
Clemson University
TigerPrints
Graduate Research and Discovery Symposium
(GRADS) Research and Innovation Month

Spring 2015

Formal Verification of Software Architecture
Ethan McGee
Clemson University

John McGregor
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/grads_symposium

This Poster is brought to you for free and open access by the Research and Innovation Month at TigerPrints. It has been accepted for inclusion in
Graduate Research and Discovery Symposium (GRADS) by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

Recommended Citation
McGee, Ethan and McGregor, John, "Formal Verification of Software Architecture" (2015). Graduate Research and Discovery
Symposium (GRADS). 118.
https://tigerprints.clemson.edu/grads_symposium/118

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/grads_symposium?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/grads_symposium?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/rim?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/grads_symposium?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/grads_symposium/118?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Strategic Software Engineering Group
Ethan McGee, John D. McGregor

{etmcgee, johnmc}@clemson.edu

Abstract

The majority of errors within a software project are
introduced during the requirements and design phases of
the project, yet these errors usually remain undetected until
the implementation and test phases of the Software
Development Life Cycle when they are most costly and
difficult to correct. The use of Formal Methods during
implementation allows many errors to be caught during the
implementation phase; Formal Method use during the
design phase of a project yields similar results allowing
earlier detection of architectural inconsistencies and errors.
The Architecture Analysis and Design (AADL) language and
its verification tools, AGREE, BLESS and Resolute, provide an
excellent platform for representing an architecture and its
verification requirements. However, determining what
proofs are necessary to declare a requirement as sufficiently
verified is not well understood. Developing a set of
guidelines or basic architecture proof techniques would
better enable the adoption of Formal Methods at the
architecture level as well as build a foundation on which
future research could build.

Example

Consider a control interface for a security-critical system. The
system has two levers and two buttons, one of each on either
side of the interface. These devices should be connected to a
computing element that can handle their events (enabled or
disabled). When enabled, the system should store the non-
negative time that the device’s activation occurred, and both
sides should be activated within two seconds of the other.

Formal Verification of Software Architecture
Requirements

Detailed
Specification

High Level
Design

Integration
Testing

Unit
Testing

Operational
Testing

Implementation

Figure 1: Softwa re Development
Lifecycle

Consistency Verification

We have a requirement that our devices must be connected
to a computing element that can handle their particular event
signals. Without this connection, the devices will be
effectively useless because we cannot determine their state.
Resolute, a language for model consistency analysis, enables
the performing of this type of verification.

device toggle_switch
features

toggled_up: out event port;
toggled_down: out event port;

end toggle_switch;

device implementation toggle_switch.impl
annex Resolute {**

prove(instantiation_is_reachable(this, instance(launch_interface_thread)))
**};

end toggle_switch.impl;

Figure 2: Model with
Resolute Proofs

Compositional Verification

We also have a requirement that our system’s clock must
produce a monotonically increasing sequence until a max
value is reached inducing a wrap to 0. Our proof should
affirm that the wrap occurs and that we do not enter an
undefined state. AGREE, a language for compositional
verification, allows us to perform this analysis by analyzing an
abstract behavior representation of the model.

process clock_process
features

time: out data port Base_Types::Integer;
annex agree {**

guarantee "clock value will be greater than or equal to 0": time >= 0;
**};

end clock_process;

process implementation clock_process.impl
subcomponents

time_interrupt_thread: thread clock_thread.impl;
annex agree {**

node Counter(init: int, incr: int, reset: bool) returns(count: int);
let

count = if reset then init
else prev(count, init) + incr;

tel;

eq x1 : int = Counter(0, 1, prev(x1 = 86400000, false));

assert time = x1;
**};

end clock_process.impl;

Behavioral Verification

When our requirements deal with neither consistency or
values but the behavior of the system, we can use AADL to
specify the behavior of our models through the use of
annexes. BLESS, a state machine verification language, can
interpret these annexes to validate they meet the behavior
requirements, such as the both sides of our interface having
to be activated within two seconds of the other.

Figure 4: Model with
AGREE Proofs

Standby
Waiting for

Button
Enabled

Toggle Enabled Button Enabled

Figure 3: Sample
State Diagram

	Clemson University
	TigerPrints
	Spring 2015

	Formal Verification of Software Architecture
	Ethan McGee
	John McGregor
	Recommended Citation

	tmp.1437665406.pdf.G7mkX

