences

between populations, or the presence of private alleles.

Nearly all populations differed based on pairwise FST comparisons, even

after sequential Bonferroni adjustment (35 of 36 comparisons for P. velifera,

Table 4.3, and 33 of 36 comparisons for P. petenensis, Table 4.4). Fewer

populations were significantly different based on pairwise RST comparisons (29 of

36 comparisons for P. velifera, Table 4.3, and 29 of 36 comparisons for P.

petenensis, Table 4.4), however a general pattern of population differentiation

was still apparent. Allele permutation tests revealed that the additional allele size

information provided by RST did not contribute additional population divergence

information for P. petenensis or for P. velifera (P > 0.05 in all tests).

A strong pattern of isolation by distance was found in both species, indicating

increased genetic divergence with increasing geographic separation, for both FST

(Mantel tests, P. velifera: r = 0.523, P < 0.001; P. petenensis: r = 0.368, P =

0.018) and RST (Mantel tests, P. velifera: r = 0.741, P < 0.001; P. petenensis: r =

0.351, P = 0.036) (Fig. 4.2). Comparing the degree of divergence between the

three geographic regions in each species using AMOVA showed that much of the

genetic variance was partitioned between regions (P. velifera: 15%, P.

petenensis: 27%) indicating decreased gene flow between regions compared to

the degree of exchange between populations within regions (Table 4.5). In

addition, FRT, a measure of between region differentiation, was significant in both

P. velifera (FRT = 0.144, P < 0.001) and in P. petenensis (FRT = 0.270, P = 0.006).
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TABLE 4.4. Estimates of multilocus pairwise FST (below diagonal) and RST (above diagonal) values among populations of
P. velifera for eight microsatellite loci. Significant values are shown in bold.

PvC2 PvQR3 PvQR5 PvY1 PvQR2 PvY2 PvY3 PvY4 PvC5

PvC2 ------- 0.661 0.787 0.097 0.818 0.610 0.013 0.052 0.190
PvQR3 0.306 ------- 0.015 0.315 0.103 0.021 0.515 0.291 0.760
PvQR5 0.445 0.102 ------- 0.428 0.086 0.141 0.626 0.408 0.929
PvY1 0.087 0.168 0.252 ------- 0.518 0.244 0.028 -0.038 0.064
PvQR2 0.418 0.040 0.130 0.231 ------- 0.275 0.691 0.507 0.915
PvY2 0.233 0.197 0.199 0.072 0.245 ------- 0.458 0.234 0.737
PvY3 0.200 0.208 0.289 0.028 0.291 0.049 ------- 0.007 -0.1204
PvY4 0.214 0.099 0.237 0.003 0.237 0.037 0.082 ------- -0.266
PvC5 0.120 0.078 0.198 0.066 0.144 0.158 0.116 0.105 -------
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TABLE 4.5. Estimates of multilocus pairwise FST (below diagonal) and RST (above diagonal) values among populations of
P. petenensis for eight microsatellite loci. Significant values are shown in bold.

PpT3 PpC1 PpC3 PpC2 PpCH1 PpQR4 PpQR7 PpQR1 PpQR8

PpT3 ------- 0.018 0.177 0.061 0.198 0.098 0.270 0.027 0.195
PpC1 0.100 ------- 0.072 -0.008 0.095 0.196 0.280 0.045 0.218
PpC3 0.139 -0.003 ------- 0.140 -0.019 0.480 0.523 0.213 0.527
PpC2 0.175 0.102 0.093 ------- 0.172 0.309 0.424 0.129 0.371
PpCH1 0.140 0.002 -0.015 0.093 ------- 0.487 0.484 0.216 0.496
PpQR4 0.441 0.525 0.574 0.575 0.544 ------- 0.377 0.110 0.298
PpQR7 0.405 0.478 0.532 0.511 0.489 0.391 ------- 0.178 0.168
PpQR1 0.417 0.442 0.488 0.501 0.459 0.350 0.180 ------- 0.078
PpQR8 0.469 0.528 0.589 0.584 0.543 0.357 0.226 0.294 -------
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FIG. 4.2. Isolation-by-distance patterns among populations of (a) P. velifera and
(b) P. petenensis, derived from eight microsatellite loci. Plots show genetic
distance, as calculated by FST and RST against geographic fluvial distance across
populations. Lines show the best linear fit to points (FST- solid, RST – dashed)
dashed). Values for r2 are from Mantel tests.
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TABLE 4.6. AMOVA showing the within and between region variation based on
microsatellites in P. velifera and P. petenensis. Regions are defined as
populations within the same geographic region.

Source of variation d.f. Sum of
squares

Percentage
of variation

P. velifera Between regions 2 044.4 15.0*
Between populations within
regions

6 020.5 05.9*

Within populations 317 295.3 79.1
Total 325 360.2

P. petenensis Between regions 2 082.0 027.0*
Between populations within
regions

6 034.0 011.3*

Within populations 259 236.9 61.7
Total 267 352.9

* indicates significance at the P < 0.001 level
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The BAPS analysis supported the geographic region separation in P.

velifera, but also suggested additional substructure among populations (Fig.

4.3a). The best partition (posterior probability = 0.767) divided the nine P.

velifera populations into six clusters: 1) C2, 2) C5, 3) Y1/Y2/Y3, 4) Y4, 5)

QR3/QR5, and 6) QR2. Likewise, in P. petenensis, the best partition (posterior

probability = 0.686) divided the nine populations into five clusters: 1) T3, 2)

CH1/C1/C3, 3) C2, 4) QR7/QR1/QR8, and 5) QR4. These clusters also

correspond to the division of this species into the three geographic regions, with

the exception of some connectivity between two of the three Campeche

populations (C1 and C3) and the Chiapas (CH1) population. Barrier analysis

(outputting the first three barriers) in P. velifera indicated a barrier between the

C5 and Y3 (corresponding to a break in these geographic regions), however a

second barrier separated QR5 and other populations. A final barrier was placed

between Y2 and Y4 (Fig. 4.3a). Barrier analyses in P. petenensis provided

evidence of barriers between the QR populations, and generally supported an

east-west divide between populations, although CH1 was included in the eastern

group based on BAPS clustering (Fig. 4.3b). Interestingly, there was no barrier

between Tabasco (T3) and Campeche populations (C1, C2, C3) near the coast,

despite these being from different geographic regions. It is important to note,

however, that small sample sizes in some populations of P. petenensis,

especially in Quintana Roo (e.g., QR7 and QR8), might have biased the results

towards a lack of gene flow (increased barriers) between populations because of

missing alleles not detected in my samples. In addition, because DA was used in
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FIG. 4.3. Results of BAPS and barrier analyses examining population structure in P. velifera (open symbols) and P.
petenensis (closed symbols) using genetic (a) and morphological distance (b) (barrier analysis only). Different symbols
within a species represent populations classified as separate clusters using BAPS (‘a’ only). Dashed (P. velifera) and
dotted (P. petenensis) lines show potential connections in barrier analysis. Bars show barriers to gene flow in P.
petenensis (black) and P. velifera (hatched) from barrier analysis.

(a) (b)
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barrier analysis, while allele frequencies were used to create BAPS clusters, the

output from these different types of data may be expected to suggest different

clusters. However, this method allows consistent comparisons of DA and

morphology throughout the study.

Comparison of Genetic and Phenotypic Divergence

Despite high levels of morphological divergence between populations in

both species (Fig. 4.4; Hankison et al. 2006; see also Chapter 2) and some

population differences in mating behaviors in P. petenensis (Fig. 4.5; see also

Hankison and Ptacek in review; Chapter 3), there was no relationship between

any pairwise phenotypic measure (behavior or morphology) and that of the

genetic distance measure DA (Mantel tests, P. velifera: r = -0.696 – 0.374, P =

0.257 – 0.841; P. petenensis: r = -0.364 – 0.557, P = 0.164 – 0.366). In addition,

there was no relationship between geographical distance and pairwise

phenotypic differences in either morphology or mating behaviors based on the

populations included in this study and geographic distances based on GIS

measures (Mantel tests, P. velifera: r = -0.391 – -0.021, P = 0.447 – 0.676; P.

petenensis: r = -0.493 – 0.670, P = 0.169 – 0.506). These results indicate that

the major source of variation among phenotypic traits is not likely the result of the

same processes promoting divergence in neutral genetic markers. Finally, in P.

