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ABSTRACT 

Field evidence from underground storage tank (UST) sites where leaded gasoline 

leaked indicates the lead scavengers 1,2-dibromoethane (ethylene dibromide, or EDB) 

and 1,2-dichloroethane (1,2-DCA) may be present in groundwater at levels that pose 

unacceptable risk.  These compounds are seldom tested for at UST sites.  Although 

dehalogenation of EDB and 1,2-DCA is known to occur, the effect of fuel hydrocarbons 

on their biodegradability under anaerobic conditions is poorly understood.  Microcosms 

(2 L glass bottles) were prepared with soil and groundwater from a UST site in Clemson, 

South Carolina, using samples collected from the source (containing residual fuel) and 

less contaminated downgradient areas.  Anaerobic biodegradation of EDB occurred in 

microcosms simulating natural attenuation, but was more extensive and predictable in 

treatments biostimulated with lactate.  In the downgradient biostimulated microcosms, 

EDB decreased below its maximum contaminant level (MCL) (0.05 µg/L) at a first order 

rate of 9.4 ± 0.2 yr-1.  The pathway for EDB dehalogenation proceeded mainly by 

dihaloelimination to ethene in the source microcosms, while sequential hydrogenolysis to 

bromoethane and ethane was predominant in the downgradient treatments.  

Biodegradation of EDB in the source microcosms was confirmed by carbon specific 

isotope analysis, with a δ13C enrichment factor of -5.6‰.  The highest levels of EDB 

removal occurred in microcosms that produced the highest amounts of methane.  

Extensive biodegradation of benzene, ethylbenzene, toluene and ortho-xylene was also 

observed in the source and downgradient area microcosms.  In contrast, biodegradation of 

1,2-DCA proceeded at a considerably slower rate than EDB, with no response to lactate 
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additions.  The slower biodegradation rates for 1,2-DCA agree with field observations 

and indicate that even if EDB is removed to below its MCL, 1,2-DCA may persist. 

Separate experiments were carried out to assess the potential inhibitory 

interactions between 1,2-DCA and EDB, which might explain the observed persistence of 

these compounds where leaded gasoline was released. Preliminary experiments were 

conducted to determine if an enrichment culture that chlororespires PCE and TCE 

developed at Clemson University was also capable of respiring EDB and 1,2-DCA. The 

culture was found to have the ability to rapidly dehalorespire EDB and 1,2-DCA, 

currently the only mixed culture known to do so.  However, when the culture was fed 

both compounds simultaneously, it degraded EDB at the expense of 1,2-DCA in all cases.  

When the culture was enriched on EDB, activity on 1,2-DCA was completely inhibited, 

even after EDB was gone. No amount of 1,2-DCA inhibited the rate of EDB degradation 

down to part-per-trillion levels.  Any previous exposure to EDB precluded the culture’s 

ability to consume 1,2-DCA.  Remarkably, when the culture was enriched on 1,2-DCA 

and subsequently exposed to both EDB and 1,2-DCA, EDB was consumed first. EDB 

clearly inhibited 1,2-DCA biodegradation, and the degree of 1,2-DCA inhibition was 

roughly proportional to the concentration of EDB. This clear pattern of 1,2-DCA 

inhibition by EDB may contribute to its observed persistence in laboratory and field 

studies and merits further evaluation. 

Currently, decision makers have little information to guide remedial choices at 

UST sites contaminated with leaded gasoline additives.  An analytical model was used to 

simulate the effects of partial source removal and plume remediation on EDB and 1,2-
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DCA plumes at contaminated UST sites. The risk posed by EDB, 1,2-DCA, and 

comingled gasoline hydrocarbons varies throughout the plume over time. Dissolution 

from the light nonaqueous phase liquid (LNAPL) determines the concentration of each 

contaminant near the source, but biological decay in the plume has a greater influence as 

distance downgradient from the source increases. For this reason, compounds that exceed 

regulatory standards near the source may not in downgradient plume zones. At UST sites, 

partial removal of a residual LNAPL source mass may serve as a stand alone remedial 

technique if dissolved concentrations in the source zone are within a couple orders of 

magnitude of the applicable government or remedial standards.  This may be the case 

with 1,2-DCA; however EDB is likely to be found at concentrations that are orders of 

magnitude higher than its low MCL of 0.05 µg/L.  For sites with significant EDB 

contamination, even when plume remediation is combined with source depletion, 

significant timeframes may be required to mitigate the impact of this compound. Benzene 

and MTBE are commonly the focus of remedial efforts at UST sites, but simulations 

presented here suggest that EDB, and to a lesser extent 1,2-DCA could be the critical 

contaminants to consider in the remediation design process at many sites. 
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CHAPTER ONE 

INTRODUCTION 

Society’s reliance on the internal combustion engine has resulted in a legacy of 

environmental contamination where gasoline spilled or leaked from underground storage 

tank (UST) systems.  Two compounds, 1,2-dibromoethane (ethylene dibromide, or EDB) 

and 1,2-dichloroethane (1,2-DCA) were added to leaded gasoline along with organic 

contaminants benzene, toluene, ethyl benzene, xylene (known collectively as BTEX), and 

methyl tert-butyl ether (MTBE), but have not received significant regulatory scrutiny to 

date (21).  EDB and 1,2-DCA were present in gasoline from the 1920s through the 1980s.    

EDB is highly carcinogenic, with a federal Maximum Contaminant Level (MCL) of 0.05 

µg/L in groundwater, second only to that of dioxin.  1,2-DCA also has a low MCL (5.0 

μg/L), comparable to that of benzene.  EDB and 1,2-DCA are mobile at some sites, but 

the factors controlling this behavior are not well defined.  Emerging evidence indicates 

that EDB and 1,2-DCA persist in groundwater at UST sites, but to date, no significant 

research identifying the extent of lead scavenger contamination in groundwater at leaded 

gasoline release sites has been undertaken.  This research attempts to develop an 

understanding of the geochemical and biological components controlling the behavior of 

lead scavengers in the subsurface at sites where leaded gasoline was released, which in 

turn will permit more informed remedial decision making to achieve risk-based remedial 

objectives at UST sites.  This dissertation documents laboratory research conducted on 

the biodegradation of lead additives in the presence of fuel hydrocarbons and efforts to 

document the potential inhibitory effects of 1,2-DCA on EDB.  Using these laboratory 
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derived data, a new analytical model is utilized to explore potential remedial options that 

might be employed at UST sites.  Simulations of partial source removal and plume 

remediation are conducted to provide UST project managers a sense of how these 

contaminants will respond to remediation, and how remedial actions might lessen the 

extent of EDB and 1,2-DCA in groundwater at UST sites. 
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CHAPTER TWO 

MICROCOSM STUDY 

2.1 Introduction 

An estimated 400,000 underground storage tank (UST) releases have been 

documented in the US and it is possible that more undocumented releases have occurred 

(38).  The US Environmental Protection Agency (EPA) and state regulatory programs 

have required that benzene, toluene, ethylbenzene, xylenes (i.e., BTEX), and, more 

recently methyl tert-butyl ether (MTBE) be analyzed during environmental investigations 

at UST sites.  Two components of leaded gasoline that have received little attention are 

1,2-dibromoethane (ethylene dibromide, or EDB) and 1,2-dichloroethane (DCA), which 

were added to leaded gasoline to prevent engine lead fouling (21).  EDB is highly 

carcinogenic, with a drinking water maximum contaminant level (MCL) of 0.05 µg/L.  

The MCLs for 1,2-DCA and benzene are 5.0 µg/L.   

Once released to groundwater, the physical properties of EDB and 1,2-DCA 

suggest they will be mobile.  Based upon their gasoline-water partition constants, 

dissolved phase EDB and 1,2-DCA concentrations up to 1,900 and 3,700 µg/L, 

respectively, can be expected in groundwater near the source area of a leaded gasoline 

release (25).  A review of about 1,100 UST facilities in South Carolina revealed that 537 

had EDB concentrations above the MCL.  Few of these sites have been tested for 1,2-

DCA (25).  The extent of EDB and 1,2-DCA contamination is not known for the vast 

majority of sites, but it is apparent that both persist at levels above the MCL at a 

significant percentage of sites.  Despite the fact that there is an MCL for EDB, a review 
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of state UST regulatory program testing requirements revealed only 11 states required 

testing for EDB in 2003 (25).   

Biodegradation of EDB and 1,2-DCA has been reported under a variety of 

anaerobic conditions (29, 33, 40, 45, 52, 65).  However, previous research on EDB and 

1,2-DCA dehalogenation focused on agricultural or industrial settings.  No previous 

studies have investigated the effect of fuel hydrocarbons on EDB and 1,2-DCA anaerobic 

dehalogenation.  Furthermore, little effort has been made to relate laboratory 

biodegradation studies to behavior observed in the field, so the geochemical and 

biological factors determining whether or not EDB and 1,2-DCA degrade at gasoline 

sites remain unclear.  The purpose of this work was to evaluate biodegradation of EDB 

and 1,2-DCA in the presence of BTEX, MTBE and other fuel hydrocarbons.   

Numerous UST sites were reviewed in a collaborative effort between Clemson 

University and the South Carolina Department of Health and Environmental Control 

(SCDHEC) in 2004 .  Based on this review, a conceptual model was developed to 

describe the typical behavior of EDB and 1,2-DCA in gasoline-contaminated 

groundwater.  Three distinct spatial zones can be expected.  The source zone is found 

directly downgradient from a leaking UST or former tank excavation and is characterized 

by high dissolved concentrations of EDB, 1,2-DCA, BTEX, and other fuel hydrocarbons.  

In the midgradient zone dissolved concentrations are generally lower by orders of 

magnitude, which may occur at varying distances downgradient from the source.  The 

source and midgradient zones are typically anaerobic, given the high oxygen demand of 

the fuel hydrocarbons.  Finally, low concentrations (but above the MCL) of EDB and 1,2-
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DCA may exist in the downgradient portion of the plume, where BTEX compounds may 

be absent and conditions are typically aerobic.  The microcosms reported in this study 

were designed to evaluate natural attenuation (NA) or biostimulation (BST) of EDB and 

1,2-DCA in the source and midgradient zones of an actual UST site. 

2.2 Materials & Methods 

2.2.1 Soil and Groundwater Collection 

During the evaluation of SCDHEC UST sites, a facility in Clemson, SC was 

identified that exhibits the three spatial zones described above.  High concentrations of 

EDB (300 µg/L) in the source zone are attenuated by orders of magnitude less than ten 

meters downgradient, presumptively via biodegradation.  In May 2005, soil cores were 

collected from the source and midgradient areas.  A Geoprobe® was used to advance 5.1-

cm inner-diameter downhole tooling to below the water table in each zone, and two 1.5-

m soil cores were collected in acetate liners.  The ends of the liners were waxed to 

prevent volatilization and oxygen intrusion.  The source and midgradient boring locations 

were sited adjacent to groundwater wells, and groundwater was collected using bailers 

(after purging the wells of three volumes). 

2.2.2 Microcosms 

Three treatments were prepared (June 2005) for the source area and midgradient 

locations (triplicate or quadruplet bottles per treatment):  no amendments (to simulate 

NA); addition of lactate (to simulate BST); and killed controls.  Microcosms were 

prepared in 2-liter glass Qorpak® jugs (VWR International, Inc.), which provided 

sufficient volume for repeated sampling without significantly disrupting the volumetric 
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ratio of liquid-to-headspace.  Groundwater (1.5-L with 1 mg/L of resazurin added) and 

soil (400-g) were added to the bottles in an anaerobic chamber (approximately 99% N2, 

1% H2), leaving 0.3-L of headspace.  The bottles were capped with Teflon-backed septa 

(3.5-cm, Saint-Gobain Performance Plastics) and a plastic screw cap.  Soil from the 

source zone was contaminated with light non-aqueous phase liquid; a sheen (presumably 

gasoline) was initially present on the water surface of these microcosms.  The initial 

lactate addition to the BST treatments was 0.14 mM (100 times the stoichiometric 

amount required to reduce EDB and 1,2-DCA to ethene in the source zone microcosms).  

Killed controls were autoclaved for one hour on three consecutive days.  Evidence of 

biological activity (i.e., methane and ethene formation) was noted in the controls during 

the first 76 days of incubation.  After adding glutaraldehyde on day 76 (70 mg of 50% 

syrup/g soil (55)) there was no further biological activity.   

EDB, 1,2-DCA, and BTEX were present in the source zone groundwater in 

expected amounts, so it was unnecessary to add these compounds to the source 

treatments.  However, in two of the source zone NA microcosms (replicates #3 and #4), 

most of the EDB was consumed within three months of incubation.  In order to confirm 

the occurrence of EDB biodegradation, EDB was respiked (using a water saturated 

solution) to the same concentration initially observed in the groundwater (Table 1).  The 

soil sample was well-mixed prior to distribution to the microcosms and the same 

groundwater was used in all bottles.  Nevertheless, there was considerable variability in 

initial concentrations.  For the midgradient microcosms, the background concentrations 

were low relative to the source zone so EDB, 1,2-DCA and BTEX were added using 
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saturated water solutions.  The resulting initial midgradient concentrations were 

approximately two orders of magnitude lower than in the source zone treatments (as in 

the site conceptual model), with less variability (Table 1).  The microcosms were 

incubated at 22-24ºC, in an inverted position (solids and liquid in contact with the septa), 

with unpunctured septa, in order to minimize loss of volatile compounds (Appendix A). 

2.2.3 Chemicals 

Chemicals used were EDB (99.99%, Acrōs Organics), 1,2-DCA (99.99%, 

Malinckrodt), benzene (99.9%, Fischer), toluene (99.0%, Fischer), ethylbenzene and o-

xylene (99.9%, Fischer), MTBE (99.8%, Sigma-Aldrich), bromoethane (99.0%, BMD), 

vinyl bromide (98%, Pfaltz & Bauer), and chloroethane (99.7%, Aldrich).  National 

Welders supplied methane (99.99%), ethane (99.99%), ethene (99.99%) and hydrogen 

(99.999%). 

2.2.4 Analytical Methods  

EDB, bromoethane, vinyl bromide, 1,2-DCA, BTEX and MTBE were monitored 

by headspace analysis using a 5890 Series II Plus Hewlett-Packard gas chromatograph 

(GC), equipped with both a 63Ni electron capture detector (ECD) and a flame ionization 

detector (FID).  Headspace analysis was used because it allows for detection of all 

compounds to below their MCL and does not require an extraction step, as with EPA 

Method 8011.  Two headspace samples were taken simultaneously with separate 

syringes, and samples were manually injected, one immediately after the other, onto 

separate columns on the same GC (Appendix A).  Compound-specific isotope analysis 
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(CSIA) was performed for EDB and 1,2-DCA using procedures described in Appendix 

A. 

Chloroethane and vinyl chloride were quantified by headspace analysis with an 

FID-equipped GC (5890 Series II Plus Hewlett-Packard) and a packed Carbopack™ B 

column (28).  Methane, ethane, and ethene were quantified on the same GC using a 

Carbosieve™ S-II molecular sieve column (3.2-mm x 3.2-m; 200°C isothermal, 28.5 

mL/min N2 carrier gas; injector and detector at 250°C) and FID at 200°C .  Bromide, 

chloride, nitrate, sulfate, iron and organic acids were analyzed using standard procedures 

(Appendix A). 

2.3 Results 

2.3.1 Biodegradation Trends   

In the source zone microcosms, average results indicated significantly better 

removal of EDB in the BST treatment than in the NA treatment (Fig. 2.1a). Less than 1% 

of initial EDB remained at 380 days of incubation, versus 22% in NA treatment and 50% 

in killed controls.  Although the average dehalogenation rate for NA was less than BST, 

EDB was initially consumed in two NA  replicates (#3 and #4) at a faster rate than the 

BST microcosms (results for individual microcosms are presented in Appendix A).  This 

activity was confirmed by respiking EDB to the same initial concentration (Table 2.1) in 

both microcosms.  Rapid EDB consumption continued in one NA replicate (#3)  to below 

the MCL while the rate of dehalogenation in the other (NA #4) slowed.  The other source 

zone NA replicates (#1 and #2) and all three of the BST replicates were at μg/L levels at 

day 380 (and consequently were not respiked with EDB).  Average losses of 41% in the 
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killed controls occurred mainly during the first 76 days due to biological activity, since 

autoclaving was insufficient.  After addition of glutaraldehyde (day 76), EDB decreased 

by only 9% through day 380.  EDB losses from water controls averaged 11% over this 

same period (data not shown).   

In the midgradient microcosms, the BST treatment also outperformed NA in 

terms of EDB removal (Fig. 2.1b).  Less abiotic losses occurred from midgradient killed 

controls (11.1% ± 10.5%).  The midgradient BST treatment is notable since EDB was 

degraded below the MCL in all replicates.  Lactate was monitored approximately twice 

per month; whenever it was consumed, more was added.  Approximately 12 times more 

lactate was consumed in the midgradient bottles and both NA and BST replicates 

behaved more uniformly compared to the source zone.   

Pseudo-first order degradation rates for EDB degradation are shown in Figure 2.2.  

The source zone BST rate is approximately four times higher than for NA and the 

controls.  Although the average rate for NA was higher than for the controls, they were 

not statistically different (Student’s t-test, α = 0.05).  In midgradient microcosms, the 

BST rate was significantly greater than for NA, and both were significantly greater than 

the killed controls. 

Much less 1,2-DCA was degraded in source (Fig. 2.1c) and midgradient 

microcosms (Fig. 2.1d) compared to EDB.  1,2-DCA did not decrease below its MCL in 

any of the microcosms.  The first order rates for 1,2-DCA in NA and BST treatments 

were statistically higher than for the controls in the source, but not in the midgradient 

microcosms (Fig. 2.2), and lower abiotic losses of 1,2-DCA occurred in the controls 
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relative to EDB.  Consumption of lactate did not have as significant a stimulatory effect 

on 1,2-DCA; the degradation rates for NA and BST treatments were not statistically 

different in the source or midgradient treatments.  A notable departure from these trends 

occurred in the source zone NA microcosm (replicate #3) that exhibited extensive and 

rapid EDB biodegradation.  In this bottle, 1,2-DCA declined from 565 to 13 µg/L, with 

approximately an equimolar amount of chloroethane produced (Appendix A).   

The pattern of BTEX degradation varied between source and midgradient 

microcosms (Fig. 2.3).  A considerable amount of benzene was biodegraded in source 

and midgradient NA and BST treatments.  The first order rate for benzene was higher in 

the source BST versus NA microcosms (Fig. 2.2a).  There was no significant difference 

in the midgradient BST and NA rates (Fig. 2.3b), although the average amount of 

benzene consumed was greater in the NA treatment (Fig. 2.3b).  Toluene loss from the 

source zone killed controls was considerable (Fig. 2.3c).  Consequently, the first order 

rate for the BST treatment was not statistically higher than the killed controls (Fig. 2.2a).  

