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ABUNDANCES OF LINEAR CARBON-CHAIN MOLECULES IN SUPERNOVAE. D.D. Clayton, E. Deneault, B. S. Meyer,
L.-S. The,Department of Physics and Astronomy, Clemson University, Clemson SC 29634-0978.

Introduction. This paper continues our effort to under-
stand the condensation of carbon solids in a gas of pure C and
O atoms when these exist within the interior of an expanding
young supernova. This setting has a sufficiently large number
of energetic electrons that the CO molecule is disrupted with a
lifetime of a few months, causing the abundance of CO to be no
greater than 1% or so of the C abundance. As a consequence,
the CO molecule cannot consume the available C atoms, even
when the O abundance exceeds that of C. The maintenance
of free C atoms is the driver for condensation of carbon (1,2).
Clayton et al. (2) presented a sweeping picture of the chemi-
cal sequence that enables large micron-sized carbon grains to
condense even when C<O. We adopt this same sequence: (1)
carbon association reactions balanced approximately by rapid
destruction reactions determine the abundance of linear Cn

molecules within the gas; (2) given sufficient length, the chain
molecules isomerize to ringed molecules, for which further C
associations become more rapid than oxidations; (3) mono-
cyclic rings grow to bicyclic and multicyclic sizes, including
fullerenes; (4) multicyclic rings seed the inexorable growth to
macroscopic particles owing to very fast C association. In this
picture, the large Cn linear chains and their ringed isomers con-
stitute seed nucleations for the growth of macroscopic grains of
carbon; therefore the key chemistry governs the abundances of
those linear Cn molecules. Because the destruction reactions
(oxidation, C association, or C-induced fission) for Cn occur
very rapidly (about 1 sec when N(C) = N(O) =1010cm−3 with
destruction rate coefficient k =10−10cm3s−1), destructive re-
actions limit the abundance of linear Cn to a small steady state
value. Steady state is achieved more rapidly than environmen-
tal changes (density and temperature), which occur only over
month timescales after one year, when condensation mostly
happens. For that reason, we evaluate in this work the station-
ary abundances of Cn and seek to understand what chemical
rates are of importance to that abundance. Our approach may
be likened to that of classical nucleation theory, except that
the nucleation abundances are determined by the balance of
kinetic rates for creation and destruction rather than by the
more restrictive assumption of chemical equiibrium (the usual
assumption of nucleation theory). Indeed, the abundances of
Cn molecules are vastly greater than would obtain in thermal
equilibrium, for in that case CO molecule formation would
consume the carbon.

Reaction Rates. We take as our standard set of kinetic
rates those given by (2) in their Table 1. The destruction rate
for even linear molecules C2n reaches the maximum kinetic
rate k =10−10cm3s−1 by both oxidation

O + Cn −→ CO + Cn−1 (1)

and by association-induced fission

C + Cn−1 −→ Cm + Cn−m (2)

The odd chains C2n+1 are also destroyed at the maximum

kinetic rate, but instead by C association reactions

C + Cn−1 −→ Cn + hν (3)

whereas their oxidation is slower kO = 10−13cm3s−1 and fis-
sion is taken to be even slower yet. Association rates are
fast because the larger chains do not have to radiate imme-
diately to conserve energy, but instead simply exist in states
of high excitation to be stabilized eventually by photon emis-
sion. This greatly increases the asociation rate kC above the
value required if radiative stabilization must be prompt. The
C association rate kC is slower for even-n chains owing to the
competition by the fast C-induced fission (2). Using this basic
set of rates for reference calculation we solve for the steady
state abundances. The reference calculation takes the number
densities to be1010cm−3 for both C and O; but the dependence
on the C/O ratio is determined by numerical solutions.

Setting the rate of change of each molecular abundance to
zero yields a matrix equation for the abundance vector [Nn]
= [C2, C3, C4,...C24]. With [M] being the matrix of reaction
rates, the abundance equation can be written [M]× [Nn] = 0
except in its first row, which equals instead the production of
C2 from C atoms (which lie outside the elements of the vec-
tor [N]). The solution is straightforward and will be described
more completely in a work in progress (3).

Results. Figure 1 displays stationary abundances of the

linear molecules as fractional abundances N(Cn)/N(C) rela-
tive to free C atoms, which prior to condensation constitute
roughly 99% of the total density of C atoms. The standard cal-
culation has ambient ratio C/O =1; but results for C/O = 5, 1/5
and 1/25 are also shown for comparison. For the range shown
(C8 to C18 only) the fractional abundance drops steeply from
about10−18 for C8 to about10−31 for C18. To appreciate
such small numbers consider that a fractional abundance near
10−20 is needed for the final micron-sized graphites if each
contains1015 C atoms (say) and if they are to constitute about
10−5 of all C by mass in the ISM. This will require isomer-
ization rates into ringed C that produce about10−20 rings per
C atom during roughly the first year of expansion. This might
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be achieved in various ways: a chain with abundance 10−20

isomerizing at the rate10−7s−1 would yield 3×10−20 rings
per year; or an abundance 10−28 isomerizing at rate 10s−1

would also give 3×10−20 rings per year. These possibilities
will be explored by (3). Note that the abundances of Fig. 1 do
not include depletion by the unknown isomerization rates.