petenensis there was no correlation between rates of courtship displays or

gonopodial thrusts and morphology (Mantel tests, P. petenensis: r = -0.9464 –. 
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FIG. 4.4. Morphological divergence in P. velifera (a) and P. petenensis based on the discriminant factor scores of size-
corrected linear measurements. Fish diagrams show the most important linear shape variables that distinguish
populations (original data in Hankison et al. 2006; Chapter 2).
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FIG. 4.5. Behavioral differences (± S.E.) within P. velifera (a) and P. petenensis (b). Symbols above the rate line
represent courtship display rate in each population. Symbols below the rate line represent gonopodial thrust rate in each
population (original data in Hankison and Ptacek in review; Chapter 3).
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0.994, P = 0.165 – 0.674). However, in P. velifera, morphological distance

between populations was positively correlated with courtship display distance

(Mantel tests, P. velifera: r = 0.085, P = 0.041). No correlation was found

between morphological and behavioral distance for rates of gonopodial thrusts

(Mantel tests, P. velifera: r = -0.407, P = 0.751; P. petenensis: r = -0.946, P =

0.666)

Comparisons of MDS plots of genetic and morphological clustering sshow

a complete lack of concordance between clusters in morphological space and

clusters in genetic space for both species (Fig. 4.6). Finally, although

significantly high levels of genetic variance could be explained by differences

between regions (AMOVA results, Table 4.5), nested ANOVA showed that

considerably less of the variation among populations in morphology could be

explained by between-region distinctions in P. velifera, and regional differences

in morphology were not significant for P. petenensis (Table 4.6). Lower levels of

regional variation between populations in morphological traits, especially in P.

petenensis, suggest that morphology is not differentiating between populations

purely in response to genetic drift and decreased gene flow between geographic

regions.
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FIG. 4.6. Nonmetric multidimensional scaling plot of genetic divergence (DA), and
morphological distance (size-corrected linear measurements). Populations are
coded on the basis of geographic region: C, Campeche; Y, Yucatán; Q: Quintana
Roo; T: Tabasco/Chiapas.
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TABLE 4.7. Nested ANOVA showing the within and between region variation in
morphology (using size corrected linear morphology) in P. velifera and P.
petenensis. Regions are defined as populations within the same geographic
regions.

Source of variation d.f. Sum of
squares

Percentage
of variation

P. velifera Between regions 002 19.8 09.5*
Between populations
within regions

006 40.6 19.4*

Within populations 194 148.8 71.1
Total 202 209.2

P.
petenensis

Among regions 002 01.7 01.3

Between populations
within regions

004 22.2 017.4*

Within populations 121 103.7 81.3
Total 127 127.6

* indicates significance at the P < 0.001 level
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DISCUSSION

Comparison of patterns of divergence in both neutral genetic and

phenotypic (morphological and behavioral) traits indicates that population

differences in phenotypic traits, especially between populations of the inland,

freshwater species P. petenensis, are more likely influenced by selection (both

natural and sexual selection) and are not due solely to differentiation as a result

of genetic drift or reduced gene flow. While populations differed significantly

based on microsatellite variation, these neutral markers showed a strong pattern

of isolation by distance and differences in the spatial allocation of variance both

within and between geographic regions. Morphological differentiation and, to a

lesser degree behavioral variation, was uncorrelated with the level of neutral

genetic differentiation and showed much weaker patterns of differentiation based

on geographic region. These results suggest that while drift may have played an

important role in historical population divergence, selection is likely shaping

current patterns of phenotypic differentiation between contemporary molly

populations.

Patterns of Genetic Differentiation

Neutral genetic divergence in both P. velifera and P. petenensis appears

to conform to a strong pattern of isolation by distance. Populations were

generally genetically distinct, and those within the same geographic region were
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more similar to one another than were those from different regions. Such a

pattern of regional differentiation suggests that these geographic regions may act

as partial barriers to gene flow. Bayesian clustering analysis and a geographic

barrier analysis generally supported these results, more often linking populations

within a geographic region than those between different regions.

The high level of population differentiation (FST and RST) found between

populations of P. velifera differs from that reported in the U.S. sailfin molly, P.

latipinna, despite superficial similarities in their habitats. While both species

prefer coastal, salt-marsh habitats, P. latipinna populations show high levels of

gene flow, at least within regions (Trexler 1988; Trexler et al. 1990). There was

some evidence for regional variation based on FST in P. latipinna, however, as

south Florida populations were genetically differentiated from those in the

Panhandle and in Georgia (Trexler 1988). In P. velifera, high levels of population

differentiation, especially between regions, may be due, in part, to differences in

patterns of current flow between the Gulf of Campeche populations and other

populations in the Atlantic, corresponding to the different geographic districts in

this part of Yucatán (Wilson 1980; Schmitter-Soto et al. 2002).

Populations of P. petenensis were also genetically distinct, as may be

predicted from their geographically more isolated habitats. While P. petenensis

primarily lives in freshwater streams and rivers, they may be further isolated to

ponds during the dry season because of decreased water levels (Schmitter-Soto

et al. 2002). Barriers, BAPS and multi-dimensional scaling all indicated a strong

east-west barrier to gene flow in P. petenensis, corresponding to geographically
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separate river drainages between eastern and western populations that connect

only rarely during hurricane events that lead to widespread flooding of the interior

of Yucatán (Schmitter-Soto et al. 2002).

In both species, populations from the C2 site were isolated, as determined

by Bayesian clustering (but not barrier analysis). A previous study found hybrids

at this site between P. velifera and a shortfin molly species, P. mexicana (Kittell

et al. 2005). While levels of hybridization are likely quite low because of

prezygotic barriers to gene flow, low levels of introgression between sailfin and

shortfin mollies (or potentially between the two species of sailfin mollies) may

alter allele frequencies relative to other populations, explaining the separation of

the C2 population in both species.

Patterns of Phenotypic and Genetic Diversity

Considerable population differentiation exists between populations of both

species for morphological traits, especially those associated with dorsal fins in P.

velifera and caudal fins in P. petenensis (Fig. 4.4; Hankison et al. 2006; Chapter

2). Such a pattern of differentiation is consistent with stronger sexual selection

on dorsal fins, which augment the courtship display, in P. velifera, where females

of this species consistently prefer males or models with larger dorsal fins, even

when the signals come from heterospecific sailfin males (P. petenensis) (Kozak

et al. in review). Potential differences in the strength of female preference for
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larger males between different populations might lead to some population

differentiation among males in dorsal fin shape.

Population differentiation in P. petenensis is more strongly associated with

differences in the depth of the caudal peduncle and height and length of the

caudal fin (Fig. 4.4). These traits have been shown to be correlated with

differences in swimming performance. Fish that live in faster flow environments

have deeper caudal peduncles and larger caudal fins, presumably for improved

generation of thrust (Langerhans et al. 2003; Langerhans and DeWitt 2004).

Divergence in caudal fin characteristics in P. petenensis suggests that natural

selection may be more important in promoting population differences in

morphology in this species. Indeed, males from populations of P. petenensis

from river habitats (e.g., CH1, T3, QR4) have larger scores for discriminant factor

one (longer, taller caudal fins) than those males from karstic sinkhole

environments (e.g., C1, C3) (Fig. 4.4). Additionally, female preferences for the

largest-sized male, either between species or between different populations of P.

petenensis, are weaker than in P. velifera (Kozak et al. in review; S. Hankison

and M. Ptacek unpub. data), suggesting that population-specific shape

differences may be more important targets of mating preferences than overall

male size in this species.

In contrast to the level of population divergence in male morphology for

both species, differentiation among populations in the average rates of male

courtship displays and gonopodial thrusts was lower (Fig. 4.5). There was no

significant differentiation between populations in either type of mating behavior in
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P. velifera, but significant population variation did exist between some

populations of P. petenensis for both mating behaviors (Hankison and Ptacek in

review; Chapter 3). Interestingly, the degree of morphological distance was not

correlated to behavioral distance between populations for either behavior in P.

petenensis. Such a pattern suggests that mating behaviors may evolve to some

degree independently of morphological changes. A similar pattern of decoupling

of morphology and mating behavior has been described for the sailfin molly, P.

latipinna, suggesting the opportunity for sexual selection to promote variation in

male mating behaviors within the constraints imposed by natural selection on

male body shape (Travis 1994; Ptacek and Travis 1997; Ptacek 2005).

In P. velifera, morphological distance between populations was positively

correlated with courtship display distance, suggesting that male populations with

the largest bodies/dorsal fins also exhibit the highest rates of courtship displays.

Such a pattern is consistent with variation between populations in the strength of

female mating preferences for large courting males, which may arise purely by

chance genetic drift (Lande 1981; Kirkpatrick 1982; West-Eberhard 1983;

Kirkpatrick and Ravigne 2002).

Overall, there was no correlation between morphological or behavioral

phenotypic trait divergences and genetic distance for either species, suggesting

that processes other than genetic drift primarily govern phenotypic divergence.