Abiotic losses were negligible in midgradient microcosms (Fig. 3d), in which toluene 

degradation was extensive and comparatively fast in live treatments (Fig. 2.2b).  

Extensive biodegradation of ethylbenzene and o-xylene occurred in the source and 

midgradient microcosms (Fig. 2.3e-h), at rates similar to toluene and well above killed 

controls (Fig. 2.2).  Statistically higher rates of removal were observed in the source zone 

NA treatment for ethylbenzene and o-xylene, whereas there was no significant difference 

in rates for these compounds in the midgradient microcosms.  In both source and 
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midgradient microcosms, there was no significant loss of MTBE from the live treatments 

or the killed controls (data not shown). 

2.3.2 EDB Daughter Products 

Biodegradation of EDB was accompanied by stoichiometric increases in ethene 

and bromoethane (Fig. 2.4).  Vinyl bromide was not detected in any microcosms.  After 

EDB decreased below detection, the amount of bromoethane and ethene also declined.  In 

water controls containing methane, ethene, ethane, and chloroethane, losses ranged from 

11.2% for ethane to 25.9% for methane over 280 days of incubation.  This indicates the 

extensive and rapid decreases in EDB daughter products from live bottles (e.g., Fig. 2.4) 

cannot be attributed solely to diffusive losses.   

Figure 2.5 shows the amount of daughter products for each treatment at the 

midpoint of the incubation period (when 40-70% of the EDB had been consumed) and 

the end of the incubation period.  At the midpoint, daughter products accounted for 66-

88% (molar basis) of the EDB consumed, with ethene predominant in the source and 

bromoethane in the midgradient treatments.  Ethane was insignificant in the source zone 

but was similar in magnitude to ethene in the midgradient treatments.  It is not known if 

ethane was formed via reduction of bromoethane, ethene, or both.  At the end of the 

incubation, significant decreases in daughter products occurred (also shown in Fig. 2.4); 

less than 18% remained in the source microcosms and none were detectable in the 

midgradient microcosms. 
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2.3.3 Electron Acceptors and Methane Production 

Nitrate was not detected at any time.  Sulfate was not detected in the midgradient 

microcosms.  In most of the source zone bottles, sulfate ranged from 13 to 43 mg/L, with 

no apparent fluctuations in concentration between days 130-251, when most of the 

samples were taken.  However, in the two source zone NA replicates with the lowest 

EDB concentrations (#3 and #4, Table 2), sulfate was less than 2.0 mg/L over the same 

interval.  Soluble iron at the end of the experiment averaged 4.1 (±4.3) mg/L in the 

source zone and 17.5 (±4.6) mg/L in the midgradient microcosms.  Soil from the source 

and midgradient zones contained low levels of total iron (Appendix A). 

Methane production was highest in microcosms that exhibited decreases in EDB 

to below the MCL (Table 2.2).  For example, methane output was highest in source zone 

NA replicate #3; EDB in this bottle decreased to non-detect.  Methane output was 

considerably higher and EDB degradation more extensive in the midgradient BST 

treatment compared to NA.  The highest amount of methane that accumulated in the 

midgradient bottles (0.24 mmol) accounted for 9.4% of the electron equivalents of the 

lactate consumed (1.7 mmol), while acetate and propionate accounted for approximately 

23%. 

2.2.4 Compound-specific isotope analysis 

Samples for CSIA were taken from two source zone NA microcosms (days 189 

and 259). On day 259 extensive dehalogenation was noted for EDB (Fig. 2.1a), but less 

for 1,2-DCA (Fig. 2.1c). The values of δ13C in the four samples increased as the EDB 

concentrations decreased relative to the initial concentrations (Fig. 2.6). The observed 
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increase of δ13C associated with a reduction in EDB concentration is consistent with EDB 

dehalogenation (47). The same trend in isotope fractionation was observed in both NA 

microcosms. In NA samples, the enrichment factor is –5.6‰ (±1‰ at 95 % confidence 

level).  Significant attenuation of 1,2-DCA occurred only in NA replicate #3, in which 

the δ13C of 1,2-DCA was +15‰.  This was also the only source zone microcosm in 

which EDB decreased below the MCL and a significant amount of methane was 

produced (Table 2.2).  In replicate #2, with no apparent 1,2-DCA attenuation, the δ13C of 

1,2-DCA was –26‰. 

2.4 Discussion 

This results of this study are the first to conclusively demonstrate anaerobic 

biodegradation of EDB in the presence of fuel hydrocarbons from release of leaded 

gasoline to groundwater.  However, considerably less dechlorination of 1,2-DCA 

occurred in the presence of fuel hydrocarbons, in spite of previous studies that have 

demonstrated anaerobic degradation of  1,2-DCA when it is the sole contaminant.    

Rapid EDB dehalogenation in the source zone (in the presence of high 

concentrations of BTEX and other fuel hydrocarbons) to below the MCL is possible with 

NA.  However, the average rate of EDB removal was faster and less variable with BST.  

The reasons for variability in source zone EDB NA rates are not yet known but are likely 

related to high levels of other hydrocarbons also undergoing biodegradation.  The source 

zone microcosms contain high levels of organic acids (data not shown) that may be 

enhancing (by providing electron donor) or inhibiting (due to the potential toxicity of 

longer chain fatty acids) EDB and 1,2-DCA dehalogenation.  Faster anaerobic decay of 
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EDB may occur downgradient of gasoline source zones due to lower hydrocarbon 

concentrations.   

The pattern of isotope fractionation observed in this study is consistent with a 

degradative process, such as bio-dehalogenation.  No previous studies were found with 

stable isotope data for reductive debromination of EDB. The value for the enrichment 

factor in this study (-5.6±1‰) is within the range of those reported for reductive 

dechlorination of tri- and tetrachloroethene (–2.5 to –13.8‰ and –2 to –5.5‰, 

respectively (19)), but is lower than the values reported for dechlorination of 1,2-DCA (–

27 to –33‰ (19)).  The magnitude of δ13C enrichment for 1,2-DCA, from –26‰ in a 

specimen with no apparent attenuation of the compound to +15‰ in the NA microcosm 

showing advanced attenuation of 1,2-DCA, agrees well with previous reports on 

dechlorination of 1,2-DCA (19). The relatively large isotope effects observed in this 

study suggest that CSIA may be used to document dehalogenation of EDB and 1,2-DCA 

in the field.  

The slower rate of 1,2-DCA dehalogenation compared to EDB is consistent with 

field observations (21). Given 1,2-DCA’s low MCL (5.0 µg/L) and the fact that few 

states currently sample for this compound, it may present a significant risk at leaded 

gasoline UST sites.  1,2-DCA removal to near its MCL in one of the source zone 

microcosms (confirmed by CSIA) suggests this compound can be biodegraded at UST 

sites, but as with EDB, source zone NA results were variable.  Biodegradation of 

brominated organics is generally faster than chlorinated compounds (61) and 

thermodynamics slightly favor dehalogenation of EDB over 1,2-DCA (Appendix A).  
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Given that the same type of microbes (i.e., Dehalococcoides) dehalorespire both 

compounds (33), EDB biodegradation may have to occur before activity commences on 

1,2-DCA.  pH may also influence the rate of dehalogenation, since the activity of 

Dehalococcoides declines below a pH of approximately 6.5. Groundwater at the Clemson 

UST site and in the microcosms is approximately 6.4.  In addition to Dehalococcoides, 

rapid chlororespiration of 1,2-DCA has been reported with Desulfitobacterium 

dichloroeliminans strain DCA1 (45); it is not known if these microbes are present at the 

Clemson UST site.    

First order biodegradation rates observed for EDB, 1,2-DCA and BTEX were 

similar to in situ rates at the Clemson UST site and published rates (57) (Appendix A).  

Such comparisons must be viewed with caution due to variability in field and laboratory 

conditions, including factors such as biomass and contaminant concentrations.  The 

biodegradation rate for benzene in the source zone microcosms was comparable to the 

other BTEX compounds, although it was comparatively slower in the downgradient 

bottles.  The fact that biodegradation of benzene occurred is noteworthy because this 

compound is often regarded as refractory under anaerobic conditions (57).   

The effect of lactate addition on BTEX biodegradation varied.  It appeared to be 

beneficial in the case of benzene, negligible in the case of toluene, and inhibitory for 

ethylbenzene and o-xylene in the source zone.  Nevertheless, the benefits of 

biostimulation with respect to EDB are clear, and any potential inhibitory effects of 

lactate on hydrocarbons is less of a concern in the source zone since these compounds 



 

16 

 

biodegraded at a faster rate in the midgradient zone (Fig. 2), do not persist in 

downgradient aerobic zones, and are less toxic (21).  

Most previous studies report anaerobic dehalogenation of EDB occurring 

primarily via dihaloelimination to ethene, with hydrogenolysis to bromoethane and 

dehydrohalogenation to vinyl bromide being minor (52).  However, hydrogenolysis to 

bromoethane was prominent in this study, particularly in the midgradient treatments.  

Bromoethane is present in groundwater at the Clemson UST site (unpublished data), 

confirming the occurrence of EDB hydrogenolysis in situ.  While ethene and ethane are 

harmless, several toxicological effects are associated with bromoethane, including 

neurotoxicity, hematological and hepatic toxicity, irritation of the respiratory tract, 

damage to genetic material, and carcinogenicity (http://www.inchem.org/documents-

/cicads/cicads/cicad42htm).  The possibility of groundwater contamination by 

bromoethane, which is not tested for at UST sites, is a concern, although an MCL has not 

been established.  It is unclear what factors determine the predominant pathway for 

anaerobic dehalogenation of EDB.     

The significant decrease in ethene and bromoethane from source and midgradient 

microcosms in comparison to water controls indicates that a degradation mechanism 

other than reduction is responsible.  Anaerobic oxidation of ethene has been reported 

under sulfate reducing conditions (9).  Sulfate reduction was observed in several source 

zone NA microcosms and the amount of sulfate required for ethene oxidation was less 

than 1 mg/L. A modest level of iron reduction occurred in the midgradient treatments and 

bio-oxidation of vinyl chloride has been demonstrated with iron as the terminal electron 
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acceptor (10, 11).  It is not known if anaerobic bio-oxidation is also possible for ethane 

and bromoethane.  The product(s) from oxidation (CO2 and Br-) are not readily detectable 

in situ, so that disappearance of EDB daughter products complicates documenting natural 

attenuation of EDB at UST sites.  Methanogenesis may serve as an indirect predictor of 

EDB and daughter product biodegradation.  We found a consistent correlation between 

EDB decay below its MCL and the presence of high levels of methane in microcosms.     

The microcosm results from the Clemson UST site indicate that natural 

attenuation of EDB from leaded gasoline spills is possible, but may be difficult to predict 

and document.  Biostimulation increased the rate of EDB biodegradation and permitted 

consistent removal to below the MCL.  Based on growing experience with electron donor 

addition to enhance removal of chlorinated ethenes, the same in situ approach should be 

transferable to UST sites.  If the necessary microbes are not present, bioaugmentation 

may be necessary using cultures that dehalorespire EDB and 1,2-DCA. 
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Table 2.1.  Average Initial Concentrations in the Microcosms 
 

Compound Source Zone (µg/L) Midgradient Zone (µg/L) 

EDB 343 ± 186a 10.5 ± 1.9 

1,2-DCA 575 ± 156 19.1 ± 5.2 

Benzene 25,000 ± 11,800 116 ± 25 

Toluene 7,950 ± 4,560 28.3 ± 1.6 

Ethylbenzene 2,350 ± 1,090 16.2 ± 2.4 

o-Xylene 3,670 ± 1,550 17.3 ± 2.6 
 

a ± standard deviation for three or four microcosms. 
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Table 2.2  Maximum Methane Produced and Final EDB Concentrations 
 
 Source Zone  Midgradient Zone 

 NA BST  NA BST 

 
 

Rep. 

CH4 
(µmol/ 
bottle) 

 
EDBf

a 

(µg/L) 

CH4 

(µmol/ 
bottle)

 
EDBf 
(µg/L) 

 CH4 
(µmol/ 
bottle)

 
EDBf 
(µg/L) 

CH4 
(µmol/ 
bottle) 

 
EDBf 
(µg/L) 

1 1.2 120 1.5 0.4  1.5 0.33 244 NDb 

2 3.0 67 1.8 1.4  2.4 0.24 94 ND 

3 1,550 NDb 2.3 3.4  1.1 0.20 224 ND 

4 219 7.3 - -  - - - - 

 
a EDBf = final EDB concentration.  b ND = non-detect (<0.03 µg/L). 
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FIGURE 2.1 Average EDB and 1,2-DCA concentrations for the NA treatment (∆), BST 
treatment (O), and killed controls ( ) in the source zone (a and c) and midgradient (b and 
d) microcosms. Arrows (↓) indicate when lactate was added to all replicates within a BST 
treatment.  An arrow with a number above it indicates that lactate was added only to that 
replicate.  New lactate additions were made only when the previous addition was 
completely consumed. Dashed horizontal lines indicate the MCL for EDB and 1,2-DCA. 
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FIGURE 2.2 Pseudo first-order decay rates for the source zone (a) and midgradient (b) 
microcosms.  Rates were determined from the pooled data for triplicate or quaduplicate 
bottles.  Error bars represent the standard error of the slope of the regression line used to 
determine the rates.  Horizontal lines above adjacent treatments indicate there is not a 
statistically significant difference between the two rates (NS = not significant); the 
absence of a horizontal line over adjacent treatments indicates they are statistically 
different (Student’s t-test on the slopes of the regression lines, α = 0.05).  
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FIGURE 2.3 Average BTEX concentrations for the NA treatment (∆), BST treatment 
(O), and killed controls ( ) in the source zone (a, c, e, and g) and midgradient (b, d, f, and 
h) microcosms. Arrows (↓) indicate when lactate was added to all replicates within a BST 
treatment.  An arrow with a number above it indicates that lactate was added only to that 
replicate. MCL values are shown as dashed horizontal lines when they are within the y-
axis.    
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FIGURE 2.4 EDB biodegradation and daughter product behavior in source zone NA 
replicate #3.  Σ = sum of (EDB + bromoethane + ethene + ethane). 
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FIGURE 2.5 Daughter products from EDB biodegradation in the source zone (a) and 
midgradient (b) microcosms.  Midpoint refers to the approximate half way period of 
incubation, when EDB biodegradation was 40-70% complete and daughter product 
accumulation was close to the maximum.  Numbers above the bars indicate the molar 
percentage of EDB daughter products relative to the total amount of EDB consumed. 

 

 

 
 
 
 

0

0.03

0.06

0.09

NA BS NA BS

0.0

0.4

0.8

1.2

1.6

2.0

NA BS NA BS

Midpoint Final (380 d)

(82%)
b) Midgradient

(66%)

(0%) (0%)

Final (284 d)Midpoint

a) Source

Bromoethane

Ethane

Ethene

ED
B

 D
au

gh
te

r P
ro

du
ct

s 
(μ

m
ol

/b
ot

tle
)

Bromoethane

Ethane

Ethene

(17.1%)
(7.7%)

(86 %)
(88 %)

0

0.03

0.06

0.09

NA BS NA BS

0.0

0.4

0.8

1.2

1.6

2.0

NA BS NA BS

Midpoint Final (380 d)

(82%)
b) Midgradient

(66%)

(0%) (0%)

Final (284 d)Midpoint

a) Source

Bromoethane

Ethane

Ethene

Bromoethane

Ethane

Ethene

ED
B

 D
au

gh
te

r P
ro

du
ct

s 
(μ

m
ol

/b
ot

tle
)

Bromoethane

Ethane

Ethene

Bromoethane

Ethane

Ethene

(17.1%)
(7.7%)

(86 %)
(88 %)



 

25 

 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
FIGURE 2.6 CSIA results for EDB for two source zone NA microcosms. Ct is the 
concentration of EDB at the time of sampling; Co is the initial concentration of EDB.  
The enrichment factor (slope of the regression line) is –5.6‰. 
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CHAPTER THREE 

MODELING THE EFFECTS OF REMEDIATION ON EDB AND 1,2-DCA 

PLUMES USING REMCHLOR 

3.1  Introduction 

Organic contaminants benzene, toluene, ethylbenzene, xylene (known collectively 

as BTEX), and methyl tert-butyl ether (MTBE), are commonly encountered in soil and 

groundwater at sites where gasoline spilled or leaked from underground storage tank 

(UST) systems. In the United States alone, an estimated 400,000 UST releases have been 

documented (38). Though gasoline is a complex mixture of hundreds of hydrocarbons, 

historically the United States Environmental Protection Agency (USEPA) and state 

regulatory programs have required that only BTEX and a small number of other organic 

contaminants be analyzed during environmental investigations. Two components of 

leaded gasoline that have not received significant regulatory scrutiny to date are 1,2-

dibromoethane (ethylene dibromide, or EDB), and 1,2-dichloroethane (1,2-DCA), which 

were added to leaded gasoline to prevent engine lead fouling (21). EDB is highly toxic, 

with the lowest federal Maximum Contaminant Level (MCL) (0.05 μ g/L) for any 

compound except dioxin (21). 1,2-DCA is also toxic and a suspected carcinogen, and has 

the same MCL as benzene (5.0 g/L). Emerging evidence indicates that EDB and 1,2-

DCA persist in groundwater, but to date, no significant research identifying the extent of 

EDB and 1,2-DCA contamination in groundwater at leaded gasoline release sites has 

been undertaken, nor is their behavior in the subsurface well understood (21).   
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The objective of this study is to evaluate the effects of partial LNAPL source 

removal and plume remediation on EDB, 1,2-DCA, and hydrocarbon plumes at leaded 

gasoline UST sites. Experience with natural attenuation as a remedy for plume 

management has shown that mathematical models can play an important role in selection 

of a remedy (2, 50, 64). In many cases, screening level simulations performed with 

analytical models such as BIOCHLOR (3) or BIOSCREEN (49) are effective for 

demonstrating the applicability of natural attenuation as a remedy. This study uses an 

analytical model called REMChlor (Remediation Evaluation Model for Chlorinated 

Solvents) (22, 23), which accounts for variable source and plume remediation. 

REMChlor simulations will be used to evaluate the effects of partial source removal and 

plume bioremediation on EDB, 1,2-DCA and hydrocarbon plumes at UST sites. It is 

anticipated that the results of these simulations will be useful to remedial decision 

makers, who currently have little or no information about how these leaded gasoline 

additives might respond to remediation. 

