
Clemson University
TigerPrints
Graduate Research and Discovery Symposium
(GRADS) Research and Innovation Month

Spring 2015

Longitudinal Analysis of Technical Debt for
Strategic Platform Adoption
J. Yates Monteith
Clemson University

John D. McGregor
Clemson University

Mike Finney
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/grads_symposium

This Poster is brought to you for free and open access by the Research and Innovation Month at TigerPrints. It has been accepted for inclusion in
Graduate Research and Discovery Symposium (GRADS) by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

Recommended Citation
Monteith, J. Yates; McGregor, John D.; and Finney, Mike, "Longitudinal Analysis of Technical Debt for Strategic Platform Adoption"
(2015). Graduate Research and Discovery Symposium (GRADS). 125.
https://tigerprints.clemson.edu/grads_symposium/125

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/grads_symposium?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/grads_symposium?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/rim?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/grads_symposium?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/grads_symposium/125?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Longitudinal Analysis of Technical Debt in Support of
Strategic Software Platform Adoption

J. Yate Monteith, Mike Finney, John D. McGregor
{jymonte1, johnmc1, mfinney2}@clemson.edu

School of Computing1 and Department of Mathematical Sciences2

Abstract

Technical Debt

Methodology Introduction

Software Platforms

Increasingly, software producing organizations utilize a common software platform; however, little expertise exists on selecting which platform to use when
presented a number of different platforms. While technical debt can be used to examine the quality of a software platform by the organization that
produces the software, a single discrete data point does not provide sufficient context for analysis. In this paper, we seek to resolve this difficulty by
applying linear regression analysis to technical debt data collected by the SonarQube static analyzer. We apply this method to a case study on Cytoscape
network analysis platform to perform a pedagogical investigation on the longitudinal technical debt found in that platform. We present our case study on
the longitudinal technical debt of the Cytoscape network analysis platform, utilizing the data and analysis generated from our method.

Technical debt is a metaphor describing the difference between `good' code
and `not-quite-right' code. While software development is rife with not-quite-
right code, research in technical debt seeks to provide a context and
rationale for what is technical debt, why it is incurred, and how it is
introduced into a project. Much like software architecture, technical debt
exists and its effects are felt in development regardless whether or not it is
acknowledged by developers
 Strategic decision makers tasked with selecting a platform for
development may be able to glean useful information from analyzing the
technical debt of a prospective platform. However, tools used to measure
technical debt only capture the state of the software platform at the time its
analyzed. A single data point measuring the technical debt of platform only
provides a limited amount of information to the strategic decision maker
regarding the rates and frequencies at which technical debt is incurred. By
taking a longitudinal approach to analyzing the technical debt of the
platform, strategic decision makers can glean better insight into trends in the
development process, as well as the rate at which technical debt is incurred
in development.

For the purposes of our work, we are taking on the perspective of a
developer or project manager considering using the platform as a basis for
a product. This perspective helps provide context for our method and
analysis. When developing a software product based on a software
platform the pace of development is bounded by the pace of development
of the software platform. Furthermore, the quality of product developed
relies heavily on the quality of the software platform. One example of a
software platform is the iOS and Android mobile operating systems.
Another example is the Cytoscape network analysis platform, which
provides assets to developers for producing plug-ins that aid in network
analysis in chemistry, biology and other related scientific and data centric
fields.
 Choosing a software platform that is not burdened by an
unmanageable level of technical debt, as well as having an auspicious
development history is an important factor for software platform adoption.

We have analyzed 31 release versions of the Cytoscape Desktop
application, beginning with the 2.2-Pre Release, released 2008, and ending
with 2.8.0 Alpha 1, the last release of the 2.x branch, released in 2012. We
acquired this data through Cytoscape's webpage and code repository on
Github between December 17th and 29th, 2013. Each of these builds are
primarily written in Java with additional scaffolding provided by shell scripts
and build files. Only the Java code was analyzed for technical debt. The
2.x release was chosen primarily because of a major shift in development,
architecture and build process found in the 3.x release of Cytoscape.
 The software was built using the provided Ant build scripts.
Technical debt analysis was performed by SonarQube 3.7 using their
Sonar-Runner 2.3 driver and the built-in plug-ins for analyzing Java code,
version 1.3, and technical debt, 1.2.1.
 After collecting data on code level occurrences of technical debt, we
performed statistical analysis on the results using JMP 11. For each metric
collected, we computed the linear regression with respect to version. The
model's significance was measured using p-values corresponding to slope
estimates. All linear model results are significant at α= 0.05. Additionally,
linear models were calculated to establish the relationship of total violations
as a function of statements and classes. This was measured using
adjusted R2 values in addition the metrics above. Lastly, correlation was
calculated between the different metrics produced by SonarQube and each
other, as well as size metrics of the code base.