This pattern of differences in traits that may be shaped by sexual selection, but

are uncorrelated with genetic divergence, fits the pattern observed between

phenotypic and genetic traits in some other species (Gleason and Ritchie 1998;
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Nicholls et al. 2006; Pröhl et al. 2006). In the satin bowerbird, for example, there

is no relationship between vocal divergence (measures of call characteristics)

and genetic divergence as measured by microsatellites (Nicholls et al. 2006). In

addition, only weak correlations (relative to other comparisons) were found

between acoustic distance and genetic distance in the túngara frog, where

variation in frog calls was better explained by geographic distance (Pröhl et al.

2006). In both studies, calls, like some phenotypic traits in sailfin mollies, appear

to be important in mate choice, and differences in female preferences, at least in

the túngara frog, may be important in maintenance of population divergence

(Nicholls et al. 2006; Pröhl et al. 2006). In contrast to mollies, however, there is

much less differentiation within regions in either satin bowerbirds or túngara frogs

(Nicholls et al. 2006; Pröhl et al. 2006), which may relate to the potential

constraints of habitat differences (aquatic versus forest, for example), or on the

dispersal ability of the organisms being studied.

In contrast to the results based on neutral genetic markers, there was no

pattern of isolation by distance in phenotypic traits of either species. For P.

petenensis the distribution of within and among geographic region variation of

morphology did not show a concordant pattern with that obtained from

microsatellites. For P. velifera, although the morphological variance explained by

geographic region was significant, less of the variance was explained by

geographic region compared to genetic variance. Populations of P. velifera are,

however, found in more continuous coastal salt marsh habitats, having weaker

barriers to gene flow, and those that do exist may be associated with different
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near shore ocean currents that may occur in different geographic regions

(Schmitter-Soto et al. 2002). Barriers to gene exchange between populations

were more similar based on neutral genetic markers and morphological distance

for populations of P. velifera than for populations of P. petenensis. Habitat

differences are greater between populations of P. petenensis, which may favor

convergent natural selection on male morphology in similar habitats (i.e., faster

flowing rivers), even from different geographic regions (e.g., Tabasco and

Quintana Roo). Greater homogeneity in habitat characteristics among coastal

salt marsh sites may explain lower levels of morphological divergence between

populations in this species and a stronger association of morphological

divergence with that of geographic regions.

Overall, this study provides evidence that multiple evolutionary

mechanisms, including genetic drift, and natural and sexual selection, shape

population divergence in the two Mexican sailfin molly species. Unlike in the

U.S. sailfin molly, where population differences persist in the face of high gene

flow (Trexler 1988; Trexler et al. 1990; Ptacek and Travis 1996, 1997; Ptacek

2005), populations of the Mexican sailfin mollies show higher levels of

geographic separation. Differing patterns of divergence between neutral genetic

and phenotypic traits, however, suggest that population differences in traits

related to mating behaviors and their associated morphological traits (i.e., dorsal

fin shape) are not a random result of differentiation as a result of genetic drift, but

rather have been shaped by local selection pressures, both natural and sexual

selection. There is also some evidence that the selective forces important in
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shaping population divergence may have influenced speciation between sailfin

mollies in general. For example, morphological differences between populations

within P. velifera and P. petenensis mirror differences important in distinguishing

these species, such as dorsal and caudal fin shape (Hankison et al. 2006;

Chapter 2). The lack of a relationship between morphology and behavior in P.

petenensis suggests that both natural and sexual selection are acting on

phenotypic divergence, but that their influence may be decoupled. In contrast,

strong female preferences for large male size in P. velifera (Kozak et al. in

review) coupled with population divergence on dorsal fin and body size

characteristics (Hankison et al. 2006; Chapter 2) potentially supports an

important role for sexual selection in this species.

The separation of the sailfin clade from shortfin ancestors is thought to

have been promoted by sexual selection for male courtship and a dimorphic fin

that potentially accentuated courtship display (Ptacek and Breden 1998). If

similar evolutionary mechanisms shape differences both within and between

species (Foster et al. 1998; Foster and Endler 1999; Coyne and Orr 2004), this

study provides further evidence of the potential role of sexual selection as an

important force in the evolution of mating signals and speciation in the sailfin

mollies. In addition, a role for natural selection in shaping morphology P.

petenensis is also suggested, as morphological divergence in this species was

not predicted by genetic divergence. While this study supports the importance of

natural and sexual selection in shaping population divergence in P. velifera and

P. petenensis, additional studies investigating the level of divergence in female
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mating preferences within each species will provide additional insight into how

sexual selection may promote differences in morphology and behavior and

potentially lead to speciation in this intriguing group of poeciliid fishes.



134

LITERATURE CITED

Becher, S. A., S. T. Russell, and A. E. Magurran. 2002. Isolation and
characterization of polymorphic microsatellites in the Trinidadian guppy
(Poecilia reticulata). Molecular Ecology Notes 2:456-458.

Bohonak, A. J. 2002. Mantel 1.01, San Diego State University.

Boughman, J. W. 2002. How sensory drive can promote speciation. Trends in
Ecology and Evolution 17:571-577.

Boughman, J. W., H. D. Rundle, and D. Schluter. 2005. Parallel evolution of
sexual isolation in sticklebacks. Evolution 59:361-373.

Corander, J., P. Waldmann, and M. J. Sillanpää. 2003. Bayesian analysis of
genetic differentiation between populations. Genetics 163:367-374.

Coyne, J. A., and H. A. Orr. 2004. Speciation. Sinauer Associates, Inc.,
Sunderland, MA.

Farr, J. A., and J. Travis. 1986. Fertility advertisement by female sailfin mollies,
Poecilia latipinna (Pisces: Poeciliidae). Copeia 1986:467-472.

Foster, S. A., and J. A. Endler. 1999. Geographic variation in behavior. Oxford
University Press, New York.

Foster, S. A., R. J. Scott, and W. A. Cresko. 1998. Nested biological variation
and speciation. Philosophical Transactions of the Royal Society of London
B. 353:207-218.

Gleason, J. M., and M. G. Ritchie. 1998. Evolution of courtship song and
reproductive isolation in the Drosophila willistoni complex: do sexual
signals diverge the most quickly? Evolution 52:1493-1500.

Hankison, S. J., M. J. Childress, J. J. Schmitter-Soto, and M. B. Ptacek. 2006.
Population divergence in morphology in the Mexican sailfin mollies,
Poecilia velifera and P. petenensis. Journal of Fish Biology 68:1610-1630.

Hankison, S. J., and M. B. Ptacek. in review. Within and between species
variation in male mating behaviors in the Mexican sailfin mollies Poecilia
velifera and P. petenensis. Ethology

Hardy, O. J., H. Charbonnel, H. Freville, and M. Hueuertz. 2003. Microsatellite
allele sizes: a simple test to assess their significance on genetic
differentiation. Genetics 163:1467-1487.



135

Hardy, O. J., and X. Vekemans. 2002. SPAGeDi: a versatile computer program
to analyze spatial genetic structure at the individual or population levels.
Molecular Ecology Notes 2:618-620.

Hatfield, T., and D. Schluter. 1999. Ecological speciation in sticklebacks:
environmental-dependent hybrid fitness. Evolution 53:866-873.

Jiggins, C. D., C. Estrada, and A. Rodrigues. 2004. Mimicry and the evolution of
premating isolation in Heliconius melpomene Linnaeus. Journal of
Evolutionary Biology 17:680-691.

Kirkpatrick, M. 1982. Sexual selection and the evolution of female choice.
Evolution 36:1-12.

Kirkpatrick, M., and V. Ravigne. 2002. Speciation by natural and sexual
selection: models and experiments. The American Naturalist 159,
Supplement S22-S35.

Kittell, M. M., H. M.N., S. Contraras Balderas, and M. B. Ptacek. 2005. Wild-
caught hybrids between sailfin and shortfin mollies (Poeciliidae, Poecilia:
Mollienesia): morphological and molecular verification. Hidrobiológica
15:131-137.

Kozak, H. L., L. A. Cirino, and M. B. Ptacek. in review. Female mating
preferences for male traits used in species and mate recognition in the
Mexican sailfin mollies, Poecilia velifera and P. petenensis. Behavioral
Ecology

Lande, R. 1981. Models of speciation by sexual selection on polygenic traits.
Proceedings of the National Academy of Sciences of the United States of
America 78:3721-3725.

Langerhans, R. B., and T. J. DeWitt. 2004. Shared and unique features of
evolutionary diversification. The American Naturalist 164:335-349.

Langerhans, R. B., C. A. Layman, A. K. Langerhans, and T. J. DeWitt. 2003.
Habitat-associated morphological divergence in two neotropical fish
species. Biological Journal of the Linnaean Society 80:689-698.