3.2  Background 

Premature ignition, otherwise known as “knocking,” was a significant obstacle to 

the development of the internal combustion engine in the early part of the 20th century 

(8). In 1921, researchers discovered that the addition of tetraethyl lead prevented 

knocking, but found that it also formed solid lead deposits on valves and spark plugs, a 

condition known as engine fouling (37). EDB and 1,2-DCA were added to gasoline 

because they form volatile lead halides which can easily be removed in exhaust. These 

compounds were present in virtually all leaded gasoline sold, and are commonly referred 
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to as “lead scavengers” (37). In countries where leaded gasoline is still marketed, lead 

scavengers remain part of the fuel mix formulation (25). Once released to groundwater, 

the physical properties of EDB and 1,2-DCA suggest they will be mobile. EDB is a 

moderately soluble compound, with an aqueous solubility of 4,300 milligrams per liter 

(mg/L) (48); the solubility of 1,2-DCA is 8,500 mg/L (5). Based upon these solubilities 

and their gasoline-water partition constants, dissolved phase EDB and 1,2-DCA 

concentrations up to 1,900 and 3,700 µg/L can be expected in groundwater near the 

source area of a leaded gasoline release (21). Both EDB and 1,2-DCA have low air-

water, soil-water and octanol-water partition constants, so they will not partition out of 

groundwater into air and soil to any great degree. These factors indicate lead scavengers 

could form dissolved phase plumes downgradient of the release source zone. 

Sites where leaded gasoline LNAPL contamination exists pose significant 

technical challenges and potential long-term risk to human health and the environment. 

Though little information exists on the prevalence of LNAPL source zones at sites where 

USTs leaked, it is commonly assumed that residual LNAPL source zones can be expected 

at sites where persistent and high-concentration plumes are present (67).  Such sites 

would be characterized by two primary zones, 1) the source, defined as the area of 

aquifer or vadose zone where LNAPL is in contact with aquifer materials, and 2) the 

plume, where contamination is present in adsorbed and dissolved form. Recent attention 

has focused on the suitability of remediation of NAPL source zones at these sites, where 

short and long term remedial goals may necessitate source removal as well as plume 

remediation (23). As a consequence, the debate regarding source remediation versus 
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plume remediation has particular relevance to UST sites in general and lead scavengers in 

particular. Source removal is usually accomplished in order to minimize downgradient 

impacts of the contaminant plume (23), but currently metrics for establishing the efficacy 

of such actions are poorly defined, and no tools are in use to promote such an assessment. 

3.3  Modeling Approach 

Following Parker and Park (2004), Zhu and Sykes (2004), and Falta et al., 

(2005a), a mass balance on a contaminant species of interest in LNAPL source zone can 

be written as  

( )s
dM QC t
dt

= −  (3.1) 

where Q is the water flow rate through the source zone due to infiltration or groundwater 

flow, Cs(t) is the average dissolved concentration of contaminant species leaving the 

source zone, and M is the mass of the contaminant species in the source zone. The source 

mass is linked to the source discharge through a power function (43, 57, 60, 61, 80): 

0 0

( ) ( )sC t M t
C M

Γ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (3.2) 

where C0 and M0 are the initial source dissolved concentration and mass of the 

contaminant species, respectively. The solution of (3.1) with the power function (3.2) can 

be used to estimate the time-dependent depletion of the source zone mass by dissolution. 

The time-dependent mass is then used in (3.2) to calculate the time-dependent source 

discharge. This model can simulate a wide range of source responses to mass loss, 

depending on the value of.  The effect of this parameter is discussed in Parker and Park 

(2004), Zhu and Sykes (2004) and Falta et al. (2005a), but an important special case 
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occurs when Γ =1, and the source contaminant mass and discharge are linearly related.  

As will be shown, Γ =1 may be a good approximation for modeling source behavior at 

sites contaminated with gasoline.  If (1) and (2) are solved with Γ =1, the source 

discharge and mass decline exponentially with time (49, 51, 69).  

Gasoline is a multicomponent LNAPL.  It can be shown that to a reasonable 

approximation, components of a multicomponent NAPL will weather out of the NAPL 

according to a first order process.  Assuming linear equilibrium phase partitioning, the 

following partition coefficients are defined: 
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where Kpnw is the NAPL-water partition constant, Cn is the mass concentration of the 

component in the NAPL, Cw is the aqueous mass concentration of the component, H is 

the dimensionless Henry’s constant, Cg is the mass concentration in the gas phase,  KD is 

the soil water distribution coefficient, and XS is the mass fraction adsorbed to soil. The 

NAPL-water partition coefficient, Kpnw can be calculated assuming Raoult’s law, using 

the component and mixture molecular weights, the NAPL density, and the component 

pure solubility (14): 
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where Mwt is the compound’s molecular weight, ρn is NAPL density, ave
wtM  is the average 

molecular weight of the NAPL, and wC  is the component’s pure solubility in water. The 

total concentration (CT) of the gasoline component is defined as follows: 

T w w g g n n b D wC S C S C S C K Cφ φ φ ρ= + + +  (3.7) 

where φ is porosity, Sw is water phase saturation, Sg is gas phase saturation, Sn is NAPL 

phase saturation, and ρb is bulk soil density. For a multicomponent NAPL with linear 

phase partitioning, CT is a linear function of any phase concentration. The mass balance 

on a control volume containing soil, gas, water, and NAPL, with gas and water flushing, 

and first order aqueous phase decay of the species leads to a differential equation: 

T
w w g g w w

dCV Q C Q C S C
dt

φ λ= − − −∀
 (3.8) 

Where V is the volume of the system, Qw and Qg are the water and gas flushing rates 

(volume per time), and λ is the pseudo first order decay rate. C
T
 can be defined in terms 

of the aqueous concentration using the phase partitioning relationships in equations (3.3), 

(3.4), and (3.5): 

*( )T w g n pnw b D w w wC S S H S K K C K Cφ φ φ ρ= + + + =  (3.9) 

If the phase saturations and partition coefficients are constant, then Kw
* is constant.  

Substituting, we get: 

* *
w gw w

w s w
w w

Q HQdC S C k C
dt K V K

φ λ+⎛ ⎞
= − + = −⎜ ⎟

⎝ ⎠  (3.10) 

So, for constant phase saturations and partition coefficients, NAPL weathering is a first 

order decay process with an exponential decay solution: 
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 (3.11) 

with a source decay rate of ks. The source decay rate is a measure of processes such as 

dissolution, volatilization, and aqueous phase biodegradation that over time remove the 

LNAPL component from the source zone. Since all of the concentrations are linearly 

related, they will all decline exponentially, with the same source decay rate coefficient: 

,0

sk tw

w

C e
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−=
 (3.12) 

Therefore, this equation can be used to model NAPL composition, soil mass fractions, 

and dissolved concentrations in the source zone. Because the decay of the source zone is 

exponential, it can thus be assumed that  Γ  is equal to 1 in Equation (3.2).  If the only 

depletion process taking place in the source zone is aqueous dissolution of the LNAPL 

component, then using Equations (3.1) and (3.2) (or Equation 3.10 with no gas flushing 

or biodegradation) leads to an exponential decay solution: 
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The REMChlor code simulates source depletion by dissolution, first order decay 

(by biological or chemical processes), and aggressive source remediation.  Aggressive 

source remediation involves removing a large fraction of the source mass in a short 

period of time.  REMChlor simulates this by simply rescaling the source zone mass, M, 

to reflect the fraction of the source that was removed.  Then the source concentration, Cs 

is recalculated using the power function defined by equation (3.2), and the mass balance 
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equation (3.1) is solved using these new values as the initial condition.  Full details of this 

source model are given in (23) and (20).   

The REMChlor model also includes an analytical model capable of simulating 

plume remediation of compounds that is variable in space and time (22). This plume 

model can consider independent variations in parent and daughter compound decay rates 

and yield coefficients in the plume.  The plume model is based on a distance-time plot for 

the plume behavior (Figure 3.1).  Here, distance is the distance downgradient of the 

LNAPL source, and time is the time since the LNAPL release.  The distance-time domain 

is divided into 9 “reaction zones”, where the contaminant first order decay rates are 

independently specified.  Thus the code can simulate temporal and spatial changes in the 

contaminant decay rate that arise from natural and enhanced plume biodegradation.  

These space-time reaction zones are described in more detail below. 

3.4  Simulation Development 

The conceptual plume model employed here incorporates three spatial zones. The 

first, termed zone 1, is found directly downgradient from the contamination source (a 

leaking UST or former tank excavation), and is characterized by high dissolved phase 

concentrations of EDB, 1,2-DCA, and BTEX (Figure 3.2). At sites where historic 

releases of leaded gasoline are commingled with later releases of unleaded fuel, 

oxygenates such as MTBE may also be present. In zone 2, dissolved phase concentrations 

decline by orders of magnitude at varying distances downgradient from the source 

depending on site conditions. Both zones 1 and 2 are assumed to be anaerobic, given that 

available oxygen is depleted quickly by an abundance of fuel hydrocarbons, some of 
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which can serve as electron donors in anaerobic dehalogenation processes (57). Finally, 

low concentrations (but above the MCL) of EDB and 1,2-DCA may exist in the 

downgradient portion of the plume, though BTEX compounds may not be present, given 

that these compounds tend to be more biodegradable in the aerobic setting (57) (Figure 

3.2). The downgradient zone is usually aerobic, and is termed here zone 3. 

We consider two extremes in UST plume behavior. At sites where natural 

attenuation processes are robust, EDB and 1,2-DCA plumes are likely to be short, but at 

other sites, long plumes of either or both contaminants may exist (Figure 3.2). The short 

plume simulations are based on a site in Clemson, SC where EDB and 1,2-DCA plume 

extent is limited.  In June 2005, three soil borings were advanced at the Former Clemson 

Tiger Mart in zones 1, 2 and 3, and soil and groundwater collected for the purpose of 

establishing laboratory microcosms (34). This site sold leaded gasoline and various 

formulations of unleaded gasoline until the tanks were removed in 2000 (7). Subsequent 

groundwater investigations revealed high levels of EDB, 1,2-DCA, BTEX, and MTBE 

downgradient of the source zone. Concentrations of EDB and 1,2-DCA are 

approximately 300 μg/L and 800 μg/L respectively in this area. High part-per-million 

concentrations of BTEX and MTBE are present in ground water in zone 1. The presence 

of MTBE is attributable to a later release of unleaded fuel, since this compound would 

not have been present in the original release of leaded fuel. Over the next 10 meters 

downgradient, concentrations are attenuated by one to two orders of magnitude (zone 2). 

Site lithology at the Former Clemson Tiger Mart consists of poorly sorted sand, clay and 

silt (7) with a groundwater Darcy velocity is approximately 10 meters per year.   
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In anaerobic laboratory microcosms, EDB was observed to degrade to its low 

MCL of 0.05 μg/L in the presence of 1,2-DCA and fuel hydrocarbons (34). However, 

1,2-DCA was not significantly biodegraded. Biodegradation of BTEX was also observed 

in the anaerobic microcosms. The addition of lactate greatly stimulated biodegradation of 

EDB, but had no apparent effect on 1,2-DCA in the microcosm experiments. The 

addition of lactate yielded mixed effects in the case of the BTEX compounds. Table 3.1 

summarizes pseudo first order decay rates derived from incubating the microcosms from 

284 to 380 days for EDB, 1,2-DCA, and benzene. These laboratory-derived 

biodegradation rates are used in the present study and are assumed to be representative of 

in-situ rates at similar UST sites. Aerobic degradation rates for benzene, and aerobic and 

anaerobic degradation rates for MTBE were taken from Schmidt et al. (2003) (Table 3.1).   

The second set of simulations is based on a site where long EDB plumes have 

been extensively delineated. The Massachusetts Military Reservation (MMR) is situated 

on Cape Cod, and has been in operation since 1911, providing mechanized and aircraft 

training for the Army and Air Force. A total of four EDB plumes exist at MMR, ranging 

in length from 1,400 to 2,400 meters (21). Concentrations of EDB detected in the 

subsurface at MMR range from 0.071 to over 600 μg/L (21). Geology at MMR is 

comprised of glacial deposits characterized by fine to coarse sands and groundwater 

seepage velocity ranges from 100 to 200 meters per year (21). Concentrations of EDB in 

several of these plumes have declined little, which would indicate that natural attenuation 

processes are not effective at limiting the transport of EDB (12). Based upon available 

groundwater concentrations of EDB in one of the plumes at MMR, the computed EDB 
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in-situ degradation rate at MMR was estimated at 0.04 yr-1, or a half-life of 

approximately 18 years (24). 

Table 3.2 compares parameters used to model the short plume and long plume 

scenarios. A catastrophic release of 18,927 liters (5,000 gallons) of leaded gasoline is 

assumed to have occurred in 1987, which is roughly when leaded gasoline was phased 

out of existence in the US. This release would have contained EDB, 1,2-DCA and BTEX, 

but not MTBE. A second, smaller release of 3,785 liters (1000 gallons) will be modeled 

ten years afterwards (in 1997). Such a release could have resulted from an overfill or 

localized piping leak, and it would have contained MTBE and BTEX, but not EDB and 

1,2-DCA, since only unleaded gasoline was marketed at this point. Benzene is thus the 

only contaminant of concern that is common to both releases. Both releases would have 

contained other hydrocarbons that will not be simulated here (although they could 

contribute to the formation of the anaerobic zone geometry). 

Basic simulation parameters for the short and long plume cases are similar for 

most parameters, save for groundwater Darcy velocity, which is assumed in the long 

plume case to be double (20 m/yr) the value of the short plume case (10 m/yr), and for 

the source zone dimensions (Table 3.2). It is to be expected that faster groundwater 

velocity will form longer plumes. Small transverse and vertical dispersivities of 0.05 and 

0.005 meters, respectively, are selected to emphasize contaminant destruction and 

removal effects on the plumes, rather than dilution effects. In REMChlor, longitudinal 

dispersivity is scale dependent, and is calculated as  
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where αx is longitudinal dispersivity, σv/ v  is the ratio of pore velocity standard deviation 

to the mean pore velocity, and x  is the average of the front location at a given time (22). 

A σv of 0.1 produces a longitudinal dispersivity of 1/200 the travel distance, and this 

value is used here. 

EDB and 1,2-DCA concentrations in gasoline ranged from about 0.3 g/L before 

the 1970s to around 0.07 g/L at the time leaded gasoline was banned (24). The lower 

value is selected here because it was assumed that the first release occurred in 1987, 

when leaded gasoline was phased out of existence and concentrations of the lead 

additives were at their lowest. This would produce a total mass of 1.3 kg of EDB and 1,2-

DCA in the subsurface if 18,927 liters (or the entire contents of a 5,000-gallon UST) 

were released. Historical releases of leaded gasoline that occurred prior to the late 1980s 

would have contained higher concentrations of EDB and 1,2-DCA, which would result in 

proportionately greater EDB and 1,2-DCA mass in the subsurface, so in this respect the 

selection of lower concentrations used in these simulations is conservative. Benzene 

concentrations in leaded and unleaded gasoline have also varied over time (63). In release 

1, a two percent benzene content by mass in leaded gasoline was assumed, producing a 

benzene concentration of 13 g/L (21), or a total mass of benzene of 246 kg released into 

the subsurface. For the second, smaller release in 1997, benzene concentrations would 

have been different, and probably lower. Based on data from (63), a benzene 

concentration of 3.8 g/L was used for the smaller 1997 release, producing 14 kg of 

benzene mass added to the source. The addition of benzene from the second release was 
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modeled additively; the source mass of benzene at the point of the second release equals 

residual mass from the first release at that time plus the mass attributable to the second 

release. This resulted in an increase in benzene concentration discharging from the source 

zone at the time of the second release. Modeling the benzene release in this fashion will 

mimicked the effects of multiple releases at UST sites. MTBE concentration in the 

gasoline at the time of the second release was taken from data characterizing 

conventional fuel marketed in 1997 in Charleston, SC (63). Using a concentration of 13.8 

g/L (1.8% by mass), a 1,000 gallon release would result in 52 kg of MTBE in the source 

zone.  We note that reformulated gasolines that were used in many parts of the country 

could contain as much as eight times this amount of MTBE. 

For release 1, cross-sectional (perpendicular to flow) source zone dimensions of 

10 meters wide by 3 meters deep were specified in REMChlor. Dissolution of source 

mass occurs when groundwater flux discharges from this 30 square meter area, but the 

total volume of gasoline resulting from the releases would be dispersed throughout the 

subsurface, as calculated by the equation 

n

n
tot S

V
V

φ
=  (3.14) 

where Vtot is the contaminated volume of soil in the subsurface, Vn is the volume of 

NAPL (18,927 liters, or 18.9 m3), ф is porosity (assumed to be 0.35), and Sn is NAPL 

saturation (assumed to be 0.3). This calculation yields a total contaminated volume of 

180 m3. The 1997 release was assumed to be one-fifth the volume of the first release, so 

benzene and MTBE mass from this release would likely spread over a smaller volume. If 

the flux plane is 30 meters squared for the first release, then the second release might 
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discharge through a flux plane of 6 meters squared. Aqueous concentrations are highest 

immediately downgradient of the source, and can be estimated using gasoline-water 

partition constants (Table 3.3). It is unlikely that field scale groundwater concentrations 

downgradient of the NAPL source would be this high due to mixing and dilution with 

clean groundwater (24), and therefore, initial groundwater concentrations in the NAPL 

source zone are assumed to be half of the highest concentrations that might be expected 

due to equilibrium with the NAPL source.  On this basis, calculated initial source 

concentration of EDB and 1,2-DCA would be 230 μg/L and 417 μg/L, respectively. 

Similarly, modeled initial source benzene concentrations of 18,571 μg/L and 5,441 μg/L 

were calculated for releases 1 and 2 respectively. The initial MTBE source concentration 

was 446,528 μg/L. As noted earlier, these source concentrations (Cs) will tend to decline 

exponentially as groundwater flows through the source zone.  Retardation coefficients for 

the 4 contaminants were calculated assuming an organic carbon fraction of 0.001 (62). Of 

the four compounds modeled here, benzene is the most retarded in groundwater (1.24), 

while MTBE is the least (1.02) (Table 3.3), and, as a whole, retardation plays a relatively 

small role in the transport of these compounds. 

Following the conceptual model, natural attenuation biodegradation rates from the 

laboratory microcosms were applied to zones 1, 2 and 3 for the short plume scenario 

(Table 3.1). Rates utilized in the short and long plume case were identical through zones 

1 and 2, but an arbitrarily selected low rate of 0.5 yr-1 was assigned to both EDB and 1,2-

DCA in the aerobic zone (zone 3) for the long plume case.  
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It should be noted that for EDB, the assumed aerobic decay rate for the long 

plume scenario is much higher than the rate of 0.038 yr-1 estimated at the MMR site (24). 

Similarly low aerobic rates have been inferred for 1,2-DCA based on UST field data (25). 

In this respect, use of these rates are conservative, since they will result in faster 

simulated aerobic decay than that evident at some sites. Aerobic rates for benzene and 

MTBE, and anaerobic rates for MTBE, are taken from Schmidt et al. (2003), as 

summarized in Table 3.1.  The MTBE aerobic rate (8.0 yr-1) selected for the short plume 

case is a rough median of values reported in Schmidt et al. (2003). The long plume 

aerobic rate (0.365 yr-1) is the lowest aerobic rate cited in Schmidt et al (2003).  