Another conclusion from Fig. 1 is that different C/O ra-
tios produce parallel results; but reduction of C/O by factor
5 reduces the fractional abundances of Cn only by a factor
near 100. Although this makes already small abundances even
smaller, it is important to note that the abundances are not zero
for C/O = 1/5. This illustrates the kinetic non-LTE nature of
this problem. Were one to instead calculate chemical ther-
mal equilibrium at C/O = 1/5, the abundance of Cn would be
vanishingly small! Secondly, even if C/O = 1/5,10−20 rings
may be produced per year from C14, say, if its isomerization
rate is near10s−1. On the other hand, a carbon-rich C/O =
5 produces no great increase of abundances in the supernova
problem whereas it is a huge facilitator in equilibrium conden-
sation calculations because when C/O=5 one has free carbon
in the equilibrium calculation; but carbon is maintained free
by radioactivity in the supernova problem. These ideas clarify
immediately that graphite grains may grow even if C<O (2).

Population Control. Having more abundant nucleations
does not imply more large particles. The nucleations must not
be too abundant or there will not exist enough C atoms for them
to grow into large graphite particles. The kinetic destruction
of the linear molecules controls their population, which in turn
allows them to grow large before free C is depleted. Sufficient
collisions to deplete all of the carbon do occur within an ex-
panding supernova interior. If the ringed nucleation molecules
were as abundant as10−12 they could grow no larger than 1
micron (1012 atoms) before depleting all of the C into graphite.
They would thus be too abundant to give mass fraction10−5 to
1 micron particles. We call this principle "population control",
and we note that for this problem ringed-isomer abundance
near10−20 appears to be about right.

Rate Survey. Because supernova condensation is con-
trolled by kinetic rates it is of interest to examine which re-
action rates are the most critical for the outcome. In what
follows we increase or decrease all of the reaction rates of
specified type. Fission rates are very important. We have
taken their rates to be as fast as oxidation in the destruction
of the even-n chains. Figure 2 shows the standard reference
calculation as well as a comparison result if the fission rate
is slowed from the fast kf = 10−10cm3s−1 to 10−11cm3s−1

and then even more to10−12cm3s−1 with all other rates held
at the reference values (green curves). It is clear that despite
the continued rapid destruction by oxidation, the abundances
increase greatly (about 15 powers of ten for C20) by the slow-
down factor (100) in these even-n fission rates. Fission is so
destructive owing to the high probability that the smaller frag-
ment may be lost altogether by oxidizing it down to C2 where
another oxidation removes a molecule.

The carbon association rate with linear C2n is also impor-
tant but unknown. Because we have taken the C association
rate to be small for even C2n, only 1/1000 of the fission rate,

we explored that high sensitivity as well in Fig. 2 (red curves).
Increasing kC from 10−13cm3s−1 to 10−11cm3s−1 while

holding other rates fixed vastly increases the abundances. In-
creasing association tenfold to kC = 10−12cm3s−1 is almost
identical to slowing the fission rate by a factor 10. This shows
that it is the branching ratio kC /kf that governs the abundances
as long as modest variations are involved. But further increase
to kC = 10−11cm3s−1 results in huge abundance increase.
Even though that association rate remains smaller than both
destruction rates of C2n by a factor ten, it produces a much
flatter abundance curve. With such a flat curve, the doubling
of molecule number accomplished by each fission plays an
important new role in the steady state abundances, which be-
come even greater than those that would obtain were there no
fission at all. Inefficient population control resulting from that
value of kC creates too many particles (unless isomerization
to ringed structure is much slower than expected), resulting in
a large number of small graphite grains rather than a smaller
number of large ones (as observed). We have also shown that
the assumption of fast kC for the odd-n linear chains C2n+1

is not so crucial. This is because C association dominates de-
struction of odd-n molecules; decreasing all such rates would
therefore increase their abundances but for its also decreas-
ing the creations of the even-n C2n by compensating factors.
These compensate within the general decline. We find that
even two powers of ten decrease of kC leaves the same general
decline in abundances, although it does smooth out the odd-
even effect.

We have taken the oxidation rate for odd-n chains to be
kO = 10−13cm3s−1, which is much smaller than the C asso-
ciation rate for odd-n. But that is not a critical unknown. We
find that increasing the value of kO by even a factor 100 does
not alter the abundance curve. By such results we propose to
clarify for chemists the identity of chemical rates that govern
the supernova presolar-grain problem.
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