Manni, F., E. Guérand, and E. Heyer. 2004. Geographic pattern of (genetic,
morphologic, linguistic) variation: How barriers can be detected by using
Monmonier's algorithm. Human Biology 76:173-190.

Masta, S. E., and W. P. Maddison. 2002. Sexual selection driving diversification
in jumping spiders. Proceedings of the National Academy of Sciences of
the United States of America 99:4442-4447.



136

Merilä, J. 1997. Quantitative trait and allozyme divergence in the greenfinch
(Carduelis chloris, Aves: Fringillidae). Biological Journal of the Linnaean
Society 61:243-266.

Merilä, J., and P. Crnokrak. 2001. Comparison of genetic differentiation at
marker loci and quantitative traits. Journal of Evolutionary Biology 14:892-
903.

Monmonier, M. S. 1973. Maximum-difference barriers: an alternative numerical
regionalization method. Geographical Analysis 5:245-261.

Nei, M. 1978. Estimation of average heterozygosity from a small number of
individuals. Genetics 89:583-590.

---. 1987. Molecular evolutionary genetics. Columbia University Press, New
York.

Nei, M., and W.-H. Li. 1979. Mathematical model for studying genetic variation
in terms of restriction endonucleases. Proceedings of the National
Academy of Sciences of the United States of America 76:5269-5273.

Nicholls, J. A., J. J. Austin, C. Moritz, and A. W. Goldizen. 2006. Genetic
population structure and call variation in a passerine bird, the satin
bowerbird, Ptilonorhynchus violaceus. Evolution 60:1279-1290.

Niemeitz, A., R. Kreutzfeldt, M. Schartl, J. Parzefall, and I. Schlupp. 2002. Male
mating behaviour of a molly, Poecilia latipunctata: a third host for the
sperm-dependent Amazon molly, Poecilia formosa. Acta Ethol 5:45-49.

Nosil, P., T. H. Vines, and D. J. Funk. 2005. Reproductive isolation caused by
natural selection against immigrants from divergent habitats. Evolution
59:705-719.

Panhuis, T. M., R. K. Butlin, M. Zuk, and T. Tregenza. 2001. Sexual selection
and speciation. Trends in Ecology and Evolution 16:364-371.

Parker, K. M., K. Hughes, T. J. Kim, and P. W. Hedrick. 1998. Isolation and
characterization of microsatellite loci from the Gila topminnow
(Poeciliopsis o. occidentalis) and their utility in guppies (Poecilia
reticulata). Molecular Ecology 7:361-363.

Parzefall, J. 1969. Zur vergleichenden Ethologie verschiedener Mollienesia-
Arten einschliesslich einer Hohlenform von M. sphenops. Behaviour 33:1-
37.

---. 1989. Sexual and aggressive behaviour in species hybrids of Poecilia
mexicana and Poecilia velifera (Pisces, Poeciliidae). Ethology 82:101-115.



137

Pröhl, H., R. A. Koshy, U. Mueller, A. S. Rand, and J. Ryan. 2006. Geographic
variation of genetic and behavioral traits in Northern and Southern túngara
frogs. Evolution 60:1669-1679.

Ptacek, M. B. 2000. The role of mating preferences in shaping interspecific
divergence in mating signals in vertebrates. Behavioural Processes
51:111-134.

---. 2005. Mating signal divergence, sexual selection and species recognition in
mollies (Poeciliidae: Poecilia: Mollienesia). Pp. 71-87 in H. J. Grier and M.
C. Uribe, eds. Proceedings from the Second International Symposium on
Livebearing Fishes. New Life Publications, Inc., Homestead, FL.

Ptacek, M. B., and F. Breden. 1998. Phylogenetic relationships among the
mollies (Poeciliidae: Poecilia: Mollienesia group) based on mitochondrial
DNA sequences. Journal of Fish Biology 53:64-81.

Ptacek, M. B., M. J. Childress, and M. M. Kittell. 2005. Characterizing the
mating behaviours of the Tamesí molly, Poecilia latipunctata: a sailfin with
shortfin morphology. Animal Behaviour 70:1339-1348.

Ptacek, M. B., and J. Travis. 1996. Inter-population variation in male mating
behaviours in the sailfin molly, Poecilia latipinna. Animal Behaviour 52:59-
71.

---. 1997. Mate choice in the sailfin molly, Poecilia latipinna. Evolution 51:1217-
1231.

Raymond, M., and F. Rousset. 1995. GENEPOP, version 1.2. Population
genetics software for exact tests and ecumenicism. Journal of Heredity
86:248-249.

Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223-225.

Rousset, F. 1997. Genetic differentiation and estimation of gene flow from F-
statistics under isolation by distance. Genetics 145:1219-1228.

Rundle, H. D., and D. Schluter. 1998. Reinforcement of stickleback mate
preferences: sympatry breeds contempt. Evolution 52:200-208.

Ryan, M. J., D. K. Hews, and W. E. Wagner, Jr. 1990. Sexual selection on
alleles that determine body size in the swordtail Xiphophorus nigrensis.
Behavioral Ecology and Sociobiology 26:231-238.

Ryan, M. J., A. S. Rand, and L. A. Weigt. 1996. Allozyme and advertisement
call variation in the túngara frog, Physalaemus pustulosus. Evolution
50:2435-2453.



138

Schluter, D. 2001. Ecology and the origin of species. Trends in Ecology and
Evolution 16:372-380.

Schmitter-Soto, J. J. 1998. Catálogo de los peces continentales de Quintana
Roo. San Cristóbal de Las Casas, ECOSUR.

---. 2002. Ictiogeografía de Yucatán. Pp. 103--116 in M. L. Lozano-Vilano, ed.
Libro jubilar en honor al Doctor Salvador Contreras Balderas. UANL,
Monterrey.

Schmitter-Soto, J. J., F. A. Comín, E. Escobar-Briones, J. Herrera-Silveira, J.
Alcocer, E. Suárez-Morales, M. Elías-Gutiérrez, V. Díaz-Arce, L. E. Marín,
and B. Steinich. 2002. Hydrogeochemical and biological characteristics
of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia 467:215-
228.

Schneider, S., J. M. Kueffer, D. Roessli, and L. Excoffier. 2000. ARLEQUIN
version 2.000: a software for population genetic analysis. Genetics and
Biometry Laboratory, University of Geneva, Geneva, Switzerland.

Slatkin, M. 1995. A measure of population subdivision based on microsatellite
allele frequencies. Genetics 126:249-260.

Thorpe, R. S., and R. Murielle. 2001. Evidence that ultraviolet markings are
associated with patterns of molecular gene flow. Proceedings of the
National Academy of Sciences 98:3929-3934.

Travis, J. 1994. Evolution in the sailfin molly: the interplay of life-history variation
and sexual selection in L. A. Real, ed. Ecological Genetics. Princeton
University, Princeton, New Jersey.

Trexler, J. C. 1988. Hierarchical organization of genetic variation in the sailfin
molly, Poecilia latipinna (Pisces: Poeciliidae). Evolution 42:1006-1017.

Trexler, J. C., J. Travis, and M. Trexler. 1990. Phenotypic plasticity in the sailfin
molly, Poecilia latipinna (Pisces: Poeciliidae). II. Laboratory experiment.
Evolution 44:157-167.

Waldmann, P., M. R. García-Gil, and M. J. Sillanpää. 2005. Comparing
Bayesian estimates of genetic differentiation of molecular markers and
quantitative traits: an application to Pinus sylvestris. Heredity 94:623-629.

Walter, R. B., J. D. Rains, J. E. Russell, T. M. Guerra, C. Daniels, D. A.
Johnston, J. Kumar, A. Wheeler, K. Kelnar, V. A. Khanolkar, E. L.
Williams, J. L. Hornecker, L. Hollek, M. M. Mamerow, A. Pedroza, and S.
Kazianis. 2004. A microsatellite genetic linkage map for Xiphophorus.
Genetics 168:363-372.



139

Walsh, P. S., D. A. Metzger, and R. Higuchi. 1991. Chelex 100 as a medium for
simple extraction of DNA for PCR-based typing from forensic material.
Biotechniques 10:506-513.

West-Eberhard, M. J. 1983. Sexual Selection, Social Competition, and
Speciation. The Quarterly Review of Biology 58:155-183.

Wilson, E. M. 1980. Physical Geography of the Yucatan Peninsula. Pp. 5-40 in
E. Moseley and E. Terry, eds. Yucatan: A World Apart. University of
Alabama Press, Tuscaloosa, AL.

Wright, S. 1951. The genetical structure of populations. Annals of Eugenics
15:323-354.