Anaerobic rates for natural attenuation and biostimulation are the low and high ends of 

the range observed by Wilson et al (2000) in a field study, as reported in the Schmidt et 

al. (2003) survey. 

A total of four remediation scenarios are presented for both the short and long 

plume case: 

(1) Natural attenuation of both the LNAPL source and the plume.  Natural attenuation 

was modeled by incorporating biodegradation rates from Clemson University 

microcosms over nine spatial-temporal plume zones (Figure 3.1, Table 3.1). The 

purpose of these simulations is to illustrate the behavior of each of the modeled 

compounds at UST sites in the absence of remediation, thereby permitting a point of 

comparison for remedial simulations.  

(2) Aggressive LNAPL source remediation with natural attenuation of the plume.  The 

effects of LNAPL source remediation were modeled to determine how such a 
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remedial action might decrease the extent of the EDB, 1,2-DCA, benzene and MTBE 

plumes. An assumed 90% removal of residual LNAPL source mass was modeled 20 

years after the first release (i.e. in 2007) as a one-time event. It should be noted that 

REMChlor can simulate removal of any fraction of the source over any time frame 

(20).  Prior to the source remediation effort, the system underwent only natural 

attenuation, as in scenario (1), above 

(3) Natural attenuation of the LNAPL source with enhanced biodegradation in the 

plume.  Given EDB’s positive response to lactate addition in laboratory microcosms 

(Henderson et al., 2008), the second set of remedial simulations explore plume 

remediation through biostimulation. This would involve providing electron donor to 

microorganisms through direct injection or some other in-situ delivery method. 

Degradation rates achieved in microcosms through addition of lactate were used 

(Table 3.1) and are thus assumed to be uniformly achievable at the field scale. Lactate 

would be applied in 2007 for five years (i.e., from 20 to 25 years after the initial 

release) in the anaerobic areas of the plume (zones 1 and 2), where abundant fuel 

hydrocarbons rapidly deplete available oxygen (57). Accelerated biostimulation 

would occur in near downgradient areas of the source but not in downgradient 

aerobic portions of the plume. Figure 3.2 provides a graphical comparison of the 

location of biostimulated zones within short and long plumes, showing clearly that as 

a percentage of total plume area, biostimulation occurs over a very small portion of 

the long plume case, relative to the short plume case.   
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(4) Aggressive LNAPL source remediation combined with enhanced plume 

biodegradation.  The combined effects of source removal and biostimulation were 

simulated, following the methods described above. The purpose of these simulations 

is to determine the benefit of applying both partial source removal and plume 

remediation at UST sites, relative to relying on one or the other technique. It is 

anticipated that this will permit a determination of the maximum benefits that might 

be expected through the best possible use of remedial technology at UST sites. 

3.5  Results 

The simulations demonstrate how the impact of source and/or plume remediation 

of each contaminant varies over time throughout the plume. To facilitate comparison of 

the modeled compounds, concentrations are normalized by dividing by the applicable 

standard (i.e., the MCL) and evaluating how this ratio (termed here “relative 

importance”) changes over time along the plume center line. Relative importance can be 

considered a surrogate indicator of the risk posed by each compound. Federal MCLs exist 

for EDB (0.05 µg/L), 1,2-DCA and benzene (5.0 µg/L), but not for MTBE, for which the 

US EPA Region 9 drinking water Preliminary Remediation Goal (PRG) (11.0 µg/L) is 

used as an applicable regulatory standard (59).  

Figure 3.3 presents the relative importance of EDB, 1,2-DCA, benzene, and 

MTBE over 100 years in the short plume natural attenuation case at three points within 

the plume: a) 0 meters (discharging source concentrations), b) 15 meters downgradient of 

the source zone, and c) 25 meters downgradient of the source zone. Over time, 

concentrations discharging from the source zone (Figure 3.3a) change according to 
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equation (3.11), and since Γ is assumed to be 1, the relationship between source discharge 

and source mass is linear. 

At the time of release 1 (1987), the ratio of source discharge concentrations of 

EDB and benzene to their MCLs is similar (4,600 and 3,714 times, respectively). Though 

discharging concentrations of EDB are lower, so too is its MCL when compared to 

benzene’s. By contrast, 1,2-DCA discharges from the source at an initial concentration 

that is 83 times its MCL (5.0 µg/L). The second release (in 1997) adds benzene mass to 

the source, increasing its concentration and relative importance (Figure 3.3a). MTBE is a 

constituent of the second release but not the first. Given its higher solubility, it exceeds 

the applicable standard (11.0 µg/L) 40,581 times, more than both EDB and benzene at the 

time of its release. Figure 3.3a demonstrates how the source strength varies as a function 

of time under natural dissolution conditions; this process depends on the dissolution 

characteristics of each contaminant. Compounds that have high aqueous solubility can be 

expected to wash out of the source zone quickly. This characteristic of source strength 

(23) has its mathematically expression in the exponent of equation (3.11). If the initial 

concentration (Co) is large relative to the initial mass, the magnitude of the negative 

exponent is larger, producing accelerated source dissolution. Near UST source zones 

where more recent releases of conventional unleaded fuel occurred, MTBE may be a 

regulatory driver, but this condition will tend to be short-lived based upon its dissolution 

characteristics. EDB and benzene attenuate from the source more slowly, exceeding 

applicable standards in 2087 by 27 and 540 times respectively, 100 years after the initial 
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release of leaded gasoline. In contrast, 1,2-DCA and MTBE do not exceed their 

respective screening values after 2034 and 2019, respectively.   

 Figure 3.3b portrays relative importance 15 meters from the source, at the end of 

the anaerobic portion of the plume. Because EDB was assigned a higher decay rate in the 

anaerobic zone, its relative importance decreases somewhat compared to benzene at this 

location.  The MTBE concentration drops quickly because of its short residence time in 

the source zone.  EDB and 1,2-DCA are much less biodegradable in the aerobic zone 

than benzene and they appear to have first order decay rates roughly similar to MTBE. 

Figure 3.3c shows relative importance 25 meters downgradient of the source, or ten 

meters into the aerobic zone. At this location, the benzene plume has completely 

attenuated below its MCL concentration, and the plume risk is dominated by EDB 

concentrations except for a brief period where MTBE concentrations are high. EDB 

requires 96 years to decline below its MCL 25 meters downgradient of the source zone; 

39 years would be required for 1,2-DCA to degrade to its MCL at the same location. This 

suggests that EDB (and to a lessor degree, 1,2-DCA) are likely to be regulatory drivers 

where aerobic conditions predominate. While EDB requires nearly 100 years to decline 

below its MCL 25 meters downgradient of the source, MTBE drops below its regulatory 

standard in 13 years at this location.  Longer-lasting MTBE plumes result if lower 

aerobic rates are used.  For example, if a rate of 4.0 yr-1 is used instead of 8.0 yr-1, 16 

years are required to attenuated MTBE at 25 meters downgradient to below its PRG.  

Relative importance is presented for the long plume case at 0, 200 and 500 meters 

(Figures 3.4a, 3.4b, and 3.4c, respectively).  At the time of release (1987) the ratio of 
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source discharge concentrations of EDB (4,600) and benzene (3,714) is identical to the 

short plume case.  Darcy velocity used in long plume simulations is twice that of the 

short plume case, and since higher groundwater flow through the source area accelerates 

dissolution of the source, source discharging concentrations are sustained for a shorter 

period of time.  However, at the time of release, this difference has not yet impacted the 

dissolution profile, and so the relative importance of the modeled compounds is the same 

for both the short and long plumes. Over time, the relative importance of the compounds 

declines more quickly than in the short plume case.  EDB concentrations in groundwater 

discharging from the source drop below the MCL in 2067 (80 years after release 1).  By 

comparison, the short plume requires 161 years to do so at the same point in space.  

Likewise, benzene, MTBE, and 1,2-DCA require shorter timeframes to discharge at 

concentrations below their respective screening levels in the long plume.  Benzene is 

attenuated in 2177 (190 years after release 1) to below its MCL, but in the short plume 

case, 340 years are required.  1,2-DCA and MTBE decline below their respective 

screening values in 25 and 12 years, respectively, compared to 48 and 22 years in the 

short plume case (Figure 3.3a and 3.4a). 

Higher groundwater flow and low aerobic plume degradation rates increase 

relative importance farther away from the source in the long plume, and this relationship 

is portrayed at 200 and 500 meters in Figure 3.4b and 3.4c, respectively.  Benzene does 

not appear because it is degraded below its MCL by plume aerobic biodegradation prior 

to 200 meters.  EDB presents the most sustained risk at 200 meters, persisting above its 

MCL for 62 years (2049). 1,2-DCA and MTBE exceed their applicable standards until 
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2010 and 2012, respectively.  Only EDB and MTBE are detected 500 meters 

downgradient of the source (Figure 3.4c).  Though 1,2-DCA is present 200 meters 

downgradient, the plume degradation rate of 1.46 yr-1 is sufficient to attenuate its 

concentration to below the MCL before 500 meters.  At 500 meters, EDB persists until 

2024, MTBE until 2012.   

Given the range of behaviors detailed above, contaminant response to remediation 

varies significantly. Table 3.4 summarizes the maximum plume center line extent above 

applicable regulatory standards in 2012 (25 years after release 1) and 2017 (30 years after 

release 1).  These times do not necessarily correspond to maximum plume lengths for the 

various compounds, but were selected in order to be able to compare the future effect of 

actions taken in 2007.  The maximum plume lengths for EDB and 1,2-DCA occurred 

well before this date. 

The effect of natural attenuation processes on plume length is portrayed in plume 

centerline plots for EDB, 1,2-DCA, benzene and MTBE in the short and long plume 

cases in 2012, 25 years after release 1 (Figures 3.5 and 3.6, respectively). The MCLs of 

the compounds are shown as horizontal dashed lines, and markers suspended above the 

plots represent the start of zones 1, 2, and 3. Under natural attenuation short plume 

conditions, EDB and 1,2-DCA have roughly the same extent in 2012 (54 and 52 meters, 

respectively), while benzene and MTBE have shorter plume lengths due to their higher 

aerobic decay rate in this case (Figure 3.5). As discussed above, benzene is completely 

biodegraded at the start of the aerobic zone, extending no further than 17 meters, 

indicating that even where multiple historic releases have occurred, benzene plumes are 
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likely to be short at sites where aerobic conditions predominate in downgradient areas of 

the plume. MTBE is less biodegradable aerobically than benzene, but the rate (8.0 yr-1) is 

still high in this case so it extends a short distance into the aerobic zone. If a rate of 4.0 

yr-1 is used instead, MTBE plume length in 2012 is 27 meters; under this scenario, it 

attains a maximum plume length of 76 meters within four years of its release.  Comparing 

the plume lengths in 2012 to the plume lengths in 2017 (Table 3.4), one could conclude 

that the EDB and benzene plumes are stable, while the 1,2-DCA and MTBE plumes are 

shrinking. 

As discussed above, short and long plume simulations are differentiated by 

aerobic rate (lower rates are used for the long plume case, Table 3.1) and groundwater 

flow (lower Darcy velocity is used for the short plume case, Table 3.2), with the 

expectation that these differences will produce markedly different plumes lengths. This 

effect is most striking in the case of EDB, which in the long plume simulations extends 

downgradient 605 and 535 meters in 2012 and 2017, respectively (Figure 3.6) (Table 

3.4). In contrast to EDB, 1,2-DCA centerline extent above its MCL in 2012 is zero. 

Higher groundwater velocity produces more flushing of the source zone, and since both 

1,2-DCA’s solubility and MCL are higher than EDB’s, this compound dissolves away 

more quickly. However, this also means that longer plume lengths of these compounds 

result at earlier timeframes, which is not reflected in Table 3.4.  For example, 1,2-DCA 

achieves a maximum plume length of approximately 400 meters in 1995, 8 years after the 

release.  The lower aerobic rate also produces a longer benzene plume (Figure 3.6) (57 

and 56 meters in 2012 and 2017, respectively), but like 1,2-DCA, MTBE washes out of 
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the source zone before 2012.  When combined with its low aerobic rate (0.365 yr-1)(Table 

3.1), MTBE’s source dissolution profile produces complete separation of the MTBE 

plume. In 2012, MTBE concentrations above 11 µg/L occur between 620 and 915 meters 

downgradient of the source, peaking at a concentration of 29 µg/L (Figure 3.6). A 

maximum MTBE extent of approximately 935 meters occurs 16 years after release 2. 

3.5.1 Source Remediation Case  

The effect of removing 90% of the LNAPL source is portrayed in plume 

centerline plots for EDB, 1,2-DCA, benzene and MTBE in the short and long plumes 

(Figures 3.7 and 3.8, respectively), and both natural attenuation and source removal 

results are shown for the sake of comparison.  Results are portrayed in 2012 because this 

provides time (five years) for the effects of source remediation to propagate 

downgradient of the source. Given that Γ in equation (3.2) equals 1.0, 90% source 

removal produces a like decrease in concentrations discharging from the source zone. 

Five years after the removal, the extent of EDB has dropped from 54 to 37 meters, though 

EDB concentrations continue to discharge from the source zone several orders of 

magnitude above the MCL. By contrast, source removal lowers concentrations of 1,2-

DCA to below its MCL throughout the plume in the short plume case.  Partial source 

depletion has negligible impact on benzene extent, which is more effectively limited by 

its high aerobic biodegradation rate, but does shorten MTBE maximum extent from 21 to 

15 meters in 2012.  In 2017, MTBE does not occur above the regulatory standard with 

source removal (Table 3.4).  
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The effects of 90% source removal in the long plume case are portrayed in 2012 

(Figure 3.8). The maximum extent of EDB is the same in 2012 as in the natural 

attenuation case (605 meters), given that insufficient time has elapsed for reduced 

concentrations to propagate downgradient. Over longer timeframes the reduced 

concentrations caused by source removal continue to propagate downgradient, shortening 

the length of the plume from 535 to 265 meters ten years after the removal (Table 3.4). 

Though this represents roughly a 50% reduction in plume extent, longer plumes will 

require significant timeframes to realize the benefits of source depletion in downgradient 

plume zones. No removal would be necessary for 1,2-DCA and MTBE because both are 

attenuated by dissolution of the source in the long plume case. In other words, source 

removal that occurs 20 years after a release will not lessen the impact of compounds like 

1,2-DCA, whose maximum extent occurs earlier, or MTBE, which forms a detached 

plume that is logically not affected by a source removal action. Benzene extent is 

shortened from 57 to 42 meters in 2012 and 56 to 41 meters in 2017 (Figure 3.8, Table 

3.4).  

3.5.2 Biostimulation Case 

In the short plume case, biostimulation yields similar results to partial source 

removal for EDB (Figure 3.9). Biostimulation produces accelerated decline in plume 

concentration relative to the natural attenuation case, as evidenced by the steeper slope of 

the biostimulated trend line. This contrasts with the partial source removal case, in which 

EDB concentrations discharging from the source zone are 90% lower initially, while 

plume concentrations decline at the same rate (i.e., the slopes of the natural attenuation 
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and source removal trend lines are parallel). The maximum extent of EDB above its MCL 

in 2012 in the biostimulated short plume is 41 meters, compared to 37 meters in the 90% 

source removal case (Table 3.4). Unlike partial source removal, lasting change in plume 

concentrations is not achieved through biostimulation because source mass is unaffected. 

Upon cessation of biostimulation in 2012, plume concentrations begin to return to natural 

attenuation conditions, and by 2017, the EDB extent matches the natural attenuation case 

(52 meters) (Table 3.4). Therefore, in this case, biostimulation is capable of shortening 

plume length, but only so long as it is actively applied. In laboratory microcosms, 

addition of lactate had little effect on 1,2-DCA, and as a consequence, little change in 

maximum 1,2-DCA extent is evident in biostimulation simulations (Figure 3.9). 

Likewise, biostimulation does not alter the maximum extent of the benzene plume, 

though MTBE plume extent is shortened from 21 to 15 meters in 2012, Like EDB, 

MTBE plume extent returns to natural attenuation conditions in 2017, upon cessation of 

biostimulation (Figure 3.9, Table 3.4). 

Figure 3.10 shows the effects of biostimulation on EDB in the long plume case. 

Temporary reductions in EDB concentrations are achieved by 2012, but they are limited 

in extent (by the advective velocity of the plume), and concentrations remain an order of 

magnitude above the MCL.  In 2017 (not shown) concentrations of EDB return to pre-

biostimulation concentrations in the near-downgradient portions of the plume, but by this 

time reduced concentrations brought on by biostimulation have moved into the far 

downgradient portions of the plume, decreasing maximum plume extent from 535 to 408 

meters (Table 3.4). This represents a 24% reduction in plume extent, compared to the 
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roughly 50% reduction that was achieved in the source removal case. However, for 

reasons stated above, the EDB plume would begin to lengthen and eventually stabilize at 

natural attenuation length once biostimulation ceases. Given the similarity of benzene 

natural attenuation and biostimulation rates, there is negligible difference in their plume 

extent (Table 3.4). No remediation would be necessary for 1,2-DCA  since it attenuates 

below the MCL by 2012.  As discussed above, MTBE forms a detached plume between 

600 and 900 meters downgradient in the long plume case, but this would logically not be 

affected by plume biostimulation that only extends 15 meters from the source. 

3.5.3 90% Source Removal + Biostimulation  

Figures 3.11, 3.12 and 3.13 present results of applying 90% source removal in 

2007 and simultaneously biostimulating with lactate from 2007 to 2012. Figure 3.10 

shows plume extent in the short plume case in 2012.  The combined action of partial 

source removal and biostimulation effectively halves the maximum extent of EDB to 21 

meters in the short plume case (Figure 3.11). An immediate 90% reduction in 

concentrations discharging from the source zone is achieved through source depletion, 

but additional plume destruction occurs for 15 meters downgradient of the source. 

Biostimulation ceases in 2012, and as a result EDB extent in 2017 (not shown) matches 

that of source removal alone (35 meters) (Table 3.4). Because 1,2-DCA and benzene did 

not respond to lactate addition in the laboratory, the results of these simulations were not 

substantially different from those in which source removal alone was evaluated (Table 

3.4).  Source depletion and biostimulation together reduce MTBE extent to six meters in 

2012 (Figure 10) and 0 meters in 2017 (Table 3.4). 
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More extensive timeframes are necessary for the benefits of remediation to 

propagate downgradient in long plumes, so maximum plume extent is presented within 

five (i.e., in 2012) and ten (i.e., in 2017) years of the onset of remediation (Figures 3.11 

and 3.12, respectively). Partial source depletion and plume remediation together are not 

sufficient to reduce concentrations of EDB to its MCL at any point in the plume within 

five years of the start of remediation. However, ten years after the onset of remediation , 

reduced concentrations brought on by remediation have had sufficient time to propagate 

farther downgradient, shortening the plume to 239 meters, or a 55% reduction. This 

represents only a 10% percent improvement relative to applying source removal alone, 

indicating that biostimulation over relatively short distances and timeframes will yield 

little additional benefits at sites where long plumes of EDB exist. Little additional 

benefits results for 1,2-DCA and benzene (Figures 3.12 and 3.13) for reasons stated 

above. Combined source and plume remediation do not attenuate the detached MTBE 

plume in 2012 (Figure 3.12); in 2017, natural attenuation processes alone are sufficient to 

decrease MTBE plume concentrations to below 11 µg/L (Figure 3.13). 

