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Tighter Bounds on Johnson Lindenstrauss Transforms
FIONA KNOLL (JOINT WORK WITH DR. SHUHONG GAO AND DR. YUE MAO)

DEPT. MATH. SCI., CLEMSON UNIVERSITY, CLEMSON, SC 29631

ABSTRACT: Johnson and Lindenstrauss (1984) proved that any finite set of data in a high dimensional space can be projected into a
low dimensional space with the Euclidean metric information of the set being preserved within any desired accuracy. Such dimension
reduction plays a critical role in many applications with massive data. There has been extensive effort in the literature on how to find
explicit constructions of Johnson-Lindenstrauss projections. In this poster, we show how algebraic codes over finite fields can be used
for fast Johnson-Lindenstrauss projections of data in high dimensional Euclidean spaces.

Johnson Lindenstrauss Transform
Problem
Given data in a high dimensional space, we want to project the data to a low di-
mensional space so that the pairwise distances are preserved with high probability.

Johnson Lindenstrauss Lemma
•Let n be any positive integer, 0 < ǫ, δ < 1

2 and m = O(ǫ−2 log 1
δ). Then there exists a

probabilistic distribution on A ∈ R
m×n such that for any vector x ∈ R

n,

Pr[(1− ǫ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ǫ)‖x‖22] ≥ 1− δ.

– If ‖x‖ = 1, we have
Pr[| ‖Ax‖22 − 1 |> ǫ] < δ.

– A transformation matrix A with this property is called a Johnson Lindenstrauss
Transformation.

Motivation

Main Motivation

•A dimension reduction technique that preserves pairwise distances and norms.

Applications

•Speeds up algorithm processes:
– Closest pair
– Approximate nearest neighbor
– Finding diameter and minimum spanning tree

•Reduces amount of storage required
– One-pass streaming algorithms
– Similarity measures (comparing text documents)

Comments on Parameters

Parameters δ and ǫ

• ǫ ∈ [0, 1/2): The desired accuracy
• 1− δ ≤ 1: The desired probability of success

– Want δ ≤ 1
poly(n) in order to compress poly(n) points with a high probability of

success.

Parameters n and m

•n: Original dimension

•m: Desired dimension
– Normally, n >> m where m ≥ O(ǫ−2 log 1

δ)

Previous Work: Initial Progress in Construction

• Johnson and Lindenstrauss (1984): Introduced and proved the JL lemma using a
complicated transform matrix A with 3 conditions.

• Indyk and Motwani (1998): Dropped two of the conditions: orthogonality and
normality of A
– Construction: Choose independently and randomly Ai,j ∼ N(0, 1/n).

•Achlioptas (2003): Dropped the spherical symmetry condition of A
– Relatively Sparse Construction: Choose independently and randomly

Ai,j =







(n/3)−1/2 p = 1/6

− (n/3)−1/2 p = 1/6
0 p = 2/3

with p being the probability.

Previous Work: Progress in Faster Computations

•Ailon and Chazelle (2009): Used Fourier in their Fast Johnson Lindenstrauss
Transform

•Ailon and Liberty (2009): Used Rademacher and BCH Codes
•Kane and Nelson (2014): Used hash functions

– Block Construction: Each coordinate of x is hashed to s coordinates where each
of these s coordinates lies in one of the s blocks containing m/s entries.
∗Hashing determined by a code C:
·C = {C1, . . . , Cn} ⊂ [k/s]s with relative distance 1− O(s/k)
·h : [d]× [s] → [k/s] can be determined by (Ci)j = h(i, j)

·The codeword Ci determines the location of the s nonzero elements in the ith

column of the transform matrix.

1 2 3 4 5 6 . . . i . . . n− 2 n− 1 n1

Block 1 Block 2 Block 3 . . . Block s

Previous Work: Progress Towards a Tighter Bound
Asymptotic Bounds
Kane’s and Nelson’s work was one of the first to give attention to the tightness of
the success probability of the construction.

•Graph and Block Construction: For sparsity s = Ω
(

ǫ−1 log(1/δ)
)

of matrix A, one
may achieve distortion of 1± ǫ with success probability 1− δ.

Specific Bounds
•Kane and Nelson: Provided an upper bound for the block construction:

Pr[| ‖Ax‖22 − 1 |> ǫ] ≤ ǫ−ℓ

(

64max

{

√

l(s− d)

s
,
l

s

})l

,

where d is the minimum distance of the code, s is the code length, and l a positive
even integer.

Our Results: Tighter Bound
Let s be the length of the code used in the block construction and d the minimum dis-
tance.
•Tighter Constraint on Kane’s and Nelson’s Block Construction:

P [|‖Ax‖22 − 1| > ǫ] < ǫ−ℓ ·

(

Cℓ

√

ℓ(s− d))

s

)ℓ

,

where Cℓ ≤ 64 for ℓ ≤ 7564; more specifically C32 = 4.21, C64 = 5.92, and C128 = 8.35.

Explicit Construction Using AG Codes
AG Code:
(s, k, d)-AG Code over Fq2 from Garcia Stichtenoth Tower (GS tower):

•Code Length: s = qu(q2 − q) for some integer u ≥ 1 and prime power q ≥ 2
•Dimension: k < s, an integer

•Minimum Distance: d = s − k − g where g = (q⌊
u+1
2 ⌋ − 1)(q⌈

u+1
2 ⌉ − 1) is the genus of

the curve.
Bound in Terms of AG Code:
An (s, k, d)-AG Code over Fq2 from GS tower gives

s2

s− d
=

(qu+2 − qu)2

k + (q⌊
u+1
2 ⌋ − 1)(q⌈

u+1
2 ⌉ − 1)

≥ 4ǫ−2 · [(2ℓ− 1)!!]
1
ℓ.

Hence, P [|‖Ax‖22 − 1| > ǫ] < 2−ℓ ((2ℓ− 1)!!)1/2.

Parameters
q u k d g s = qu(q2 − q) m = s · q2 n = (q2)k ǫ δ = 0.5ℓ

2 7 15 16 225 256 1024 1.07× 1009 0.42 0.516

2 10 17 78 1953 2048 8192 1.72× 1010 0.21 0.532

2 10 17 78 1953 2048 8192 1.72× 1010 0.30 0.564

4 2 8 139 45 192 3072 4.29× 1009 0.37 0.532

Consider the third line. If δ = .564, then we can preserve pairwise distance for

p = 220 points with 14% accuracy and by a success probability of 1− δ′ = 1−
(

1
2

)25
.

[1]William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. Contemporary Mathematics, 26:189-206, 1984.

[2]Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. J. ACM,
61(1):4:1-4:23, January 2014.

[3]Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with bi-
nary coins. Journal of Computer and System Sciences , 66(4):671-687, 2003. Special Issue on
{PODS} 2001.

[4]Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, STOC ’98, pages 604-613, New York, NY, USA, 1998. ACM.

[5]Nir Ailon and Bernard Chazelle. The fast johnson-lindenstrauss transform and approximate
nearest neighbors. SIAM J. Comput, pages 302-322, 2009.

[6]Nir Ailon and Edo Liberty. Fast dimension reduction using rademacher series on dual bch
codes. Technical report, 2007.

email: fknoll@clemson.edu


	Clemson University
	TigerPrints
	Spring 2015

	Tighter Bounds on Johnson Lindenstrauss Transforms
	Fiona Knoll
	Recommended Citation


	Fiona_Poster.dvi