APPENDICES



141

APPENDIX A. Poecilia petenensis microsatellite alleles

Multi-locus genotypes for 8 microsatellite loci from 134 P. petenensis sampled from nine populations. Individual
genotypes are reported as length of each allele in base pairs. Question marks signify unidentified alleles.

Microsatellite Locus
ID Pop G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

342 T3 189 189 113 113 116 116 176 176 168 190 102 102 149 149 108 108
343 T3 189 189 113 113 116 116 176 176 184 188 100 102 149 149 102 108
344 T3 189 189 113 113 116 116 176 176 182 190 100 104 147 147 108 108
345 T3 189 189 113 113 116 116 176 176 180 180 100 102 143 147 102 108
346 T3 189 189 113 113 116 116 176 176 168 190 100 102 147 149 108 108
347 T3 189 189 113 113 116 116 176 176 190 190 100 102 149 149 102 108
348 T3 189 189 113 113 116 116 176 176 190 190 100 100 147 147 108 108
349 T3 189 189 113 113 116 116 176 176 168 188 100 100 147 149 106 108
350 T3 189 189 113 113 116 116 176 176 188 188 100 102 147 149 102 108
351 T3 189 189 113 113 116 116 176 176 168 168 100 102 147 149 102 102
352 T3 189 189 113 113 116 124 176 176 168 182 100 102 149 149 108 108
353 T3 189 189 113 113 116 116 176 176 184 190 100 100 147 149 102 102
354 T3 189 189 113 113 116 116 176 176 188 190 100 102 143 143 102 108
355 T3 189 189 113 113 116 116 176 176 188 190 100 102 143 143 102 108
356 T3 189 189 113 113 116 116 176 176 188 190 98 100 143 ? 102 108
357 T3 189 189 113 113 116 116 176 176 184 184 100 100 149 149 102 108
358 T3 189 189 113 113 116 116 176 176 168 188 100 100 143 149 108 108
359 T3 189 189 113 113 116 116 176 176 182 188 100 100 147 149 102 108
360 T3 189 189 113 113 116 116 176 176 182 190 100 100 147 149 102 108
361 T3 189 189 113 113 116 116 176 176 182 188 100 100 149 149 102 108
427 C1 189 189 113 113 116 116 176 176 168 190 100 102 147 149 102 108
428 C1 189 189 113 113 116 116 176 176 190 190 100 102 149 149 102 102
429 C1 189 189 113 113 116 116 176 176 182 182 100 102 149 149 102 108
430 C1 189 189 113 113 116 124 176 176 188 190 100 100 149 149 102 102
431 C1 189 189 113 113 116 116 176 176 168 190 102 102 149 149 102 108

141



142

APPENDIX A.
Continued.

Microsatellite Locus
ID Pop G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

432 C1 189 189 113 113 116 116 176 176 188 192 ? ? 149 149 102 102
433 C1 189 189 113 113 116 116 176 176 168 168 100 102 149 149 102 102
434 C1 189 189 113 113 116 116 176 176 182 190 100 102 149 149 102 102
435 C1 189 189 113 113 116 116 176 176 168 182 100 102 147 149 102 102
436 C1 189 189 113 113 116 116 176 176 190 190 102 102 149 149 102 108
437 C1 189 189 113 113 116 116 176 176 190 190 102 102 147 149 102 108
438 C1 189 189 113 113 116 116 176 176 182 190 100 102 149 149 102 108
439 C1 189 189 113 113 116 116 176 176 188 190 100 102 149 149 102 102
440 C1 189 189 113 113 116 116 176 176 184 190 100 102 147 149 102 108
441 C1 189 189 113 113 116 116 176 176 188 190 102 102 149 149 102 102
442 C1 189 189 113 113 116 116 176 176 182 190 100 102 149 149 102 102
443 C1 189 189 113 113 116 116 ? ? 168 182 100 102 149 149 108 108
444 C1 189 189 113 113 116 116 176 176 168 190 100 102 149 149 102 108
445 C1 189 189 113 113 116 116 176 176 182 188 100 102 147 149 102 108
446 C1 189 189 113 113 116 116 176 176 188 190 100 100 149 149 102 102
457 C3 189 189 113 113 116 116 176 176 182 184 102 102 149 149 102 108
458 C3 189 189 113 113 116 116 ? ? 188 190 100 100 147 149 102 108
459 C3 189 189 113 113 116 116 ? ? 182 190 100 102 147 149 102 102
460 C3 189 189 113 113 116 116 176 176 188 190 100 102 149 149 102 102
461 C3 189 189 113 113 116 116 176 176 188 190 102 102 147 149 102 102
462 C3 189 189 113 113 116 116 176 176 182 190 ? ? 149 149 102 102
462 C3 189 189 113 113 116 116 176 176 190 190 100 102 147 149 102 102
463 C3 189 189 113 113 116 116 176 176 190 190 102 102 149 149 102 108
463 C3 189 189 113 113 116 116 176 176 184 188 100 100 149 149 102 102
464 C3 189 189 113 113 116 116 176 176 190 190 ? ? 149 149 102 102
464 C3 189 189 113 113 116 116 176 176 182 184 100 102 149 149 102 102
465 C3 189 189 113 113 116 116 176 176 188 190 100 100 149 149 108 108
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APPENDIX A.
Continued.

Microsatellite Locus
ID Pop G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

465 C3 189 189 113 113 116 116 176 176 188 190 100 100 149 149 102 102
466 C3 189 189 113 113 116 116 176 176 188 190 100 102 149 149 102 102
466 C3 189 189 113 113 116 116 176 176 188 190 102 102 147 149 102 102
550 C3 189 189 113 113 116 116 176 176 182 182 100 100 149 149 102 102
551 C3 189 189 113 113 116 116 176 176 190 190 102 102 149 149 102 102
552 C3 189 189 113 113 116 116 176 176 182 182 100 102 149 149 102 102
553 C3 189 189 113 113 116 116 176 176 188 190 102 102 147 149 102 102
554 C3 189 189 113 113 116 116 176 176 182 184 100 102 149 149 102 108
467 C2 189 191 113 113 116 116 176 176 182 184 100 102 149 149 102 102
468 C2 189 191 113 113 116 116 176 176 168 188 100 100 149 149 102 102
469 C2 189 189 113 113 116 116 176 176 182 188 100 100 149 149 102 102
470 C2 189 189 113 113 116 116 176 176 182 190 100 100 149 149 102 102
471 C2 189 191 113 113 116 116 176 176 182 188 100 102 149 149 102 102
472 C2 189 191 113 113 116 116 176 176 168 188 100 102 147 149 102 102
473 C2 189 191 113 113 116 116 176 176 184 188 100 102 149 149 102 108
474 C2 189 191 113 113 116 116 176 176 182 190 100 100 149 149 102 102
475 C2 189 189 113 113 116 116 176 176 182 182 100 100 147 149 102 102
476 C2 189 189 113 113 116 116 176 176 168 188 100 100 147 149 102 108
477 C2 189 189 113 113 116 116 176 176 188 190 100 102 149 149 102 102
478 C2 189 189 113 113 116 116 176 176 188 188 100 102 149 149 102 102
479 C2 189 189 113 113 116 116 176 176 168 188 102 102 149 149 102 102
480 C2 189 191 113 113 116 116 176 176 188 188 100 100 149 149 102 102
481 C2 191 191 113 113 116 116 ? ? 190 190 100 102 147 149 102 102
482 C2 189 191 113 113 116 116 176 176 168 182 100 102 149 149 102 102
483 C2 189 191 113 113 116 116 176 176 182 182 100 100 149 149 102 102
484 C2 191 191 113 113 116 116 176 176 168 190 100 102 149 149 102 102
485 C2 189 191 113 113 116 116 176 176 188 188 100 102 149 149 102 108
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APPENDIX A.
Continued.