3.6  Discussion 

It is difficult to compare this evaluation to other studies, given that such an 

analysis has not been conducted for EDB and 1,2-DCA, and the fact that other screening 

level analytical models do not simulate the effects of variable source depletion and plume 

remediation. Relative importance, an indirect measure of the risk posed by each 

compound (the ratio of aqueous concentration to applicable regulatory screening value), 

varies by contaminant across space and time. Near UST source zones, EDB and benzene 
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can have similar relative importance. If later releases of unleaded gasoline occur, the 

relative importance of benzene (and other hydrocarbons) will increase. The relative 

importance of MTBE is greatest among the four compounds modeled here, but it sustains 

brief (but mobile) plumes, given rapid source dissolution. Plume biodegradation is not 

likely to significantly attenuate high MTBE concentrations, and significant detached 

MTBE plumes may result. To our knowledge, no studies have evaluated the co-

occurrence of the lead additives and MTBE at UST sites. The relative importance of 1,2-

DCA near the source zone is lowest of the four compounds due to its lower ratio of 

source concentration to MCL. Plume degradation rates become more important as 

distance downgradient of the source zone increases, and the order of relative importance 

may change as a result. One case in point is benzene, which has high relative importance 

in anaerobic near-source zones, but due to its aerobic biodegradability may not occur at 

all in downgradient areas. Although EDB and 1,2-DCA are aerobically biodegradable, 

field evidence suggests they degrade in the aerobic setting at much slower rates compared 

to other components of gasoline and they may persist downgradient of the source even 

when they are released prior to other hydrocarbons (25).  

A single remedial technique may not adequately address commingled plumes of 

lead scavengers, hydrocarbons, and oxygenates. If equilibrium aqueous concentrations 

exceed regulatory standards by more than a couple of orders of magnitude, and plumes 

are already established, source depletion alone is unlikely to be protective. Source 

depletion and plume remediation together achieve roughly two orders of magnitude 
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reduction in EDB concentration (a 99% decrease in mass) in these simulations, although 

this may still not be enough to achieve its low MCL of 0.05 µg/L. 

Remediation will occur decades after EDB and 1,2-DCA were released to the 

environment, so extensive timeframes may be required for the positive effects of 

treatment to be realized where long plumes exist. If robust aerobic degradation occurs, 

benzene may degrade very quickly, but this same condition favors the persistence of EDB 

and 1,2-DCA. In the event plume remediation of both EDB and benzene are required, 

sequenced treatment may be necessary, one near the source zone that focuses on 

anaerobic degradation of EDB, and another downgradient where aerobic degradation of 

benzene can be effected without the risk of encouraging the persistence of EDB (and 1,2-

DCA). Given the toxicity of EDB, it may be preferable that this compound be treated at 

the expense of increasing benzene transport so long as the benzene can be expected to 

degrade readily in downgradient aerobic zones. Such spatial considerations and 

sequenced plume remediation has not typically been required at UST sites. Given rapid 

source dissolution of MTBE, this compound may no longer be present at all at UST sites 

where remediation of EDB and 1,2-DCA is undertaken, despite the fact that more recent 

releases may have occurred. 

As experience with commingled plumes of EDB, 1,2-DCA, fuel hydrocarbons, 

and oxygenates grows, the efficacy of source and plume remediation will improve. Plume 

bioremediation might be optimized by increasing the area over which it is applied, and 

bioaugmentation might also be implemented for 1,2-DCA, which did not respond to 

biostimulation with lactate in laboratory microcosms (34). Bioaugmentation may also be 
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used to increase anaerobic biodegradation rates for EDB, although commercial cultures 

for this purpose are not yet available. Where both source and plume remediation are 

necessary, it is unclear if source removal would perturb subsurface conditions and have 

negative impacts on downgradient plume bioremediation. It is important that aerobic 

remedial techniques for EDB and 1,2-DCA be explored at UST sites. Aerobic 

bioremediation may hold promise given that both EDB and 1,2-DCA serve as growth 

substrate under these conditions. Currently there is no Smin value (the minimum substrate 

concentration that supports growth) (54) for EDB, so it is impossible to say if aerobic 

biodegradation can be sustained at the very low levels necessary to attain its MCL. 



 

56 

 

Table 3.1. Comparison of First Order Biodegradation Rates (yr-1)a 
 

 Short Plume 
 Zone 1 Zone 2 Zone 3 
 Natural Attenuation Biostimulation Natural Attenuation Biostimulation Natural Attenuation 
EDB 1.49 5.47 5.37 9.4 3.93 
1,2-DCA 1.34 0.77 0.34 0.43 1.46 
Benzene 1.47 2.26 3.5 3.09 122b 
MTBE 2.2c 5.0d 2.2c 5.0d 8.0g 
 Long Plume 
EDB 1.49 5.47 5.37 9.4 0.5f 
1,2-DCA 1.34 0.77 0.34 0.43 0.5f 
Benzene 1.47 2.26 3.5 3.09 9.13e 
MTBE 2.2c 5.0d 2.2c 5.0d 0.365g 

 
aUnless otherwise noted, rates are calculated as triplicate mean ± one standard deviation from Clemson University microcosm 
study. 
bBenzene aerobic biodegradation was not evaluated in the Clemson University microcosms study.  This value represents the 
mean of surveyed field and laboratory rates in (57)  
cRate represents low value in range of anaerobic rates under methanogenic conditions reported by Wilson et al. (2000), as cited 
in (56)  
dRate represents high in range of anaerobic rates under methanogenic conditions reported by Wilson et al. 2000, as cited in 
(56)  
eValue represents the geometric mean of surveyed field and laboratory benzene first-order aerobic rates in (57)  
fArbitrarily selected low rate, based in part on Massachusetts Military Reservation EDB case described in (21)  
gRate represents low aerobic rate reported by Borden et al. 1997, as cited in (56)  
eRate represents approximate median aerobic rate from Landmeyer et al. 2001, Kane et al. 2001, Hunkeler et al. 2001, 
Schirmer et al. 2003, Zoeckler et al. 2003, as summarized in (56)  
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Table 3.2. Simulation Parameters, Short and Long Plume Scenarios 
 

Simulation Parameters Value 
Volume of release 1 (1987)a 18,927 L (5,000 gallons) 
Volume of release 2 (1997)b 3,785 L (1,000 gallons) 
Release 1 source depth 3 m 
Release 1 source width 10 m 
Release 2 source depth 2 
Release 2 source width 3 
Gamma (Г) 1 
Short plume Darcy velocity 10 m/yr 
Long plume Darcy velocity 20 m/yr. 
Porosityc 0.35 
Coefficient of variation, velocity field 0.1 
Transverse dispersivity 0.05 
Vertical dispersivity 0.005 
Soil bulk densityc 1.4 g/mL 
Fraction of organic carbonc 0.001 
Spatial zone 1 (near source, anaerobic) 0 - 5 m 
Spatial zone 2 (midgradient, anaerobic) 5 - 15 m 
Spatial zone 3 (downgradient, aerobic) >15 m 
Time period 1 (pre-remediation) 1987 - 2007 
Time period 2 (active remediation) 2007 - 2012 
Time period 3 (post-remediation) > 2012 

 
aRelease of leaded gasoline containing EDB, 1,2-DCA, and BTEX 
bRelease of conventional unleaded gasoline containing MTBE and BTEX 
cTaken as reasonable median value from (62) 
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Table 3.3. Calculation of Compound-specific Simulation Parameters 
 

Compound 

Concentration 
in Gasoline 

(g/L) 

Gasoline 
Water 

Partition 
Coefficient 

Modeled 
Aqueous 

Concentration 
(µg/L)e 

Initial 
Source 

Mass (Kg) 

Organic Carbon 
Partition 

Constant (mL/g)
Retardation 
Coefficienti 

EDB 0.07a 152b 230 1.3f 44.0h 1.18 
1,2-DCA 0.07a 84b 417 1.3f 17.4h 1.07 
Benzene 13b / 3.8c 350b 18,571f / 5,441g 246f– 14g 58.9h 1.24 
MTBE 13.8 15.5d 446,528 52g 6.0h 1.02 

 
aApproximate concentration in 1984, leaded gasoline (25) 
bAs reported by Falta (21) 
cConventional unleaded gasoline, calculated from the average of available data on fuel marketed in Charleston, SC in 1997 
(63) 
dSchmidt et al. (56) 
eEqual to one-half the equilibrium aqueous concentration 
fFrom release of 5,000 gallons of leaded fuel, 1987 
gFrom release of 1,000 gallons of conventional unleaded gasoline, 1997 
hUSEPA(59) 
iCalculated using values for porosity, fraction organic carbon content, and soil bulk density listed in Table 3.2 
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Table 3.4a. Maximum Extent Above MCLa in the years 2012 and 2017, Short Plume  
Simulated Scenario   Plume Length (m)a 

 Yr.b Plume Length   EDB 1,2-DCA Benzene MTBE 
Natural Attenuation 2012 Short   54 52 17 21 

 2017 Short   52 41 15 6 
90% Source Removal 2012 Short   37 0 15 15 

 2017 Short   35 0 15 0 
Biostimulation 2012 Short   41 53 17 15 

 2017 Short   52 45 15 6 
90% Source Removal + BSTc 2012 Short   21 0 15 8 

 2017 Short   35 0 15 0 
 
Table 3.4b. Maximum Extent Above MCLa in the years 2012 and 2017, Long Plume  

Simulated Scenario   Plume Length (m)a 
 

Yr.b Plume Length   EDB 1,2-DCA Benzene MTBE 
Natural Attenuation 2012 Long   605 0 57 911d 

 2017 Long   535 0 56 0e 
90% Source Removal 2012 Long   605 0 42 911d 

 2017 Long   265 0 41 0e 
Biostimulation 2012 Long   605 0 57 911d 

 2017 Long   408 0 57 0e 
90% Source Removal + BSTc 2012 Long   605 0 43 911d 

 2017 Long   239 0 41 0e 
 
aYr. = Plume length is defined as maximum extent above the MCL (EDB MCL = 0.05 µg/L; 1,2-DCA = 5.0 µg/L; benzene 
MCL = 5.0 µg/L; no MCL available for MTBE, USEPA Region 9 Tap Water Preliminary Remediation Goal = 11.0 µg/L (59) 
bYr. = Years following release cBST = Biostimulation dRapid source dissolution and low aerobic decay of MTBE 
in the long plume case produces detached plumes downgradient of the source. eDetached plume still exists, but at 
concentrations just below 11 µg/L. 
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FIGURE 3.1 Distance-time plot for advective transport with multiple sets of plume 
reaction rates. 
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FIGURE 3.2 Site conceptual model for short and long plume cases (not drawn to scale), 
including biostimulation schemes 
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FIGURE 3.3 Short plume natural attenuation relative importance (concentration divided 
by risk-based screening level (RBSL)) of EDB, 1,2-DCA, benzene and MTBE at a) 0 
meters, b) 15 meters, and c) 25 meters. Compounds not graphed are degraded below the 
RBSL.

a) 

b) 
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FIGURE 3.4 Long plume natural attenuation relative importance (concentration divided 
by risk-based screening level (RBSL)) of EDB, 1,2-DCA, benzene and MTBE at a) 0 
meters, b) 200 meters and c) 500 meters.  Compounds not graphed are degraded below 
the RBSL.
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FIGURE 3.5  REMChlor simulations of natural attenuation short plume scenario, 2012.  
Zone 1, 2, and 3 markers are suspended above graphs at 0, 5 and 15 meters downgradient, 
respectively.
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FIGURE 3.6 REMChlor simulations of natural attenuation long plume scenario, 2012.  
Zone 1, 2, and 3 markers are suspended above graphs at 0, 5 and 15 meters downgradient, 
respectively.. 
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FIGURE 3.7 REMChlor simulation results of 90% source removal, short plume 
scenario, 2012.  Zone 1, 2, and 3 markers are suspended above graphs at 0, 5 and 15 
meters downgradient, respectively. 
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FIGURE 3.8 REMChlor simulation results of 90% source removal, long plume scenario, 
2012.  Zone 1, 2, and 3 markers are suspended above graphs at 0, 5 and 15 meters 
downgradient, respectively. 
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FIGURE 3.9 REMChlor simulation results of biostimulation (BST), short plume 
scenario, 2012. Zone 1, 2, and 3 markers are suspended above graphs at 0, 5 and 15 
meters downgradient, respectively. 
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FIGURE 3.10 REMChlor simulation results of biostimulation (BST), long plume 
scenario, 2012. Zone 1, 2, and 3 markers are suspended above graphs at 0, 5 and 15 
meters downgradient, respectively. 
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FIGURE 3.11 REMChlor simulation results of 90% source removal combined with 
biostimulation (BST), short plume scenario, 2012. Zone 1, 2, and 3 markers are 
suspended above graphs at 0, 5 and 15 meters downgradient, respectively 
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FIGURE 3.12 REMChlor simulation results of 90% source removal combined with 
biostimulation (BST), long plume scenario, 2012. Zone 1, 2, and 3 markers are suspended 
above graphs at 0, 5 and 15 meters downgradient, respectively 
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FIGURE 3.13 REMChlor simulation results of 90% source removal combined with 
biostimulation (BST), long plume scenario, 2017. Zone 1, 2, and 3 markers are suspended 
above graphs at 0, 5 and 15 meters downgradient, respectively. 
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CHAPTER FOUR 

EVALUATION OF POTENTIAL MUTUAL INHIBITION OF EDB AND 1,2-DCA 

ON AN ENRICHMENT CULTURE 

4.1 Introduction 

Chapter 2 describes the biodegradability of EDB and apparent recalcitrance of 

1,2-DCA in the presence of fuel hydrocarbons in both a laboratory and field setting. 1,2-

DCA biodegradation in the presence of EDB has not been documented under any 

circumstances. Only one pure culture, Dehalococcoides ethenogenes strain 195, is known 

to degrade both EDB and 1,2-DCA (46).  If a species of Dehalococcoides is responsible 

for the EDB degradation observed in laboratory microcosms described in Chapter 2, it 

may do so in preference to 1,2-DCA, given that respiration of EDB is thermodynamically 

more favorable that that of 1,2-DCA (Appendix A, Table A3).  As a consequence, the 

presence of EDB may inhibit biodegradation of 1,2-DCA in groundwater, contributing to 

its persistence at UST sites.  Conversely, it is possible that under certain circumstances 

1,2-DCA inhibits EDB biodegradation, especially if the same type of enzymes are 

required to dehalogenate both compounds. This chapter describes experiments designed 

to evaluate the inhibitory interactions that may occur during biodegradation of EDB and 

1,2-DCA. 

Previous research on the anaerobic biodegradability of EDB and 1,2-DCA 

provides insight into likely biodegradation pathways.  Destruction of EDB and 1,2-DCA 

has been achieved under a variety of low reduction-oxidation potential (redox) conditions 

(52, 53, 16, 29, 40, 45, 65, 66).  Field evidence indirectly suggests 1,2-DCA is also 
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metabolized in the presence of Fe(OH)3 and MnO2 (29). Gerritse et al. (29) observed 

consumption of 1,2-DCA in a groundwater treatment system with proportional amounts 

of reduced iron and Mn produced.  This would tend to indirectly indicate that 1,2-DCA 

served as an electron donor, and was thus oxidized, so it is possible that 1,2-DCA 

oxidation occurs at UST sites, depending on geochemical conditions (29). Another study 

found mixed and pure cultures to be capable of oxidizing 1,2-DCA, with nitrate as the 

terminal electron acceptor (16). No information is available on whether EDB 

biodegradation occurs when nitrate, Fe(III) and MN(IV) are available as terminal electron 

acceptors. 

In low redox environments (i.e., Eh < -100 mV), biodegradation of EDB proceeds 

primarily via dihaloelimination to ethene, as is the case for 1,2-DCA (Fig. 4.1). 

Dehydrohalogenation to vinyl bromide and reductive dehalogenation to bromoethane are 

considered minor pathways, though the latter was found to be operative in laboratory 

microcosm experiments described in Chapter 2.  In addition to chlorinated ethenes, 

Dehalococcoides ethenogenes strain 195 uses EDB and 1,2-DCA as growth-linked 

terminal electron acceptors, with hydrogen serving as the electron donor and acetate as 

the carbon source (46).  The kinetics of chlorinated ethene reduction by various strains of 

Dehalococcoides is well characterized in terms of yield, maximum specific growth rate, 

and half saturation coefficient.  In contrast, no information on the kinetics of EDB 

bromorespiration is available.  At least one other organism, Desulfitobacterium 

dichloroeliminans strain DCA1, is known to utilize 1,2-DCA as a terminal electron 

acceptor. Wildeman et al. (66) demonstrated the reduction of high levels of 1,2-DCA (40 
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mg/L) by strain DCA1 to ethene in a matter of days (66). However, utilization of EDB by 

strain DCA1 has not yet been examined. 

Inhibitory interactions in mixtures of contaminants have been studied by various 

researchers.  Many possible combinations of contaminants are possible, so most 

researchers have focused on mixtures of two or three contaminants (35). Adamson and 

Parkin (1) showed that degradation of commingled 1,1,1-trichloroethane (1,1,1-TCA) and 

carbon tetrachloride (CT) by a mixed methanogenic culture slowed when the 

concentration of either compound was increased. Adding tetrachloroethene (PCE) had no 

effect on 1,1,1-TCA and/or CT transformation (1).  Hughes and Parkin (35) found that 

1,1,1-TCA was inhibited by both CT and chloroform (CF), but that CT and CF were only 

degraded by a mixed anaerobic culture when both were present as co-contaminants. In 

another study, a PCE-degrading enrichment culture was found to simultaneously degrade 

CT and 1,1,1-TCA with no prior exposure to these contaminants, though CT 

concentrations over 10 μM were found to slow PCE degradation (2).  Grostern and 

Edwards (31) co-innoculated microcosms with a 1,1,1-TCA-degrading anaerobic mixed 

culture and KB-1, which rapidly dechlorinates TCE.  The presence of 1,1,1-TCA initially 

inhibited the c-DCE and VC transformation steps in the co-innoculated microcosms, but 

once 1,1,1-TCA was reduced to 1,1-DCA, the KB-1 culture was able to reduce both c-

DCE and VC (31).   