Results
The simplest metric that SonarQube provides, minor, major and critical
violations, shown in Figures 1, 2 and 3. For each type of violation, the data
is fit to a linear regression with a positive slope. This suggests a general
positive trend implying one can expect the number of violations to increase
over time. While these regressions show the number of violations is
increasing with each release of Cytoscape, they do not describe the rate at
which technical debt is growing with respect to the size of the code.

Metrics for Technical Debt
Minor Violations: Simple violations that usually concern style and syntax of source code.
Major Violations: Violations that may have semantic repercussions and meaning.
Critical Violations: Critical violations indicate that serious errors exist in programming semantics.

Technical Debt Ratio (TDR): The technical debt ratio provides a ratio between the actual technical debt and theoretical maximum technical debt that exists
within a project. This metric provides a weighted measure on how much technical debt exists in a project compared to how much technical debt could exist in a
project.

Rules Compliance Index (RCI): The RCI of a project encodes the percentage of rules that are not violated out of all the triggered rules in analysis. While
similar to TDR, it is important to note that TDR encodes a weighted aggregate of technical debt, while RCI encodes an instance-based unweighted aggregate
of technical debt.

Technical debt is incurred when a development artifact is produced that is
known or suspected to be not-quite-right. However, if there is sufficient
value in waiting to correct these errors, these imperfections do not need to
be fixed right away. These imperfections represent a loan, the principle of
which is the cost to remedy. If development artifact is produced that
depends on the imperfect artifact, it is likely that reworking the imperfect
artifact will necessitate rework on the second, dependent artifact. The
additional work that is done as a result of the initial technical debt can be
viewed as interest incurred on the principle technical debt. The following
are some examples of decisions surrounding technical debt:
• When faced with changing requirements, do we develop for what may

change, or delay development until uncertainty is resolved?
• Do we utilize design patterns that enhance our design today, or

benefit the evolution of our design tomorrow?
• When behind schedule with an impending deadline, do we ship a

project missing a key feature, or without thorough documentation?
Many of these options have no clear optimal decision: one choice is not
clearly better than the other, but rather a lateral move, defined by the
trade-offs that decision provides. Each of these decisions brings off a trade-
off, between the cost and value of performing one set of actions over
another set of actions.

Table 1. Sum of Violations and Size Regressions

Slope P Value Adjust R2

Classes 0.3376478 < 0.0001 0.942605

Statement 8.7323459 < 0.0001 0.906127

 Table 1 provides a numerical computation of the R^2 values for the
regression between the sum of all violations and the size of the codebase as
measured in classes and statements. These values suggest that 94% and
90% of the variation in code violations can be attributed to the number of
classes and statements.
 TD Ratio describes the ratio between the current amount of technical
debt in a project and the maximum value of technical debt in a project.
Figure 4 shows the plot of TD Ratio of each version along with its linear
regression. The negatively sloped regression line suggests that the technical
debt ratio has been declining with each new release. We can gain additional
understanding on these results by examining the RCI, the metric describing
the percentage of rules that are not violated out of all the triggered rules in
analysis. With each new version, the rule compliance index increases as
well, as shown in Figure 5. The primary difference between TDR and RCI is
weighted and unweighted aggregate metrics. The TDR accounts for the
severity of violations, while RCI looks at the raw number of rules violated in a
project. Together, the TDR and RCI suggest that the development of
Cytoscape improved over time, incurring both fewer rule violations, indicated
by the RCI, as well as rule violations being less severe, indicated by the
TDR.

Analysis and Conclusion

Figure 1. Critical Violations Per Version Figure 2. Major Violations Per Version Figure 3. Minor Violations Per Version

Figure 5. RCI per Version Figure 4. TDR per Version

While the source code for the Cytoscape network analysis platform is rife with violations, and shows increasing technical debt at nearly every data point
measured, the case for adopting is strong. The TDR and its rate of change indicates that the sources of technical debt introduced with new versions tend to
be less severe, rather than more severe, as our weighted aggregate is decreasing. The RCI indicates that the development of Cytoscape is becoming more
rigorous over time, incurring less violations with new introductions of source code. Finally, combining those metrics with the metric correlations indicates that
the TDR is decreasing with introductions of new source code, while the RCI is increasing with new introductions of source code, and the two are inversely
related, again, suggesting that the development is incurring fewer rule violations, with each newly introduced violation being less severe. These factors leads
to a strong case for adopting the Cytoscape network analysis platform as the foundation for developing a software product.

	Clemson University
	TigerPrints
	Spring 2015

	Longitudinal Analysis of Technical Debt for Strategic Platform Adoption
	J. Yates Monteith
	John D. McGregor
	Mike Finney
	Recommended Citation

	Slide Number 1