Microsatellite Locus
ID Pop G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

486 C2 189 189 113 113 116 116 176 176 182 190 100 100 149 149 102 108
A CH1 189 189 113 113 116 116 ? ? 188 188 100 102 149 149 102 102
B CH1 189 189 113 113 116 116 176 176 188 190 100 102 149 149 102 108
C CH1 189 189 113 113 116 116 176 176 184 190 100 102 149 149 102 108
D CH1 189 189 113 113 116 116 176 176 184 188 100 100 149 149 102 108
E CH1 189 189 113 113 116 116 176 176 188 190 100 100 147 149 102 102
F CH1 189 189 113 113 116 116 176 176 182 190 100 102 147 149 102 108
G CH1 189 189 113 113 116 116 176 176 182 190 102 102 149 149 102 102
H CH1 189 189 113 113 116 116 176 176 182 190 102 102 149 149 102 102
I CH1 189 189 113 113 116 116 176 176 182 188 102 102 149 149 102 102
J CH1 189 189 113 113 116 116 176 176 190 192 98 102 149 149 102 108
K CH1 189 189 113 113 116 116 176 176 188 190 100 100 149 149 102 102
L CH1 189 189 113 113 116 116 176 176 188 190 96 102 149 149 102 102
M CH1 189 189 113 113 116 116 176 176 188 190 102 102 149 149 102 102
N CH1 189 189 113 113 116 116 176 176 182 184 102 102 149 151 102 102
O CH1 189 189 113 113 116 116 176 176 184 192 100 102 149 149 102 102
P CH1 189 189 113 113 116 116 176 176 182 190 100 100 149 149 102 108
Q CH1 189 189 113 113 116 116 176 176 184 188 100 102 149 149 102 108
R CH1 189 189 113 113 116 116 176 176 190 192 100 102 147 149 102 102
S CH1 189 189 113 113 116 116 176 176 188 190 100 102 149 149 102 102
T CH1 189 189 113 113 116 116 176 176 188 190 102 102 149 151 102 102
518 QR4 189 189 113 113 118 118 176 176 188 190 102 102 149 149 108 108
519 QR4 189 189 113 113 118 118 176 176 188 190 102 102 143 143 108 108
520 QR4 191 191 113 113 ? ? ? ? ? ? 102 102 143 143 106 108
521 QR4 191 191 113 113 118 118 ? ? ? ? 102 102 143 143 106 108
522 QR4 189 189 113 113 118 118 ? ? 190 190 102 102 143 143 108 108
523 QR4 189 189 113 113 118 118 176 176 184 184 102 102 143 143 106 108

144



145

APPENDIX A.
Continued.

Microsatellite Locus
ID Pop G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

524 QR4 189 191 113 113 118 126 176 176 188 190 102 102 149 149 108 108
525 QR4 189 189 113 113 118 118 176 176 190 190 102 102 143 149 108 108
526 QR4 189 189 113 113 118 118 ? ? 164 164 102 102 143 143 108 108
527 QR4 189 189 113 113 118 118 ? ? 188 190 102 102 143 143 108 108
69 QR7 189 189 113 113 118 118 ? ? 188 192 100 100 149 149 108 108
70 QR7 189 189 113 113 118 118 ? ? 188 192 100 102 149 149 106 108
71 QR7 189 189 113 113 118 118 ? ? 188 188 102 102 149 149 108 108
72 QR7 189 189 113 113 118 118 176 176 188 192 100 102 149 149 108 108
73 QR7 189 189 113 113 118 118 ? ? 192 192 102 102 149 149 108 108
74 QR7 189 189 113 113 118 118 ? ? 188 192 100 102 149 149 108 108
75 QR7 189 189 113 113 118 118 ? ? 188 192 100 100 149 149 106 106
76 QR7 189 189 113 113 118 118 176 176 188 188 102 102 149 149 106 108
163 QR1 189 189 113 113 118 118 ? ? 188 190 102 102 149 149 106 106
164 QR1 189 189 113 113 118 118 ? ? 188 190 102 102 149 149 106 108
165 QR1 189 189 113 113 118 118 176 176 188 190 102 102 149 149 106 108
166 QR1 189 189 113 113 118 118 176 176 190 190 102 102 149 149 106 108
167 QR1 189 189 113 113 118 118 ? ? 164 164 102 102 149 149 106 108
168 QR1 189 189 113 113 118 118 176 176 184 190 102 102 149 149 108 108
268 QR1 189 189 113 113 118 118 176 176 184 190 100 100 149 149 106 106
269 QR1 189 189 113 113 118 118 ? ? 174 176 ? ? 149 149 106 106
270 QR1 189 189 113 113 118 118 ? ? 186 190 102 102 149 149 106 108
271 QR1 189 189 113 113 118 118 ? ? 188 190 100 100 149 149 104 106
272 QR1 189 189 113 113 118 118 ? ? 188 190 100 100 149 149 104 106
380 QR8 189 189 113 113 118 118 176 176 188 188 102 102 149 149 108 108
381 QR8 189 189 113 113 118 118 176 176 188 188 102 102 149 149 108 108
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APPENDIX A.
Continued.

Microsatellite Locus
ID Pop G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

382 QR8 189 189 113 113 118 118 176 176 190 190 102 102 149 149 108 108
383 QR8 189 189 113 113 118 118 176 176 188 190 102 102 149 149 108 108
384 QR8 189 189 113 113 118 118 176 176 188 188 102 102 149 149 108 108
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APPENDIX B. Poecilia velifera microsatellite alleles

Multi-locus genotypes for 8 microsatellite loci from 163 P. velifera sampled from nine populations. Individual genotypes
are reported as length of each allele in base pairs. Question marks signify unidentified alleles.

Microsatellite Locus
G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

C2 322 191 191 115 115 126 126 176 176 164 164 ? ? 143 143 108 108
C2 323 191 191 115 115 126 126 176 176 164 164 ? ? 147 147 108 108
C2 324 191 191 115 115 118 126 176 176 164 164 102 102 147 147 108 108
C2 325 191 191 115 115 126 126 176 176 168 168 102 102 145 149 102 108
C2 326 191 191 115 115 126 126 ? ? 164 164 ? ? 147 149 108 108
C2 327 191 191 115 115 126 126 176 176 164 164 ? ? 143 149 108 108
C2 328 191 191 115 115 118 118 ? ? 172 178 102 102 143 147 108 108
C2 329 191 191 115 115 126 126 ? ? 172 188 ? ? 143 147 108 108
C2 330 191 191 115 115 126 126 ? ? 164 164 ? ? 143 147 108 108
C2 331 191 191 115 115 126 126 ? ? 188 188 ? ? 143 147 108 108
C2 332 191 191 115 115 126 126 176 176 168 176 102 102 143 143 108 108
C2 333 191 191 115 115 126 126 ? ? 164 176 102 102 147 149 108 108
C2 334 191 191 115 115 126 126 176 176 164 184 ? ? 143 149 108 108
C2 335 191 191 115 115 118 126 176 176 164 164 100 100 143 143 108 108
C2 336 191 191 115 115 126 126 176 176 164 184 ? ? 143 147 108 108
C2 337 191 191 115 115 126 126 176 176 164 184 100 102 143 147 108 108
C2 338 191 191 115 115 118 126 ? ? 164 184 ? ? 143 149 108 108
C2 339 191 191 115 115 118 126 ? ? 164 190 102 102 147 147 108 108
C2 340 191 191 115 115 126 126 176 176 176 188 100 102 143 149 108 108
C2 341 191 191 115 115 126 126 176 176 168 176 ? ? 143 147 108 108
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APPENDIX B.
Continued.

Microsatellite Locus
G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

QR3 385 191 191 115 115 126 126 ? ? 150 150 ? ? 143 ? 106 108
QR3 386 191 191 115 115 118 126 ? ? 148 148 ? ? 143 143 106 106
QR3 387 191 191 115 115 126 128 ? ? 150 150 ? ? 139 143 106 106
QR3 388 191 191 115 115 126 128 ? ? ? ? ? ? 143 143 106 106
QR3 389 191 191 115 115 126 126 ? ? 148 148 ? ? 143 147 106 108
QR3 390 191 191 115 115 126 126 ? ? 154 154 ? ? 143 143 106 108
QR3 391 191 191 115 115 126 126 ? ? 148 148 ? ? 143 143 100 106
QR3 392 191 191 115 115 126 126 176 176 148 154 98 100 149 149 106 108
QR3 393 191 191 115 115 126 126 ? ? 150 150 ? ? 143 145 106 106
QR3 394 191 191 115 115 126 126 ? ? 144 144 ? ? 143 143 106 108
QR3 395 191 191 115 115 126 126 ? ? 150 154 ? ? 139 143 106 108
QR3 396 191 191 115 115 126 126 ? ? 154 154 102 102 143 143 106 108
QR3 397 191 191 115 115 126 126 ? ? 188 188 ? ? 143 145 106 106
QR3 398 191 191 115 115 118 126 ? ? 150 150 ? ? 145 145 106 106
QR3 399 191 191 115 115 124 126 ? ? 150 150 ? ? 139 143 106 106
QR3 400 191 191 115 115 126 126 ? ? 154 154 ? ? 139 145 106 108
QR3 401 191 191 115 115 126 126 ? ? 150 150 ? ? 143 145 106 106
QR3 402 191 191 115 115 126 126 ? ? 148 154 ? ? 143 145 106 108
QR3 403 191 191 115 115 126 126 ? ? 144 148 ? ? 143 143 106 108
QR3 404 191 191 115 115 126 126 ? ? 150 150 ? ? 143 143 106 108
QR5 539 191 191 115 115 126 126 176 176 150 150 102 102 143 143 106 108
QR5 540 191 191 115 115 126 126 ? ? 150 150 ? ? 143 143 106 106
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APPENDIX B.
Continued.