The above studies demonstrate the importance of inhibitory interactions in 

mixtures of contaminants.  Given the persistence of 1,2-DCA in the field and laboratory 

(Chapter 2), and the number of UST sites likely impacted by EDB and 1,2-DCA, 
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inhibition may have particular relevance here. This chapter describes research exploring 

potential inhibitory interactions between EDB and 1,2-DCA.  No studies have evaluated 

EDB and 1,2-DCA degradation as co-contaminants, or in mixture with other compounds. 

To evaluate potential inhibition of one or the other compound systematically, it was first 

necessary to identify a culture capable of growing on both compounds. Dehalococcoides 

ethenogenes strain 195 is known to degrade both EDB and 1,2-DCA (46), but the 

culture’s ability to degrade them simultaneously was not tested. The results presented 

here describe inhibition tests on a mixed halorespiring culture. 

4.2 Materials and Methods 

4.2.1 Chemicals and Media 

Chemicals used in this evaluation are described in Section 2.2.3. The medium 

used for the enrichment culture is described elsewhere (17) with the following 

modifications: the phosphate buffer was made using 52.5 g K2HPO4 per liter instead of 

27.2 g KH2PO4 and 34.8 g K2HPO4; 4.7 g CaCl2·2H2O and 1.8 g FeCl2·H2O were used 

instead of 7.0 g CaCl2·6H2O and 2.0 g FeCl2·2H2O for the salt solution; 0.2 g 

ZnSO4·7H2O was used instead of 0.1 g ZnCl2 for the trace metal solution; the bicarbonate 

solution was made with 16 g NaHCO3 per liter instead of 260 g/L; 50 mL of the 

bicarbonate solution was added to the medium instead of 10 mL; and instead of adding a 

vitamin solution, 50 mg/L of yeast extract was added (using a 5 g/L stock solution and 

adding 10 mL of filter sterilized stock per liter of media). These changes were made 

based on the availability of chemicals and the solubility of sodium bicarbonate in water.   
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4.2.2 SRS Chloroethene Respiring Culture   

Preliminary experiments were conducted to determine if an enrichment culture 

that chlororespires PCE and TCE was also capable of respiring EDB and 1,2-DCA. This 

culture was developed with sediment and groundwater from the Twin Lakes area of the 

Savannah River Site (SRS) and enriched for growth on PCE and TCE (68). The culture is 

capable of rapidly dechlorinating all of the chlorinated ethenes to ethene, and is populated 

with several novel species of Dehalococcoides.  Lactate is used as the electron donor.   

To determine if the culture uses EDB and 1,2-DCA as terminal electron acceptors, 

two sets of triplicate serum bottles (160 mL) with Teflon-faced septa and aluminum 

crimp caps were inoculated with 100 mL of the SRS enrichment culture.  One set was 

spiked with EDB, the other with 1,2-DCA. Roughly 0.3 and 0.5 μmols EDB and 1,2-

DCA respectively were added to each bottle using saturated water solutions. Given 

partitioning between the headspace and liquid phases, these amounts produced aqueous 

phase concentrations of approximately 2.5 and 5.0 μM EDB and 1,2-DCA, respectively. 

Sodium lactate was provided as the electron donor at 100 times the number of electron 

equivalents needed for complete dehalogenation. The use of both compounds proceeded 

after a lag, though it took much longer to adapt the culture to 1,2-DCA. Initially slow 

rates of use were followed by increasing and sustained utilization in both treatments. The 

cultures were transferred several times and continued to use the compounds upon 

transfer.  This strongly suggests that the SRS culture contains microbes capable of 

dehalorespiring EDB and 1,2-DCA, currently the only mixed culture known to do so. 
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Subsequent experiments have confirmed an increase in the population of 

Dehalococcoides in proportion to the amount of EDB and 1,2-DCA dehalogenated (27). 

To test potential inhibitory interactions between EDB and 1,2-DCA, the SRS 

culture was grown individually on EDB or 1,2-DCA in separate enrichments.  The EDB 

enrichment was developed by combining aliquots (20 mL) from the EDB serum bottles 

discussed above with 1.44 L media (1.5 L total liquid volume).  The 1,2-DCA enrichment 

culture was established by collecting two 100 mL aliquots and one 50 mL aliquot from 

the replicates of the 1,2-DCA treatment and combining with 1.25 L media (1.5 L total 

liquid volume). In this way, two liter-size bottles of the culture were cultivated, one on 

EDB and the other on 1,2-DCA.  Dihaloelimination to ethene was the predominant form 

of conversion of both compounds (Figures 4.2 and 4.3). Whenever EDB or 1,2-DCA was 

consumed below detection based on GC/FID analysis, more was added. pH was 

monitored weekly and maintained at 7.0 with NaOH (8 M).  The dose of EDB and 1,2-

DCA was gradually increased (accompanied by proportionate increases in lactate 

additions).  Over 120 days of culture development, rapid and complete metabolism of 

high concentrations of both compounds was achieved.  The EDB enrichment achieved a 

maximum consumption rate of approximately 400 µmols per bottle (262 µM, or 49 

mg/L) in three days. The 1,2-DCA enrichment achieved a maximum consumption rate of 

370 µmols per bottle (240 µM, or 24 mg/L) in six days. To prevent an accumulation of 

potentially inhibitory salts (from use of NaOH to neutralize HBr and HCl), on several 

occasions the contents of the bottles were allowed to settle (enhanced by the presence of 

iron sulfides) and 0.5 L was decanted and replaced with fresh media. 
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The liter-sized bottles were used to test the effect of 1,2-DCA on the rate of EDB 

utilization by the EDB enriched culture, and to test the effect of EDB on the rate of 1,2-

DCA utilization by the 1,2-DCA enriched culture.  The experimental design is 

summarized in Tables 4.1 and 4.2.  One set of experiments was conducted with the EDB 

enrichment culture (Table 4.1), the other with the 1,2-DCA enrichment culture (Table 

4.2).  The experiment that was conducted to determine the effect of 1,2-DCA on 

biodegradation of EDB by the EDB enrichment culture is herein referred to as the “EDB 

inhibition test.”  The following treatments were evaluated:  EDB alone; EDB + 

approximately an equal amount of 1,2-DCA per bottle; EDB + approximately 4 times 

more 1,2-DCA per bottle; and EDB + approximately 7 times more 1,2-DCA per bottle.  

The treatment with EDB alone was used to verify the performance of the culture in 

comparison to the 2 L EDB “mother bottle” (described above).  Lactate was added at the 

beginning of the test and at each sampling event, with the total amount added in 

considerable excess of the amount needed for stoichiometric dehalogenation (Table 4.1).  

Water controls were prepared with distilled deionized water and EDB.  Each treatment 

consisted of duplicate serum bottles.  In the event of rapid biodegradation of either 

compound in the treatments, the initial concentration was assumed to be the same as the 

initial concentration in the water controls.   

 The experiment that was conducted to determine the effect of EDB on 

biodegradation of 1,2-DCA by the 1,2-DCA enrichment culture is herein referred to as 

the “1,2-DCA inhibition test.”  The following treatments were evaluated:  1,2-DCA 

alone; 1,2-DCA + approximately an equal amount of EDB per bottle; 1,2-DCA + 
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approximately 6 times more 1,2-DCA per bottle; and EDB + approximately 11 times 

more 1,2-DCA per bottle.   The treatment with 1,2-DCA alone was used to verify 

performance of the culture in comparison to the 2 L 1,2-DCA “mother bottle” (described 

above).  In addition, a treatment was prepared with EDB alone, to test the ability of the 

1,2-DCA enrichment culture to utilize EDB in the absence of 1,2-DCA and with no prior 

exposure to EDB.  Lactate was added at the beginning of the test and at each sampling 

event, with the total amount added in considerable excess of the amount needed for 

stoichiometric dehalogenation (Table 4.2).  Water controls were prepared with distilled 

deionized water and 1,2-DCA.  Each treatment consisted of duplicate serum bottles.  In 

the event of rapid biodegradation of either compound in the treatments, the initial 

concentration was assumed to be the same as the initial concentration in the water 

controls. 

4.2.3  Analytical Methods 

The same GC headspace methods described in Chapter 2 were used in this study 

to quantify EDB, 1,2-DCA, bromoethane, vinyl bromide, chloroethane, vinyl chloride, 

methane, ethane, and ethene.  The sensitivity of the ECD precludes its use for EDB 

quantification when concentrations are over 1 mg/L (the ECD is comparatively less 

sensitive to 1,2-DCA).  Initial headspace analysis for EDB was conducted using the same 

procedure as for 1,2-DCA, i.e., using a 5890 Series II Plus Hewlett-Packard GC equipped 

with a flame ionization detector (FID) initially.  When EDB concentrations dropped 

below approximately 10 μg/L, it was quantified on the ECD.  
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4.3  Results 

4.3.1 EDB Inhibition Test 

Eight serum bottles inoculated with the EDB enrichment culture and amended 

with EDB and varying amounts of 1,2-DCA were monitored for 26 days.  GC 

measurements were taken initially every two to three hours until concentrations of EDB 

declined to approximately 10 µg/L, whereupon measurements were collected every 48 

hours.  The frequency of initial measurements was necessary given the culture’s rapid 

consumption of EDB at higher concentrations, even in the presence of the highest amount 

of 1,2-DCA added; slower consumption at low concentrations permitted longer sampling 

intervals later in the test.  Average EDB concentrations over the first day of the test are 

presented by treatment in Figure 4.4a, and for the remainder of the test in Figure 4.4b. 

Results by bottle are presented in Appendix B.  

The first treatment in the EDB inhibition test served as a control, receiving 7 

µmols EDB per bottle (resulting in an aqueous phase concentration of 65 µM, or 12 

mg/L), but no 1,2-DCA, and is referred to as the “EDB only treatment” (Table 4.1). EDB 

concentrations declined rapidly as expected, though variability among the duplicates was 

noted initially (Figure 4.4a).  After 24 hours, the average EDB concentration in the 

treatment was 124 µg/L.  As expected, consumption slowed at low concentrations, and 14 

days elapsed before the treatment average reached EDB’s MCL of 0.05 µg/L.  The EDB 

only treatment was the first to attain the MCL, but overlap among treatment error bars 

suggests it was not significantly faster than other treatments. The next treatment to reach 

the MCL was the one with the highest amount of 1,2-DCA added (Figure 4.4b). Ethene 
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was the primary daughter product of EDB conversion (Figure 4.5), though less than 

100% recovery was noted, likely as a consequence of error in the response factors.  

To determine the effect of equimolar amounts of 1,2-DCA on EDB consumption, 

five µmols of 1,2-DCA per bottle were added to the second treatment (termed “EDB + 

Low 1,2-DCA”), producing an aqueous 1,2-DCA concentration of 52 µM, or 5.0 mg/L 

(Table 4.1). The presence of roughly equimolar amounts of 1,2-DCA and EDB had no 

significant effect on the initial rate of EDB consumption (Figure 4.4a). Final EDB 

concentrations were slightly above the MCL, but overlap of error bars indicate only 

minor statistical differences among treatments (Figure 4.4b). Over this same period, there 

was no significant decrease in 1,2-DCA (Figure 4.6).  The EDB enrichment culture was 

thus able to continue its rate of EDB consumption unaffected by 1,2-DCA, even when the 

concentration of 1,2-DCA was orders of magnitude greater than that of EDB. 1,2-DCA 

showed no change in concentration for 26 days (Figure 4.6). As with the EDB only 

treatment, ethene was the primary daughter product of EDB conversion, though as above, 

recovery was less than 100% in the “EDB + Low 1,2-DCA” bottles (Figure 4.5). 

The third treatment (“EDB + Mid 1,2-DCA”) received approximately five times 

more 1,2-DCA (26 µmols) per bottle than EDB, resulting in an initial aqueous phase 

concentration of 250 µM (25 mg/L). Despite this higher concentration of 1,2-DCA, EDB 

consumption initially increased (Figure 4.4a), though at the conclusion of the test 

concentrations were not significantly different than other treatments (Figure 4.4b). Ethene 

was the predominant biodegradation product from EDB in the “EDB + Mid 1,2-DCA” 
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bottles (Figure 4.5). No drop in 1,2-DCA concentrations was observed over the course of 

the experiment in this treatment (Figure 4.6).  

Approximately ten times more 1,2-DCA was added to the final treatment (“EDB 

+ High 1,2-DCA,”). As with the mid-DCA treatment, the high initial concentration of 

1,2-DCA appeared to increase the initial rate of EDB utilization (Figure 4.4a), although at 

the conclusion of the test the final concentrations were similar (Figure 4.4b).  Ethene was 

the predominant biodegradation product from EDB (Figure 4.5).  1,2-DCA exhibited no 

appreciable decline over 624 hours of monitoring (Figure 4.6). 

EDB can also be converted by reductive dehalogenation to bromoethane or via 

abiotic dehydrohalogenation to vinyl bromide (Figure 4.1), but neither daughter product 

was detected in these experiments above their detection limits (3.2 and 1.9 µg/L for 

bromoethane and vinyl bromide, respectively).  These aqueous concentrations correspond 

to 0.002 µmol of bromoethane and 0.004 µmol of vinyl bromide per bottle.  Methane was 

monitored during the test (Figure 4.7).  Initially 1 µmol of methane per bottle was present 

in all treatments (Figure 4.7). Over time, levels of methane increased to approximately 

14.5 µmols in the EDB only, EDB + Low 1,2-DCA and EDB + Mid 1,2-DCA treatments, 

accounting for roughly 2.1% of the electron equivalents of lactate provided. Methane 

levels were lower in the EDB + High 1,2-DCA treatment (11.9 µmols, or 1.7% of the 

electron equivalents of lactate added), but overlap among error bars indicates this 

difference was not significant. 
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4.3.1 1,2-DCA Inhibition Test 

Ten serum bottles inoculated with the 1,2-DCA enrichment culture and amended 

with 1,2-DCA and varying amounts of EDB were monitored for 107 days. Two control 

treatments were established in the 1,2-DCA inhibition test, receiving approximately the 

same amount of 1,2-DCA or EDB (7-8 µmol), and are termed here “1,2-DCA only” and 

“EDB only” (Table 4.2). This equates to an initial aqueous phase concentration of 65 µM 

(7 mg/L) of 1,2-DCA and 80 µM of (15 mg/L) EDB.  Both compounds disappeared 

within two days of initiation of the experiment (Figures 4.8 and 4.9).  In the case of 1,2-

DCA, this was expected since the culture was enriched for growth with 1,2-DCA as the 

terminal electron acceptor.  However, the fact that EDB also was immediately consumed 

with no apparent lag was unexpected, since the 1,2-DCA enrichment culture had never 

previously been exposed to EDB. As in the case of the EDB test, approximately 

stoichiometric amounts of ethene were recovered in both treatments (Figure 4.10), 

indicating the SRS culture degrades these compounds through similar metabolic 

pathways, i.e., dihaloelimination. 

To determine the effects of equimolar amounts of EDB on 1,2-DCA consumption 

by the 1,2-DCA enrichment culture, 7 µmols 1,2-DCA (65 µM, or 7 mg/L) and 8 µmols 

EDB (80 µM, 15 mg/L) were added together to the third treatment (“1,2-DCA + Low 

EDB”).  EDB was completely consumed in two days (Figure 4.9) but 1,2-DCA was not 

(Figure 4.8), demonstrating a clear preference by the culture for EDB, despite its 

enrichment on 1,2-DCA. 1,2-DCA consumption slowed throughout the test, even after 

the amount of EDB remaining was well below 1 µmol per bottle.  A total of 31 days was 
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required for complete consumption of the 1,2-DCA, in stark contrast to the 1,2-DCA only 

treatment, in which the compound was completely consumed to below detection after two 

days. This demonstrates a lasting negative impact of EDB on the culture’s ability to 

consume 1,2-DCA, long after complete consumption of EDB.  Ethene was the 

predominant product of EDB and 1,2-DCA conversion, though as above incomplete 

conversion was noted (Figure 4.10). 

To test the effect of higher concentrations of EDB, 40 µmol per bottle (resulting 

in an initial aqueous phase concentration of 400 µM or 75 mg/L) were added to the fourth 

treatment, approximately five times the amount of 1,2-DCA (“1,2-DCA + Mid EDB”) 

(Table 4.2).  By day 2 of the test EDB was depleted (Figure 4.9), but only 1 µmol of 1,2-

DCA was consumed (Figure 4.8).  This is one-sixth the 1,2-DCA utilization rate at the 

same point in the treatment that received equimolar amounts of the two compounds (1,2-

DCA + Low EDB treatment). Ninety-one days elapsed before 1,2-DCA decreased to 

below detection in this treatment. 

Inhibition of 1,2-DCA was even more pronounced when EDB was added at a 

ratio of 11 to 1 (“1,2-DCA + High EDB”).  Each bottle in the last treatment received 80 

µmol of EDB (resulting in an initial aqueous phase concentration of 800 µM or 150 

mg/L) (Table 4.2).  Like the other treatments, the culture showed a clear preference for 

EDB over 1,2-DCA, though more time (8 days) was required for complete consumption 

of EDB to below to level of detection for the FID (Figure 4.9).  At the test’s conclusion 

(107 days), over 2 µmol 1,2-DCA remained in the bottles (Figure 4.8). Thus, higher 

concentrations of EDB produced proportionately greater inhibition of 1,2-DCA. 
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1,2-DCA can also be converted by reductive dehalogenation to chloroethane or 

via abiotic dehydrohalogenation to VC.  Chloroethane was not detected during this test 

above its detection limit of 1.1 µg/L, which corresponds to 0.002 µmols per bottle.  

Figure 4.11 shows VC concentrations over time in the treatments.  A maximum of 0.05 

µmols per bottle was detected on day 2 in the 1,2-DCA only treatment, and this level 

declined quickly.  Roughly the same amount of VC accumulated in the 1,2-DCA + Low 

EDB treatment on days 5 and 10, respectively, which then declined over time.  VC levels 

peaked at roughly 0.045 µmols per bottle in the 1,2-DCA + Mid EDB treatment from 

days 24 through 44, declining to below detection by day 91.  VC exhibited an increasing 

trend in the 1,2-DCA + High EDB treatment, gradually increasing to 0.03 µmols per 

bottle by day 107.   

