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CALCULATING CHEMICAL EVOLUTION ON THE WEB. B. S. Meyer, J. E. Denny, D. D. Clayton, Department
of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (brad@photon.phys.clemson.edu, jdenny@clemson.edu,
clayton@gamma.phys.clemson.edu).

Introduction. We have constructed a web site that
may be of interest to cosmochemists seeking to under-
stand the evolution of isotopes in the Galaxy. The URL
is http://photon.phys.clemson.edu/gce.html. It is fully
interactive and uses IDL on the Net (ION) to construct
tables and graphs dynamically. The resulting tables may
be downloaded as text files while the graphs may be
downloaded as gif or postscript files. The present ab-
stract presents a brief tutorial on using the “GCE tool”
on this site and illustrates some of its capabilities. Ques-
tions or comments should be addressed to either of the
first two authors.

Supernova II Ejecta Tool. In exploring the evo-
lution of an isotope in the Galaxy, the first task is to
understand its production in stars. The Clemson chemi-
cal evolution web site currently employs yields from the
massive star models of Woosley and Weaver (1). On the
web site, one selects a set of models ranging in metal-
licity from zero to twice solar metallicity and ranging
in initial stellar from 12 to 40 solar masses. One may
then call the separate “supernova ejecta tool” to explore
the ejected mass (at any time after the supernova explo-
sion) for the listed set of nuclei. Figure 1 shows that
tool’s plot of the ejected mass of O from a range of
metallicities and stellar masses. The ejected masses do
not vary much with metallicity, a result in line with our
expectation for a primary isotope.

Figure 1: Mass of O ejected from stars of different
initial masses and metallicities.

Initial Mass Function. After choosing the set of
stellar models, the user must then choose an initial mass
function (IMF). This is the function that gives the

number of stars in the stellar mass range to
that forms in each new generation of stars. The function

then gives the amount of mass that goes into
stars in the mass range to . The user may
freely choose the form of the IMF. It may be piecewise
(up to four separate pieces). The IMF program ensures
that the chosen function is continuous and properly nor-
malized. The IMF of B. Pagel is chosen as the default
(2)–see Figure 2. The well-known IMF of Salpeter is a
separate option (3).

Figure 2: Piecewise, continuous initial mass function
generated by the IMF function.

Stellar Remnant Mass. The next step is to choose
the mass of the remnant white dwarf, neutron star, or
black hole left behind at the end of the star’s life as a
function of the star’s initial mass. For the default, we
have chosen stars below 1.1 to have a remnant mass
equal to the initial stellar mass. This is not necessary.
We do it here because the chemical evolution model we
currently use employs the instantaneous recycling ap-
proximation. Thus, the lifetime of stars in our model is
taken to be zero. Our choice crudely accounts for the
fact that low-mass stars evolve slowly and have not yet
formed remnants.

Yields. After the user specifies the stellar models,
the IMF, and the remnant mass function, the web site
automatically calls a program that computes the stellar
yields for each isotope. The yield, in our terminology,
is the mass of the isotope ejected from a generation of
stars divided by the mass that generation leaves behind
in remnants. The program also makes a linear fit to the
yield for the analytical chemical evolution model. The
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user may create a plot of the yield of any isotope (for
example, the O yield shown in Figure 3), create a ta-
ble of the yields and fits to the yields, see the yield of
the isotope fit as purely a primary or secondary isotope,
or view the IMF-integrated ejected mass in the isotope
from a generation of stars.

Figure 3: Yield of O.

Figure 4: Mass fractions of O in the ISM relative
to their solar values in an analytic chemical evolution
model.

Chemical Evolution. With the yields available in
fitted form, the user may compute a chemical evolution
model. The web site currently uses a family of ana-
lytic models developed by Clayton (4). Parameters for
these models are , a free-fall timescale, , a param-
eter determining the nature of the infall, , the rate at
which interstellar gas mass goes into stars, and ,
the initial mass of the Galactic disk. With these param-
eters chosen, the user may then evaluate , the time at

which the disk reaches solar metallicity, and the contri-
bution of Type Ia (thermonuclear) supernovae based on
the Galactic Fe mass fraction. One may then plot the
evolution of any of the isotopes. For example, Figure
4 shows the evolution of the isotopes of oxygen versus
time for the default set of parameters. For this model,

O reaches its solar value at 17.8 Gyr, and O and
O reach solar somewhat thereafter. The straight-line

nature of the O curve shows that this isotope is pri-
mary. O and O are secondary isotopes; hence, their
curves are quadratic.

Application to Presolar Grains. As an applica-
tion to cosmochemistry, we compute, from the analytic
chemical evolution model and with the default parame-
ters, the evolution of the ISM-normalized deviations of

Si and Si. This is shown in Figure 5 as the slope-
one line. The mainstream SiC grains, by contrast, show
a slope 4/3 correlation in the same plot, which would
look like the green curve (5). The difference presents
an interesting puzzle for a Galactic-chemical evolution
interpretation of the observed correlation (6,7).

Figure 5: Evolution of the ISM-normalized Si/ Si
deviations relative to that of Si/ Si.
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