Microsatellite Locus
G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

QR5 541 191 191 115 115 126 126 ? ? 150 150 90 90 143 143 106 108
QR5 542 191 191 115 115 126 126 ? ? 148 150 ? ? 143 143 106 108
QR5 543 191 191 115 115 126 126 ? ? 150 150 ? ? 143 143 106 106
QR5 544 191 191 115 115 126 126 ? ? 150 150 ? ? 143 143 106 108
QR5 545 191 191 115 115 126 126 ? ? 150 150 ? ? 143 143 106 108
QR5 546 191 191 115 115 126 126 ? ? 150 150 102 102 143 143 106 108
QR5 547 191 191 115 115 126 126 ? ? 150 150 ? ? 143 143 106 108
QR5 549 191 191 115 115 126 126 ? ? 148 148 96 100 143 143 106 108
QR5 702 191 191 115 115 126 126 ? ? 150 150 96 96 143 143 106 108
QR5 703 191 191 115 115 126 126 ? ? 150 150 94 94 143 143 106 108
QR5 704 191 191 115 115 126 126 ? ? 150 150 102 102 143 143 106 106
Y1 405 191 191 115 115 126 126 ? ? 144 144 ? ? 147 149 102 108
Y1 406 191 191 115 115 126 126 ? ? 150 150 ? ? 143 143 108 108
Y1 407 191 191 115 115 126 126 ? ? 184 190 ? ? 143 145 108 108
Y1 408 191 191 115 115 126 126 ? ? 184 190 ? ? 139 143 108 108
Y1 409 193 193 115 115 126 126 ? ? 160 164 ? ? 147 147 108 108
Y1 410 191 191 115 115 126 126 176 176 184 190 ? ? 143 149 106 108
Y1 411 191 191 115 115 126 126 ? ? 162 178 ? ? 145 149 102 108
Y1 412 191 193 115 115 126 126 ? ? 162 164 ? ? 143 149 108 108
Y1 413 191 191 115 115 126 126 176 176 150 150 ? ? 143 149 106 108
Y1 414 191 191 115 115 126 126 176 176 164 184 ? ? 139 139 108 108
Y1 415 191 193 115 115 126 126 ? ? 184 190 ? ? 145 149 106 108
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APPENDIX B.
Continued.

Microsatellite Locus
G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

Y1 416 191 191 115 115 126 126 ? ? 150 150 ? ? 135 149 106 108
Y1 417 191 191 115 115 126 126 ? ? 158 158 ? ? 143 145 106 108
Y1 418 191 193 115 115 126 126 ? ? 150 164 ? ? ? ? 108 108
Y1 419 191 191 115 115 126 126 ? ? 150 164 ? ? 143 149 108 108
Y1 420 191 193 115 115 126 126 ? ? 162 164 ? ? 143 149 108 108
Y1 421 191 191 115 115 126 126 ? ? 158 184 ? ? 145 149 106 108
Y1 422 191 191 115 115 126 126 ? ? 158 184 ? ? 145 149 106 108
Y1 423 191 191 115 115 126 126 ? ? 150 150 ? ? 143 145 108 108
Y1 424 191 191 115 115 126 126 ? ? 160 160 ? ? 143 143 108 108
QR2 302 191 191 115 115 126 126 176 176 150 150 ? ? 143 143 106 108
QR2 303 191 191 115 115 126 126 ? ? 144 144 92 92 143 143 106 106
QR2 304 191 191 115 115 126 126 ? ? 144 144 94 94 143 143 106 106
QR2 305 191 191 115 115 126 126 ? ? 154 154 ? ? 143 143 106 108
QR2 306 191 191 115 115 126 126 ? ? 144 150 ? ? 143 143 106 106
QR2 307 191 191 115 115 126 126 176 176 144 144 100 102 139 143 106 106
QR2 308 191 191 115 115 126 126 ? ? 150 150 94 94 143 143 106 108
QR2 309 191 191 115 115 126 126 ? ? 150 150 ? ? 143 143 102 102
QR2 310 191 191 113 115 126 126 174 176 154 154 102 102 143 143 106 106
QR2 311 191 191 115 115 126 126 ? ? 150 150 102 102 143 143 106 106
QR2 312 191 191 115 115 126 126 ? ? 150 150 102 102 143 143 106 106
QR2 314 191 191 115 115 126 126 ? ? 144 144 ? ? 143 143 106 106
QR2 315 191 191 115 115 126 126 ? ? 144 150 94 94 143 143 102 102

150



151

APPENDIX B.
Continued.

Microsatellite Locus
G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

QR2 316 191 191 115 115 126 126 ? ? 150 150 94 94 143 143 106 106
QR2 317 191 191 115 115 126 126 176 176 150 150 100 102 139 143 102 102
QR2 318 191 191 115 115 126 126 ? ? 150 150 94 94 143 143 106 108
QR2 319 191 191 115 115 126 126 ? ? 144 150 ? ? 143 143 106 108
QR2 320 191 191 115 115 126 126 ? ? 144 144 ? ? 139 143 106 106
QR2 321 191 191 115 115 126 126 ? ? 144 150 ? ? 143 143 106 108
QR2 322 191 191 115 115 126 126 ? ? 144 150 94 94 139 143 106 106
Y2 487 191 193 115 115 126 128 ? ? 144 174 ? ? 143 145 108 108
Y2 488 191 191 115 115 126 126 ? ? 150 160 ? ? 143 143 108 108
Y2 489 191 191 115 115 126 126 ? ? 150 160 ? ? 143 143 106 108
Y2 490 191 193 115 115 126 126 ? ? 174 174 ? ? 143 145 102 108
Y2 491 193 193 115 115 126 126 176 176 150 160 ? ? 143 145 108 108
Y2 492 191 191 115 115 126 126 176 176 150 150 100 100 143 143 106 108
Y2 493 191 193 115 115 126 126 176 176 150 160 ? ? 143 145 108 108
Y2 494 191 191 115 115 126 126 ? ? 150 150 ? ? 143 145 108 108
Y2 495 191 191 115 115 126 126 176 176 150 150 ? ? 143 145 106 108
Y2 496 191 191 115 115 126 126 ? ? 144 150 ? ? 143 143 108 108
Y2 497 191 191 115 115 126 126 ? ? 150 164 ? ? 149 151 106 108
Y2 498 193 193 115 115 126 126 ? ? 150 150 ? ? 143 145 108 108
Y2 499 191 193 115 115 126 126 176 176 150 164 ? ? 143 143 102 108
Y2 500 193 193 115 115 126 126 176 176 150 150 ? ? 145 145 108 108
Y2 501 191 191 115 115 126 126 176 176 150 150 ? ? 145 145 108 108
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APPENDIX B.
Continued.

Microsatellite Locus
G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

Y2 502 191 191 115 115 126 126 ? ? 150 150 ? ? 143 143 106 108
Y2 503 191 191 115 115 126 126 ? ? 150 174 ? ? 143 143 108 108
Y2 504 191 191 115 115 126 126 ? ? 150 150 106 106 143 149 108 108
Y2 505 191 191 115 115 126 126 ? ? 150 150 ? ? 145 145 108 108
Y2 506 191 191 115 115 126 126 ? ? 150 174 ? ? 145 147 102 108
Y3 681 191 191 115 115 126 126 ? ? 150 160 ? ? 143 145 106 108
Y3 682 191 191 115 115 126 126 ? ? 150 178 ? ? 145 145 108 108
Y3 683 193 193 115 115 126 126 ? ? 150 178 ? ? 143 143 108 108
Y3 684 191 193 115 115 126 126 ? ? 166 184 92 94 143 143 108 108
Y3 685 193 193 115 115 126 126 ? ? 158 160 ? ? 143 149 108 108
Y3 686 193 193 115 115 126 126 ? ? 170 170 ? ? 143 145 106 108
Y3 687 193 193 115 115 126 126 ? ? 184 184 ? ? 143 149 102 108
Y3 688 191 191 115 115 126 126 ? ? 150 160 100 100 143 143 106 108
Y3 689 191 193 109 115 126 126 ? ? 184 170 96 96 143 143 108 108
Y3 690 191 191 115 115 126 126 ? ? 176 184 90 90 143 145 106 108
Y3 691 193 193 115 115 126 126 ? ? 150 190 ? ? 143 151 108 108
Y3 692 191 193 115 115 126 126 ? ? 184 186 96 96 143 143 108 108
Y3 693 191 193 115 115 126 126 ? ? 172 174 ? ? 143 149 108 108
Y3 694 191 191 115 115 126 126 176 176 176 186 ? ? 143 145 108 108
Y3 695 191 191 115 115 126 126 176 176 150 174 ? ? 143 145 108 108
Y3 697 191 191 115 115 126 126 ? ? 150 184 ? ? 145 149 102 108
Y3 698 191 191 115 115 126 126 ? ? 150 184 ? ? 143 145 108 108
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APPENDIX B.
Continued.