Figure 4.12 shows methane production in the treatments over the duration of the 

test.  All treatments contained roughly the same amount of methane at the start of the test 

(4-5 µmols/bottle).  Over time, gradually increasing methane levels were noted in all 

three treatments to which both 1,2-DCA and EDB were added.  A maximum of 514 

µmols per bottle was observed in the treatment to which approximately equal amounts of 

1,2-DCA and EDB were added.  This level of methane translates into roughly 73% of the 

electron equivalents of lactate provided as electron donor at the start of the test.  Less 

methane was detected in treatments to which more EDB was added.  In the 1,2-DCA + 

Mid EDB treatment, 299 µmols had accumulated by day 91 (21% of the lactate electron 

equivalents added).  Roughly 144 µmols (9.6% the lactate electron equivalents added) 

were present in the 1,2-DCA + High EDB treatment on day 107. 
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4.4  Discussion 

Previous studies have shown the importance of inhibitory interactions between 

CT and PCE (2), 1,1,1-TCA, PCE and CT (1), 1,1,1-TCA, CT and CF (35), PCE and 

TeCA , and 1,1,1-TCA and TCE (31). The research described above demonstrates 

conclusively that EDB inhibits the SRS culture’s ability to degrade 1,2-DCA.  Though 

the culture rapidly consumed EDB and 1,2-DCA individually, when fed both 

simultaneously it degraded EDB at the expense of 1,2-DCA in all cases.  When the 

culture was enriched on EDB, activity on 1,2-DCA was completely inhibited, even after 

EDB was gone. Even the highest amount of 1,2-DCA tested did not inhibited the rate of 

EDB degradation, down to part-per-trillion levels.  Any prior exposure to EDB precluded 

the culture’s ability to consume 1,2-DCA.  Remarkably, when the culture was enriched 

on 1,2-DCA and subsequently exposed to both EDB and 1,2-DCA, EDB was consumed 

first. EDB clearly inhibited 1,2-DCA biodegradation, and the degree of 1,2-DCA 

inhibition was roughly proportional to the initial concentration of EDB.  

Few studies have evaluated potential inhibitory interactions between brominated 

and chlorinated compounds, and none have focused on EDB and 1,2-DCA specifically. 

Gu et al. (32) found that vinyl bromide and VC were mutually inhibitory in a mixed cis-

1,2-DCE dechlorinating enrichment culture, though VC was slightly more so than vinyl 

bromide (32).  This may be due to the slight thermodynamic advantage of hydrogenolysis 

of vinyl chloride relative to that of vinyl bromide (Table A.3). Bedard and Van Dort (4) 

found that brominated biphenyls were superior dehalogenation substrates to chlorinated 

biphenyls (4). One brominated compound known to inhibit dechlorination is 2-
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bromoethanesulfonate (BES) (43), though the mechanism by which it does so is unclear.  

Chiu and Lee (13) found that 2-bromoethanesulfonate (BES) did not inhibit the activity 

of a TCE-dechlorinating culture but did change the mechanism by which the culture 

degraded TCE.  In microcosms containing the culture, but not BES, TCE was 

dechlorinated to ethane via cis-DCE, VC and ethene.  However, when BES was added, 

TCE was degraded to ethene (not ethane) via a mixture of cis- and 1,1-DCE (roughly at a 

3:1 ratio) and VC, leading the authors to speculate that its presence altered bacterial 

community structure.  

None of the above studies evaluated inhibition over ranges of different 

concentrations.  The experiments conducted here showed that the consumption of 1,2-

DCA by the 1,2-DCA enrichment culture slowed significantly in the 1,2-DCA + Low 

EDB treatment, was slower in the 1,2-DCA + Mid EDB treatment, and was slowest in 

1,2-DCA + High EDB, which received the most EDB. The presence of EDB significantly 

impeded the ability of the enrichment culture to degrade 1,2-DCA at low levels, and the 

rate in the 1,2-DCA + Low EDB treatment, which exhibited the most extensive 1,2-DCA 

degradation, showed extended tailing at low levels.   

Inhibition of 1,2-DCA by EDB may contribute to its observed persistence in 

laboratory and field studies. EDB and 1,2-DCA were co-released at UST sites as 

components of leaded gasoline. This release scenario provides no expectation of prior 

exposure to 1,2-DCA, which might predispose indigenous communities of 

microorganisms to consume 1,2-DCA preferentially.  Within this context, these 
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experiments raise the possibility that EDB precludes the ability of microorganisms at 

these sites to biodegrade 1,2-DCA anaerobically.  

Where the SRS culture was enriched for 1,2-DCA consumption, it was able to 

biodegrade 1,2-DCA to a limited degree while consuming EDB.  When equivalent 

amounts of the compounds were provided, concurrent consumption was greatest; 8 µmols 

EDB and 3 µmols 1,2-DCA were degraded in two days.  Less 1,2-DCA was degraded if 

EDB concentrations were higher.  Both compounds were degraded without appreciable 

lagtime to ethene via dehaloelimination.  This would tend to indicate the same organisms 

and/or enzymes are involved.  The culture’s preference for EDB may relate to the 

thermodynamic advantage of its respiration over 1,2-DCA (Appendix A). If different 

enzymes and/or microbes are required for reduction of EDB and 1,2-DCA, there would 

be no expectation for competitive inhibition.  Further investigation into the culture’s 

preference for EDB would permit a better understanding of the persistence of 1,2-DCA at 

UST sites.  Cultivating the SRS culture’s ability to degrade both compounds 

simultaneously might permit bioaugmentation of commingled EDB and 1,2-DCA in 

potential field application.  These experiments were conducted at aqueous concentrations 

that are higher than those likely to be encountered at UST sites, and further research is 

needed to evaluate potential inhibition among EDB and 1,2-DCA at concentrations more 

relevant to those likely to be encountered at UST sites.  Given the clear-cut results 

presented here, research into inhibitory interactions among commingled compounds of all 

classes may have important applicability to the science and application of in situ 

bioremediation 
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Table 4.1 Treatments Used to Test the Effect of 1,2-DCA on EDB 
  EDB  1,2-DCA  Lactate Provideda  Lactate Requiredb 
  µmol/

bot. 
µM mg/L  µmol/

bot. 
µM mg/L  µmol/

bot. 
meq/
bot. 

mM  meq/bot. 

EDB Only  7 65 12  - - -  0.07 0.8 0.7  0.014 
EDB + Low 1,2-

DCA 
 7 65 12  5 52 5  0.07 0.8 0.7  0.024 

EDB + Mid 1,2-
DCA 

 7 65 12  26 250 25  0.07 0.8 0.7  0.066 

EDB + High 1,2-
DCA 

 7 65 12  53 520 52  0.07 0.8 0.7  0.120 

Water Controls  7 65 12  50 480 48  - - -  - 

Table 4.2 Treatments Used to Test the Effect of EDB on 1,2-DCA  

  1,2-DCA  EDB  Lactate Provideda  Lactate Requiredb

  µmol/
bot. 

µM mg/L  µmol/
bot. 

µM mg/L  µmol/
bot. 

meq/
bot. 

mM  meq/bot 

1,2-DCA Only  7 65 7  - - -  0.07 0.8 0.7  0.014 
 

EDB Only 
 - - -  8 80 15  0.07 0.8 0.7  0.016 

1,2-DCA + Low 
EDB 

 7 65 7  8 80 15  0.07 0.8 0.7  0.024 

1,2-DCA + Mid 
EDB  

 7 65 7  40 400 75  0.07 0.8 0.7  0.066 

1,2-DCA + High 
EDB  

 7 65 7  80 800 150  0.07 0.8 0.7  0.120 

Water Controls  7 65 7  8 80 15  - - -  - 
 
aLactate was added whenever EDB/1,2-DCA was added 
bLactate required calculated as meq EDB/1,2-DCA present in each bottle the start of an experiment 
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Figure 4.1 Pathways for anaerobic reduction of EDB; [H] = H+ + e-. The pathways for 
anaerobic transformation of 1,2-DCA are identical. 
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FIGURE 4.2 EDB mother bottle.  Arrows (↓) indicate when lactate was added to the 
bottle.  New lactate additions were made with each addition of EDB.  
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FIGURE 4.3 1,2-DCA mother bottle.  Arrows (↓) indicate when lactate was added to the 
bottle.  New lactate additions with each addition of 1,2-DCA. 
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FIGURE 4.4 EDB inhibition test, comparison of average EDB amount per bottle by 
treatment from 0 to 1 days (a), and 1 to 26 days (b).  Error bars represent one standard 
deviation on treatment mean.  
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FIGURE 4.5 EDB inhibition test, comparison of average ethene amount per bottle by 
treatment.  Error bars represent one standard deviation on treatment mean.   
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FIGURE 4.6 EDB inhibition test, comparison of average 1,2-DCA amount per bottle by 
treatment.  Error bars represent one standard deviation on treatment mean.   
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FIGURE 4.7 EDB inhibition test, comparison of average methane amount per bottle by 
treatment.  Error bars represent one standard deviation on treatment mean.   
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FIGURE 4.8 1,2-DCA inhibition test, comparison of average 1,2-DCA amount per bottle 
by treatment.  Error bars represent one standard deviation on treatment mean.   
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Figure 4.9 1,2-DCA inhibition test, comparison of average EDB amount per bottle by 
treatment.  Error bars represent one standard deviation on treatment mean. 
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FIGURE 4.10 1,2-DCA inhibition test, comparison of average ethene amount per bottle 
by treatment.  Error bars represent one standard deviation on treatment mean. 
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FIGURE 4.11 1,2-DCA inhibition test, comparison of average VC amount per bottle by 
treatment.  Error bars represent one standard deviation on treatment mean. 
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FIGURE 4.12 1,2-DCA inhibition test, comparison of average methane amount per 
bottle by treatment.  Error bars represent one standard deviation on treatment mean. 
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CHAPTER FIVE 

SUMMARY AND IMPLICATIONS 

This research demonstrates that EDB is anaerobically biodegradable to below its 

MCL in the presence of 1,2-DCA and fuel hydrocarbons.  Biodegradation of EDB in 

microcosms was confirmed by carbon specific isotope analysis at the University of 

Oklahoma.  More consistent EDB removal was achieved when lactate was added to 

laboratory microcosms.  Anaerobic biodegradation of EDB is commonly thought to occur 

via dihaloelimination to ethene, but hydrogenolysis to bromoethane was prominent in the 

microcosm portion of this study, particularly in the less contaminated microcosms.  

Several toxicological effects are associated with bromoethane, including neurotoxicity, 

hematological and hepatic toxicity, so the possibility that bromoethane is present in 

groundwater at UST sites is a concern.  Unlike EDB, 1,2-DCA was recalcitrant in a 

majority of the experiments performed, and did not respond to lactate addition.  This 

observation is in keeping with field data indicating 1,2-DCA may be the more persistent 

of the lead additives.  Varying rates of decay were observed for the BTEX components of 

gasoline, and notably, anaerobic degradation of benzene was observed and corroborated 

by carbon specific isotope analysis.  The effect of lactate addition on BTEX 

biodegradation was beneficial in the case of benzene, negligible in the case of toluene, 

and inhibitory for ethylbenzene and o-xylene when the concentrations of these 

compounds were high.   

Experiments conducted with an enrichment culture originally developed with 

chlorinated ethenes as terminal electron acceptors showed conclusively that EDB 
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inhibited biodegradation of 1,2-DCA.  Thermodynamic calculations indicate reduction of 

EDB and its daughter products is more favorable than that of its 1,2-DCA analogs. The 

degree of 1,2-DCA inhibition was roughly proportional to the initial concentration of 

EDB.  Higher EDB concentrations produced more extensive and with longer lasting 

inhibition of 1,2-DCA. When enriched on 1,2-DCA, the culture was able to effect limited 

concurrent degradation of both compounds.  In these cases, EDB degradation was much 

faster and more extensive, and less concurrent degradation of 1,2-DCA was observed at 

higher EDB concentrations.  This clear pattern of inhibition of 1,2-DCA by EDB 

suggests that inhibition may be a contributing factor to the persistence of 1,2-DCA at 

UST sites.  EDB and 1,2-DCA were co-released at UST sites, so there would be little 

expectation of prior exposure of indigenous microorganisms to 1,2-DCA; concurrent 

degradation was only possible if the culture was enriched on 1,2-DCA before it was 

exposed to EDB, so complete inhibition of 1,2-DCA at UST sites might be expected.  

Bioaugmentation with microorganisms that have been enriched simultaneously for EDB 

and 1,2-DCA consumption may be necessary to achieve concurrent bioremediation of 

these compounds.  

Little is known about EDB and 1,2-DCA degradation in aerobic zones at UST 

sites.  Further work is needed to determine the factors controlling their persistence in 

oxygenic environments.  It is anticipated that this knowledge would assist remedial 

decision makers at sites where long aerobic EDB and 1,2-DCA plumes exist.  A relevant 

consideration is how aerobes respond to the very low concentrations likely to be 
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encountered in aerobic zones and whether they are below Smin, the minimum substrate 

level capable of supporting growth. 

Modeling was conducted with an analytical model (REMChlor) to determine the 

effects of source and plume remediation on plume extent at UST sites. REMChlor uses 

mass balance approaches to track changes in source mass and plume concentration, and 

unlike commonly used screening models such as BIOCHLOR, is able to simulate plume 

response to variable source depletion and plume remediation.  Plume degradation rates 

were derived from laboratory studies described above, the first to evaluate EDB and 1,2-

DCA biodegradation in the presence of fuel hydrocarbons. Simulation results indicate 

that the relative risk posed by each compound varies greatly over time and space, 

especially when multiple releases of leaded and unleaded gasoline have occurred.  

Compounds likely to exceed regulatory standards based on dissolution characteristics in 

near-source plume zones (i.e., benzene) may not exceed these standards downgradient, 

due to differences in biodegradation rates.  Conversely, EDB and 1,2-DCA, which are 

likely to be less biodegradable than nonhalogenated fuel hydrocarbons in the aerobic 

environment, pose far greater relative risk downgradient of the source.  If later releases of 

unleaded fuel occur, MTBE may represent the greatest risk near the source, though its 

rapid dissolution pattern makes the risk short-lived.  EDB will partition out of the NAPL 

phase much more slowly, so it will likely sustain dissolved plumes for longer timeframes.  

Extensive plume lengths of EDB and 1,2-DCA result when aerobic biodegradation rates 

are low, so longer remedial timeframes are necessary prior to seeing beneficial effects of 

remediation downgradient.  Given it rapid dissolution profile, detached plumes of MTBE 
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are possible. Source removal produces and immediate drop in source discharge 

concentrations, but given that in the best case a 90% removal efficiency can be expected, 

the applicability of this technique as a stand alone remedial method is limited to 

compounds like 1,2-DCA that are likely to be encountered near their risk-based screening 

value.  Source removal is less effective for EDB, which dissolves from gasoline at 

concentrations that are orders of magnitude above its MCL (0.05 µg/L).  If remediation is 

undertaken decades after the release, natural dissolution and attenuation processes may be 

sufficiently advanced to limit the gains achievable from expensive source removal.  Of 

the four compounds evaluated here, remedial challenges are likely to be highest for EDB, 

given its very low MCL, extensive downgradient plumes, and relative recalcitrance in the 

aerobic zone.  Even where the best possible combination of source removal and plume 

bioremediation are combined, significant remedial timeframes will likely be required for 

this compound where long plumes exist. 

The environmental community has grappled with a legacy of UST contamination 

for over 20 years.  An assessment of the risk to human health and the environment posed 

by BTEX and MTBE was possible only after understanding their behavior in the 

subsurface.  This research advances our understanding of the behavior of EDB and 1,2-

DCA at UST sites, but further work is needed.  A better understanding of the factors 

controlling the persistence of EDB and 1,2-DCA will permit a more informed response to 

this problem on the part of practitioners, researchers, and regulators.  Should the 

occurrence of lead scavengers be as widespread as preliminary evidence would indicate, 
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 having this knowledge in hand before deleterious impacts to human health and the 

environment occur can only prove beneficial.
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Appendix A 

6.1 Microcosm Sampling and Analytical Methods  

6.1.1 Microcosm Sampling 

Volatile compounds in the microcosms were quantified using a headspace 

method.  This required taking samples of the headspace by puncturing the septum with a 

syringe.  Because of excessive diffusive losses of some of the volatile compounds (in 

particular, BTEX) during storage with punctured septa, a different procedure was used 

for sampling that allowed for storage of the microcosms with unpunctured septa.  The 

next section of Appendix A provides a comparison of diffusive losses during the two 

methods of microcosm storage (i.e., with punctured versus unpunctured septa).  This 

section describes how the headspace sampling was accomplished, followed by 

descriptions of the GC methods, CSIA, and methods for anions, iron and organic acids.   

Headspace sampling began by shaking the microcosms to homogenize the 

sediment and groundwater and placing the microcosms in the anaerobic chamber in an 

upright position the night before samples were to be taken.  At least one hour before 

sampling, the unpunctured septa that were on the bottles were quickly removed and 

replaced with septa that were designated for puncturing (i.e., they may have already been 

punctured several times).  It took less than five seconds to exchange the septa.  Duplicate 

headspace samples (0.5 mL) were then taken in separate syringes (1.0 mL series A-2 with 

a side-port needle, Precision Scientific) inside the chamber; the syringes were 

immediately removed and walked over to the GC.  One sample was injected to the ECD, 

the other to the FID (see below).  After confirming that the samples had been run 
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successfully on the GC, the punctured septa on the microcosms were exchanged for 

unpunctured ones, the microcosms were removed from the chamber, shaken to 

homogenize the sediment and groundwater, and then stored in the inverted position until 

the next sampling event.  As needed, liquid samples were removed at the same time as 

headspace samples.  Supernatant was removed using a 2 mL glass syringe. 

6.1.2 GC Methods   

As mentioned above, the two headspace samples were injected onto the GC, one 

immediately after the other.  A single temperature program (40°C for 5 min, ramped at 

10°C/min to 200°C, hold for 12 min) resolved all of the contaminants of interest.  To 

quantify EDB, 1,2-DCA, bromoethane, and vinyl bromide, one of the headspace samples 

was injected onto an RTX 624 column (60-m, 0.53 mm inner diameter, 3.0 µm film 

thickness) connected to the ECD, with injector and detector temperatures set at 200°C 

and 260°C, respectively.  Helium (3 mL/min) and nitrogen (33 mL/min) served as the 

carrier and make-up gases, respectively.  A split flow rate of 220 mL/min (73.1:1 split 

ratio) was used for EDB concentrations greater than approximately 1.0 µg/L and a 

splitless mode was used thereafter (0.75 min splitless injections).  To quantify 

hydrocarbons, the second headspace sample was injected onto an RTX-5 column (30-m, 

0.53 mm inner diameter, 0.25 µm film thickness) connected to the FID was used, with 

injector and detector temperatures set at 250°C and 310°C, respectively.  Helium (5.88 

mL/min) and nitrogen (33.0 mL/min) served as the carrier and makeup gases, 

respectively.  A split flow rate of 26.0 mL per minute was used, and injections were made 

in splitless mode (0.75 min). 
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6.1.3 Carbon Specific Isotope Analysis 

Samples for CSIA were prepared by diluting 2 mL of groundwater from a 

microcosm tenfold in 25 mL vials with Teflon-backed septa to prevent volatilization 

losses.  EDB and 1,2-DCA samples were preserved with HCl (3 drops). The analytes 

were extracted by a purge and trap (P&T model OI 4660) interfaced to a GC-IRMS 

instrument (Finnigan MAT 252 IRMS). Due to chromatographic complexity of the 

samples, satisfactory resolution of EDB and 1,2-DCA required a 2-dimensional 

chromatographic approach (separation on polar GC phase followed by separation on non-

polar GC phase). The P&T-GCIRMS interface described previously (41) was 

programmed for collecting 2 min heart-cuts of the sample eluting from the polar pre-

column. The heart-cuts were directed onto a non-polar phase GC column for final 

separation followed by on-line combustion and analysis of isotope composition. 

6.1.4 Anions, Iron, and Organic Acids 

Liquid samples were filtered (0.45 µm PVDF, Pall Life Sciences) and analyzed 

for bromide, chloride, nitrate and sulfate on a Dionex DX-100 Ion Chromatograph using 

a AS5A-5µ (4 x 150 mm) column and 0.01 N H2SO4 as eluant (0.6 mL/min).  Lactate, 

acetate and propionate were quantified by high performance liquid chromatography using 

an anion exchange column (Aminex HPX-87H, BioRad) (18).  Iron (II) was analyzed 

using the ferrozine method (15).   
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6.2  The Effect of Incubation Method on Losses of Volatile Compounds During 

Storage of the Microcosms 

Prior microcosm experiments (39) suggested that loss of BTEX compounds may 

be significant when the microcosms are incubated with septa that have been repeatedly 

punctured.  An alternative approach is to incubate the test bottles with unpunctured septa, 

as described above.  The hypothesis was that the losses that occur during the brief time 

when swapping the unpunctured and punctured septa are smaller in comparison to not 

changing the septa and incubating the bottles for extended periods (i.e., months) with 

septa that have been punctured.  To test this hypothesis, two sets of triplicate water 

controls were prepared using the same type of bottles as the microcosms, with 1.7 L of 

distilled deionized water present.  Both sets were spiked with the same amounts of EDB, 

1,2-DCA and BTEX.  One set (“punctured septa”) was sampled and incubated without 

changing the septa.  For the other set (“unpunctured septa”), the septa were exchanged 

prior to and after sampling, as described above.   

Data were collected for 120 days. Results are shown in Figure S.1.  The data were 

fit to a first order model.  For the unpunctured treatment, none of the trend lines were 

statistically significant (α=0.05), so no trend line is shown.  This confirmed the lack of 

diffusive losses with this method of microcosm operation.  A summary of the pseudo first 

order rates of loss for the punctured treatment is given in Table A.1.  It is evident that 

diffusive losses were significantly greater for EDB, benzene, toluene, ethylbenzene and 

o-xylene in the bottles that were incubated with punctured septa.  There was virtually no 

difference for 1,2-DCA.  These results confirm the importance of incubating the 
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microcosms with unpunctured septa rather than punctured ones, and that the process of 

exchanging septa just before and after sampling resulted in minimal (if any) losses of the 

volatile compounds. 
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Figure A-1. Behavior of EDB, 1,2-DCA and BTEX in triplicate water control 
microcosms that were incubated with unpunctured septa (blue symbols) and punctured 
ones (red symbols).  Trend lines are shown only when the first order regression line was 
statistically significant; for the compounds that had a slope that was not different from 
zero, no trend line is shown. 
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Table A-1.  Summary of First Order Loss Rates from Water Controls with Punctured and Unpunctured Septa.   
 Unpunctured Punctured  

Compound Rate (yr-1)a R2 Rate (yr-1) R2 Comparisonb 

EDB 0c - 0.428 ± 0.115 0.388 Significant 

1,2-DCA 0 - 0 - Insignificant 

Benzene 0 - 0.650 ± 0.244 0.244 Significant 

Toluene 0 - 1.42 ± 0.483 0.282 Significant 

Ethylbenzene 0 - 1.99 ± 0.311 0.650 Significant 

o-Xylene 0 - 1.67 ± 0.458 0.376 Significant 

 
a  Rates were determined based on regression of pooled data from triplicate bottles.   
b Student’s t-tests (α = 0.05) were performed to compare the rates for the unpunctured and punctured bottles.  Where statistical 

differences were observed, “significant” was entered.  If no statistical difference was observed, “insignificant” was entered. 
c The slope was not statistically different from zero or was positive. 
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6.3 Comparison of EDB Quantification by EPA Method 8011 and Headspace 

Analysis 

Care was taken prior to beginning the experiments to develop an analytical 

method capable of attaining EDB’s very low MCL of 0.05 µg/L.  USEPA’s method 8011 

was compared to quantification by headspace analysis, on the basis of the amount of 

EDB delivered in a sample to the GC when 0.05 µg/L is present in the aqueous phase of 

the microcosms.  Method 8011 analyzes for EDB and 1,2-dibromo-3-chloropropane by 

extracting an aqueous sample into hexane (58).  The headspace method is based on 0.5 

mL samples from the gas phase of the microcosms.       

With USEPA Method 8011, a 35 mL aqueous sample is extracted into 2.0 mL 

hexane, concentrating the sample by a factor of 17.5 (58).  The extraction procedure was 

modified for the purposes of this study in order to conserve aqueous volume, by reducing 

the aqueous and solvent volumes seven fold; i.e., 5.0 mL of microcosm water was 

extracted into 0.3 mL pentane.  (Pentane was used rather than hexane, since pentane 

elutes faster than hexane and the hexane peak overlapped with 1,2-DCA, which elutes 

faster than EDB).  Assuming 100% extraction efficiency (i.e., all mass in the aqueous 

phase is extracted by the solvent) and 0.05 µg/L EDB in the water, the mass injected onto 

the GC in a 1 µL sample is 8.33E-4 ng. 

With the headspace method, the amount injected is based on the concentration in 

the gas phase that is in equilibrium with 0.05 µg/L EDB in the aqueous phase.  This 

concentration is obtained based on a mass balance for the microcosm:   

MT = ClVl + CgVg
 (A1) 



 

117 

 

where MT is the total amount of EDB (µg/bottle); Cl is the concentration of EDB in the 

aqueous phase (µg/L), Vl is the aqueous volume (L), Cg is the gas phase concentration 

(µg/L), and Vg is the gas volume (L).  Using Henry’s law constant (Hc = Cg/Cl) and 

substituting Cl for Cg yields: 

MT = ClVl + HcClVg
 (A2) 

When Vl = 1.5 L, Vg = 0.3 L, Cl = 0.05 µg/L, and Hc = 0.0251, then MT = 7.54E-2 µg. 

Equation A1 may also be solved in terms of Cg by substituting for Cl:   

g
c

l

T
g

V
H
V

MC
+

=

 (A3) 

Using the value calculated for MT from equation S-2 and the values above for Vl, 

Vg, and Hc, equation A3 yields a value of 1.26E-3 µg/L for Cg.  The amount of EDB 

injected onto the GC in a 0.5 mL headspace sample is 6.28E-4 ng.  This amount is 

approximately 75% of the amount injected based on the modified version of Method 

8011.  Since the assumption regarding complete extraction efficiency for Method 8011 is 

unrealistic and the headspace method delivers an amount to the GC sufficient to allow 

detection to below the MCL for EDB, the headspace method was selected for 

quantification.  This approach avoids the need to perform extractions and does not disturb 

the amount of liquid in the microcosms.     
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6.4  EDB and 1,2-DCA Results for Individual Microcosms.   

Figure 1 in the manuscript shows average results for EDB and 1,2-DCA in 

triplicate microcosms.  Data for each bottle are presented in Figure A.2 for the source 

zone and Figure A.3 for the midgradient zone, in order to reveal the extent of variability 

among the replicates.  Especially noteworthy is the rapid biodegradation of EDB and 1,2-

DCA in NA source zone replicate #3 (also described in the manuscript).  EDB was added 

a second time to this microcosm to confirm its biodegradation activity.  NA source zone 

replicate #4 also needed to be respiked with EDB, although it did not consume the second 

addition of EDB as rapidly as replicate #3.  The BST and AC replicates in the source 

zone behaved more similarly.  All of the midgradient replicates behaved similarly, both 

with respect to EDB and 1,2-DCA (Figure A.3) and BTEX (data not shown). 
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Figure A-2. Source zone EDB and 1,2-DCA microcosm replicates; dashed horizontal 
lines indicate the MCL for EDB and 1,2-DCA. 
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Figure A-3. Midgradient zone EDB and 1,2-DCA microcosm replicates; dashed 
horizontal lines indicate the MCL for EDB and 1,2-DCA. 
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6.5 Characteristics of Soil from the Source and Midgradient Zones.   

Table A.2 shows various properties of the soil taken from the source and 

midgradient zones at the Clemson, South Carolina UST site sampled for this study.  The 

soils contain a lower level of total iron than would be expected for clays that are native to 

the area.  However, the soil at the site consists of clays along with poorly-sorted fill 

material consisting of a mixture of sand, silt and clay.     

Table A.2 Soil Characteristicsa 

 

Compound Source Zone  Midgradient Zone  

Phosphorus (mg/kg) 2.5 1.0 

Potassium (mg/kg) 20 20 

Calcium (mg/kg) 350 41 

Magnesium (mg/kg) 23 14 

Zinc (mg/kg) 5.2 2.3 

Manganese (mg/kg) 27 22 

Copper (mg/kg) 0.30 0.35 

Boron (mg/kg) 0.1 0.05 

Sodium (mg/kg) 9.0 9.0 

Nitrate Nitrogen (mg/kg) 2.0 1.0 

pH  5.1 4.8 

Iron (mg/kg) 35 16 

Carbon (%) 0.30 0.01 
 

a Analyses performed by the Agricultural Services Laboratory at Clemson University. 
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6.6 Comparison of Gibbs Free Energies for Dehalogenation of EDB, 1,2-DCA, 

and Associated Daughter Products 

Table A.3 compares Gibbs free energy values for hydrogenolysis, 

dihaloelimination, and dehydrohalogenation of EDB, 1,2-DCA and their associated 

daughter products under standard and actual conditions for the source and midgradient 

microcosms.  Table A.4 lists Gibbs free energy of formation values, Henry’s law 

constants, and aqueous concentrations that were used in calculations for Table A.3.  

Transformations of EDB and its potential brominated daughter products are more 

thermodynamically favorable than for 1,2-DCA and its chlorinated daughter products in 

all reactions, with one exception: hydrogenolysis of vinyl chloride is slightly more 

favorable than vinyl bromide.  It should be noted, however, that vinyl chloride and vinyl 

bromide did not accumulate in any of the microcosms in this study. 
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Table A.3 Comparison of Gibbs Free Energies for Transformation of EDB, 1,2-DCA and Associated Daughter 

Products 

Transformation 
Process Reaction ΔGo’a 

ΔG, 
Source Zoneb 

ΔG, 
Midgradient 

Zoneb 
EDB + H2 –> ethene + 2Br- + 2H+ -195.0 -244.9 -259.8 Dihaloelimination 1,2-DCA + H2 –> ethene + 2Cl- + 2H+ -188.3 -225.5 -247.9 

     
EDB + H2 –> bromoethane + Br- + H+ -153.5 -169.9 -177.4 
1,2-DCA + H2 –> chloroethane + Cl- + H+ -152.3 -162.4 -154.9 
    
bromoethane + H2 –> ethane + Br- + H+ -140.4 -156.8 -164.3 
chloroethane + H2 –> ethane + Cl- + H+ -134.9 -145.0 -137.5 
    
vinyl bromide + H2 –> ethene + Br- + H+ -148.4 -151.3 -158.7 
vinyl chloride + H2 –> ethene + Cl- + H+ -149.8 -159.8 -152.4 
    

Hydrogenolysis 

ethene + H2 –> ethane -99.0 -99.4 -100.0 
     

EDB –> vinyl bromide + Br- + H+ -46.6 -63.0 -70.4 Dehydrohalogenation 1,2-DCA –> vinyl chloride + Cl- + H+ -38.5 -48.5 -41.1 
aCalculated using the aqueous Gibbs free energies of formation in Table A-4.  Temperature = 25°C; all reactants and products 
at 1 M or 1 atm except H+, pH = 7.0.    
bΔG calculated from ΔGo’ using the Nernst equation and the field conditions specified in Table A-4.   
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Table A.4 Data Used for Gibbs Free Energy Calculations Presented in Table A.3 

 
 ΔGo

f(g) Henry’s law constanta ΔGo
f(aq)

 Field Concentrations 

Compound kJ/mol Source  atm⋅m3/mol  Source kJ/mol Source
Source  
Zone 

Midgradient  
Zone 

    EDB -10.60 (53) 0.0006664 (42) -11.82b - 1.33E-06 M 6.67E-08 M 
  1,2-DCA -73.90 (53) 0.0014400 (42) -73.22b - 1.00E-05 M 4.00E-07 M 
  Bromoethane -26.33 (53) 0.0075006 (36) -21.34b - 1.00E-06 M 1.00E-06 M 
  Chloroethane -60.00 (53) 0.0104458 (60) -54.20b - 1.00E-06 M 1.00E-06 M 
  Vinyl bromide 81.06 (30) 0.0062300 (59) 23.83b - 1.00E-06 M 1.00E-06 M 
  Vinyl chloride 51.54 (53) 0.0263497 (42) 59.46b - 1.00E-06 M 1.00E-06 M 
  Ethene 68.16 (53) 0.1771136 (26) 80.97b - 2.75E-02 M 6.67E-03 M 
  Ethane -32.95 (53) 0.4232135 (26) -18.04b - 2.41E-02 M 5.00E-03 M 
  Bromide - - - - -103.97 (6) 1.33E-06 M 6.67E-08 M 
  Chloride - - - - -131.30 (6) 1.73E-05 M 3.47E-04 M 
  H+ (pH = 7) - - - - -39.83 (44) 6.40E-07 M 6.40E-07 M 
  H2 - - - - 0.00 (44) 1.00E-03 atm 1.00E-03 atm
 

a T = 25°C 
b ΔGo

f(aq) = ΔGo
f(g) + RT(ln H) 
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6.6 Comparison of EDB, 1,2-DCA and BTEX First Order Biodegradation Rates.  

First order biodegradation rates observed in the microcosms (Figure 2.2) were 

compared to in situ rates of decay at the Clemson, South Carolina UST site sampled for 

this study.  Rates for the UST site were estimated with the following first order decay 

model, assuming steady state conditions : 

pv
x

oeCxC
λ

−

=)(  (A4) 

where C(x) is the contaminant concentration (µg/L) as a function of distance 

downgradient of the source, Co is the source zone monitoring well concentration (µg/L), x 

is distance (m) between the source and midgradient monitoring wells, v is seepage 

velocity (m/yr), and λp is the pseudo-fist order rate of decay (yr-1).  The resulting in situ 

decay rates are quite similar to the source zone microcosm decay rates (Table A.5).  In 

the case of EDB, the two rates are nearly identical; the 1,2-DCA microcosm rate is 30% 

higher than the field rate.  It should be noted that this comparison is based upon 

concentrations trends between the source and midgradient monitoring wells (MW-1 and 

MW-3, respectively) from which soil and groundwater samples were taken to prepare the 

microcosms.  Since only two wells were utilized for this comparison, calculated field 

decay rates may not be strictly representative of actual in situ decay rates.  The BTEX 

microcosm rates are 1.5 to 2.6 times higher than the rates estimated from the Clemson 

UST field data. 
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Table A.5 Comparison of First Order Biodegradation Rates (yr-1) 

This Studya 

Source Zone Midgradient Zone 
 
 
Compound  NA  BST  NA  BST 

 
Clemson 
UST 
Siteb 

 
Other 
Field 
Studiesc 

EDB 1.5 ± 1.0 5.5 ± 1.2 5.4 ± 0.3 9.4 ± 0.2 1.3 1.2 - 137 

1,2-DCA 1.3 ± 0.3 0.8 ± 0.1 0.3 ± 0.1 0.7 ± 0.2 0.9 0.73 

Benzene 1.5 ± 0.2 2.3 ± 0.2 3.5 ± 0.8 3.1 ± 0.4 1.0 4.4 

Toluene 2.7 ± 0.3 2.3 ± 0.3 15 ± 3.3 12 ± 1.0 1.1 83 

Ethylbenzen
e 2.6 ± 0.3 1.7 ± 0.2 9.3 ± 1.2 11 ± 1.0 0.9 30 

o-Xylene 2.3 ± 0.3 1.3 ± 0.1 9.5 ± 1.7 11 ± 1.2 0.6 4.4 
aFrom figure 2.2 in Chapter 2. 
bCalculated using equation S4, based on concentration data in Table S-6, x = 5.97 m, and 
v = 3.79 m/yr. 
cFrom reference (57).   

 

 

Table A.6 Field Concentration Data Used to Calculate First Order Biodegradation 
Rates for the Clemson UST Site 

 

 
Compound 

Source Zone 
Concentration (µg/L) 

Midgradient Zone 
Concentration (µg/L) 

EDB 320 13 

1,2-DCA 860 96 

Benzene 35,578 2,669 

Toluene 17,068 1,063 

Ethylbenzene 2,581 243 

o-Xylene 3,286 623 
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APPENDIX B 

7.1 Inhibition Test Results by Bottle  

Results of inhibition tests described in Chapter 4 are presented for each treatment.  

Replicates 1 and 2 are presented as a) and b) panels, respectively.  The EDB inhibition 

test is presented in figures B-1 through B-4.  The 1,2-DCA inhibition test results are 

presented in figures B-5 through B-9. 
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FIGURE B-1 EDB inhibition test, EDB only, replicates 1 (a) and 2 (b). Arrows (↓) 
indicate when lactate was added. 
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FIGURE B-2 EDB inhibition test, EDB + Low 1,2-DCA, replicates 1 (a) and 2 (b). 
Arrows (↓) indicate when lactate was added. 
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FIGURE B-3 EDB inhibition test, EDB + Mid 1,2-DCA, replicates 1 (a) and 2 (b). 
Arrows (↓) indicate when lactate was added. 
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FIGURE B-4 EDB inhibition test, EDB + High 1,2-DCA, replicates 1 (a) and 2 (b). 
Arrows (↓) indicate when lactate was added. 
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FIGURE B-5 1,2-DCA inhibition test, 1,2-DCA only, replicates 1 (a) and 2 (b). Arrows 
(↓) indicate when lactate was added. 
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FIGURE B-6 1,2-DCA inhibition test, EDB only, replicates 1 (a) and 2 (b). Arrows (↓) 
indicate when lactate was added. 
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FIGURE B-7 1,2-DCA inhibition test, 1,2-DCA + Low EDB, replicates 1 (a) and 2 (b). 
Arrows (↓) indicate when lactate was added. 
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FIGURE B-8 1,2-DCA inhibition test, 1,2-DCA + Mid EDB, replicates 1 (a) and 2 (b). 
Arrows (↓) indicate when lactate was added. 
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FIGURE B-9 1,2-DCA inhibition test, 1,2-DCA + High EDB, replicates 1 (a) and 2 (b). 
Arrows (↓) indicate when lactate was added. 
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