Microsatellite Locus
G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

Y4 731 191 191 115 115 126 128 ? ? 150 150 102 102 143 149 108 108
Y4 732 191 191 ? ? 126 126 ? ? 176 176 ? ? ? ? 106 108
Y4 733 191 191 111 115 126 126 ? ? 184 194 ? ? 145 149 106 108
Y4 734 191 191 115 115 126 126 ? ? 150 150 94 94 139 149 106 108
Y4 735 191 191 115 115 126 126 ? ? 190 198 102 102 143 143 106 108
Y4 736 191 193 115 115 126 126 ? ? 150 150 ? ? 143 145 106 108
Y4 737 191 191 115 115 126 126 176 176 150 160 94 102 139 145 106 106
Y4 738 191 191 115 115 126 126 ? ? 150 150 102 102 143 145 106 108
Y4 739 193 193 115 115 126 126 ? ? 180 188 ? ? 145 149 106 108
Y4 740 191 191 115 115 126 126 ? ? 184 200 102 102 145 145 108 108
Y4 741 191 193 115 115 126 126 ? ? 160 170 ? ? 143 145 108 108
Y4 742 191 191 115 115 126 126 ? ? 150 150 102 102 143 145 106 108
Y4 743 193 193 115 115 126 126 ? ? 150 150 102 102 139 149 108 108
C5 711 191 191 109 115 126 130 ? ? 186 190 ? ? 143 147 106 108
C5 712 191 191 109 115 126 130 ? ? 188 190 ? ? 143 143 106 108
C5 713 191 191 109 115 126 126 ? ? 190 ? 92 92 143 143 108 108
C5 714 191 191 115 115 126 126 ? ? 164 ? 102 102 143 143 106 108
C5 715 191 191 115 115 126 126 ? ? 176 ? 102 102 143 143 106 108
C5 716 191 191 115 115 126 126 ? ? 164 ? 102 102 143 147 106 108
C5 717 191 191 115 115 126 126 ? ? 186 ? 102 102 143 143 106 108
C5 718 191 191 109 115 126 126 ? ? 164 ? 102 102 143 147 106 108
C5 719 191 191 115 115 126 128 ? ? 188 190 102 102 143 143 108 108

153



154

APPENDIX B.
Continued.

Microsatellite Locus
G10 CA25 CA34 Pr172 G49 Pr80 Pr92 CA120

C5 720 191 191 115 115 126 128 176 176 188 190 ? ? 143 143 106 106
C5 721 191 191 115 115 124 126 ? ? ? ? ? ? 143 143 102 108
C5 722 191 191 115 115 124 126 ? ? 164 ? ? ? 143 143 108 108
C5 723 191 191 115 115 126 126 ? ? 164 ? ? ? 143 143 106 108
C5 724 191 191 115 115 126 128 176 176 164 ? ? ? 143 147 106 108
C5 725 191 191 113 113 126 126 ? ? 164 ? ? ? 143 143 106 108
C5 726 191 191 113 113 126 126 ? ? 190 ? ? ? 143 147 108 108
C5 727 191 191 115 115 126 126 ? ? 186 186 ? ? 143 143 106 108
C5 728 191 191 113 115 126 126 ? ? 170 170 ? ? 143 143 108 108
C5 729 191 191 115 115 124 126 ? ? 164 164 ? ? 143 143 106 106
C5 730 191 191 115 115 126 126 ? ? 188 190 ? ? ? ? 108 108
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APPENDIX C. Geographic distances for P. velifera

Distances (km) around the coast between populations of P. velifera on the Yucatán Peninsula of Mexico. Abbreviations:
C: Campeche; Y: Yucatán; QR: Quintana Roo.

Geographical Distance
C4 C2 C5 Y3 Y1 Y2 Y4 QR3 QR2 QR5

C4 0
C2 73.09 0
C5 118.00 46.32 0
Y3 298.06 226.38 183.12 0
Y1 396.06 324.38 281.12 101.73 0
Y2 450.32 378.65 335.38 155.99 64.91 0
Y4 551.70 480.02 436.76 257.37 166.29 104.59 0
QR3 818.62 746.94 703.68 524.29 433.21 371.51 275.91 0
QR2 962.26 890.58 847.32 667.92 576.85 515.15 419.55 149.18 0
QR5 962.52 890.84 847.58 668.18 577.11 515.41 419.81 149.44 0.26 0
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APPENDIX D. Geographic distances for P. petenensis

The shortest strait line distances (km) between populations of P. petenensis on the Yucatán Peninsula of Mexico.
Abbreviations: C: Campeche; QR: Quintana Roo; T: Tabasco; CH: Chiapas.

Geographical Distance
PpC2 PpC1 PpC3 T3 CH QR7 QR1 QR4 QR6 QR8

PpC2 0
PpC1 016.77 0
PpC3 043.67 027.93 0
T3 214.98 200.35 173.15 0
CH 188.21 173.97 145.99 067.96 0
QR7 186.67 194.21 201.60 339.82 282.15 0
QR1 202.62 210.25 218.67 354.86 296.59 016.64 0
QR4 227.24 235.34 245.51 385.15 326.86 045.29 030.38 0
QR6 223.82 234.25 244.88 387.60 330.73 048.59 035.76 011.85 0
QR8 286.20 308.48 326.79 484.41 432.45 155.36 146.90 199.77 110.81 0
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APPENDIX E. Morphological distances for P. velifera

Pairwise morphological distances for P. velifera calculated as both body shape (using relative warp analysis) (above the
diagonal) and dorsal fin shape (first principal component of size corrected linear measures of the dorsal fin (fin length, fin
area, height of the first, second, and last fin rays) (below diagonal).

Morphological Distance
C2 C5 QR2 QR3 QR5 Y1 Y2 Y3 Y4

C2 —— 45.78 14.70 10.53 19.49 32.88 23.52 24.11 22.26
C5 0.81 —— 32.24 49.36 38.00 31.92 25.91 14.25 54.14
QR2 0.12 0.30 —— 14.64 22.34 28.44 15.91 23.34 18.76
QR3 0.97 0.68 1.88 —— 24.79 39.12 28.40 34.91 33.35
QR5 0.12 1.55 0.49 4.28 —— 34.12 27.55 19.29 24.83
Y1 <0.01 0.97 0.19 3.27 0.07 —— 9.74 39.97 35.47
Y2 0.18 0.23 0.01 1.70 0.58 0.26 —— 25.10 32.24
Y3 0.07 1.39 0.40 4.01 <0.01 0.04 0.49 —— 28.61
Y4 0.27 2.03 0.77 5.05 0.03 0.19 0.89 0.06 ——
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APPENDIX F. Morphological distances for P. petenensis

Pairwise morphological distances for P. petenensis calculated as both body shape (using relative warp analysis) (above
the diagonal) and caudal fin shape (first principal component of size corrected linear measures of the caudal fin (fin
length, fin height, fin area, length of the upper fin edge, length of the lower fin edge) (below diagonal).

Morphological Distance
C1 C2 C3 CH1 QR4 T3

C1 —— 20.66 23.96 25.34 34.55 25.66
C2 0.29 —— 8.25 9.06 20.60 22.90
C3 0.42 0.11 —— 17.62 30.26 25.54
CH1 0.51 0.03 0.11 —— 19.56 24.82
QR4 <0.01 0.36 0.50 0.60 —— 24.08
T3 0.32 1.23 1.47 1.65 0.26 ——
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APPENDIX G. Behavioral distances for P. velifera

Pairwise behavioral distances for P. velifera calculated for both display
characteristics (first principal component of rate and duration) (above the
diagonal) and gonopodial thrusts (below diagonal).

Behavioral Distance
C2 QR2 Y1 Y2

C2 —— 0.01 0.37 0.09
QR2 0.16 —— 0.33 0.11
Y1 0.14 <0.01 —— 0.18
Y2 0.19 0.09 0.11 ——
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APPENDIX H. Behavioral distances for P. petenensis

Pairwise behavioral distances for P. petenensis calculated for both courtship
display characteristics (first principal component of rate and duration) (above the
diagonal) and gonopodial thrusts (below diagonal).

Behavioral Distance
C1 C2 QR4

C1 —— 0.41 1.97
C2 0.54 —— 0.71
QR4 <0.01 0.56 ——
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