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Nonadiabatic generation of a pure spin current in a one-dimensional quantum ring with
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We demonstrate the theoretical possibility of obtaining a pure spin current in a 1D ring with spin-orbit
interaction by irradiation with a nonadiabatic, two-component terahertz laser pulse, whose spatial asymmetry is
reflected by an internal phase difference φ. The solutions of the equation of motion for the density operator are
obtained for a spin-orbit coupling linear in the electron momentum (Rashba) and they are used to calculate the
time-dependent charge and spin currents. We find that there are critical values of φ at which the charge current
disappears, while the spin current reaches a maximum or a minimum value.

DOI: 10.1103/PhysRevB.83.155427 PACS number(s): 73.23.Ra, 71.70.Ej, 72.25.Dc, 73.21.Hb

I. INTRODUCTION

Obtaining and controlling spin currents in solid structures
has been one of the most important goals of spintronics
research. In the recent past the focus of this endeavor has
been on the creative use of the spin-orbit interaction (SOI) that
appears in systems with broken inversion symmetry, be that via
confinement (Rashba)1 or in the bulk (Dresselhaus).2 The well-
known properties of quasi-one-dimensional rings to support
persistent charge currents3–5 made them particularly appealing
for spin transport exploration. The underlying physical phe-
nomenon leading to the creation of persistent charge currents is
the imbalance in the left/right charge carrying states realized,
initially, in the presence of a magnetic flux threaded through
the center of the ring. In a similar theoretical setup the existence
of persistent spin currents was obtained in the presence
of SOI,6–8 when electron-electron interaction is neglected.
Both analytical6 and numerical results,8 point out that in the
presence of a magnetic flux the charge and spin currents in
the rings are simultaneously present. Theoretical proposals
for obtaining pure spin currents focused on either hybrid ring
systems9 or in rings with an odd number of electrons.10

In this paper we revisit this problem from the perspective
of creating persistent charge and spin current by nonadiabatic
methods. As before, the original exploration of such ideas
was focused on the generation of charge currents by various
mechanisms able to produce an imbalance between left/right
momentum-carrying states.11–13 In particular, in this work we
are concerned with the application of an ultrashort, terahertz
frequency laser pulse, having a spatial asymmetry expressed
through an internal phase difference angle φ. The efficiency
of this method for creating persistent charge currents has been
explored in Refs. 13 and 14. Its extension to a ring endowed
with SOI is discussed below. As we demonstrate, the interplay
between the spin-orbit coupling that rotates the electron spin
around the ring and the spatial asymmetry of the external
excitation generates favorable conditions where the charge
current disappears, while the spin current reaches a maximum
or a minimum level. For both a dipolar and a quadrupolar
perturbation we can find the critical values of the out-of-phase
angle φ for which this situation occurs.

II. THE RING MODEL

We consider a one-dimensional (1D) quantum ring of
radius r0 containing few electrons, endowed with a Rashba
interaction, linear in the electron momentum. In a discrete
representation the ring is reduced to N sites (points) dis-
tributed on a circle whose angular coordinates are given
by θn = 2nπ/N with n = 1,2, . . . ,N the site index. The
Hamiltonian describing the noninteracting electrons is written
in terms of the creation and annihilation operators c

†
nσ and

cn,σ associated with the single-particle states |nσ 〉, where
σ = ±1 is the spin index. This Hamiltonian has been ex-
tensively discussed in literature,6–8,15 so here we will write it
directly:

H = V

{
2
∑
n,σ

c†nσ cnσ −
∑
n,σ

[c†nσ cn+1σ + c†nσ cn−1σ ]

}

−
{

iVα

∑
n,σ,σ ′

[σr (θn,n+1)]σσ ′c†nσ cn+1σ ′ + H.c.

}
. (1)

The two energy scales of the problem are set by the hopping
matrix element V = h̄2/2m∗a2 and by the Rashba energy Vα =
α/2a, where m∗ is the effective electron mass, a = 2πr0/N

is the discretization constant, and α is the Rashba spin-orbit
coupling strength. The spin operator σr (θ ) introduced in Eq. (1)
represents the local orientation of the electron spin along the
radius of the ring and is given by a linear combination of
the Pauli operators σx,σy written for the azimuthal coordinate
θn,n+1 = (θn + θn+1)/2,

σr (θn,n+1) = σx cos θn,n+1 + σy sin θn,n+1. (2)

The energy spectrum of the Hamiltonian, calculated for an
even number of sites (N = 20) is shown in Fig. 1 for Vα = 0
and for Vα = 0.86 (units of V). The split realized by the SOI
can be seen in Fig. 1(b) and it is described by the two sets
of eigenvalues El+ (right branch) and El− (left branch), with
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FIG. 1. (Color online) The eigenvalues El+ and El− of the 1D
quantum ring with N = 20 points vs quantum number l. The spectrum
is discrete and the eigenvalues are represented by the points. The
lines connecting the points are only for guiding the eye. In panel
(a), in the absence of the SOI (Vα = 0), the two branches coincide,
i.e., El+ = El− = εl . In panel (b), in the presence of the SOI (Vα =
0.86), the two branches split, but El+ = E−l− such that all states are
double degenerate. For example, the two horizontal lines show that
E3− = E−3+ = 1.839 and E4+ = E−4− = −0.035. The energy unit
is V = h̄2/2m∗a2.

l = 0, ± 1, ± 2, . . . , ± (N/2 − 1),N/2. The eigenvalues are

El± = εl + εl±1

2
+ εl − εl±1

2

√
1 + tan2 2θα, (3)

where εl = 2V − 2V cos(2πl/N ) are the degenerate eigen-
values in the absence of SOI and θα is a special angle given
by

tan 2θα = Vα

V sin(�θ/2)
, (4)

where �θ = 2π/N . In the continuous limit N → ∞ or a → 0
one obtains the form tan 2θα = 2m∗r0α/h̄2 for the continuous
model.6 The states with energies El+ have the spin pointing
along a direction tilted at an angle 2θα relatively to the z axis,
whereas the states with energies El− have the spin pointing in
the opposite direction at angle 2θα + π with the z axis.

The corresponding eigenvectors are

|	l+〉 = 1√
N

∑
n

eilθn

(
cos θα

−eiθn sin θα

)
|n〉,

(5)

|	l−〉 = 1√
N

∑
n

eilθn

(
e−iθn sin θα

cos θα

)
|n〉.

The velocity operator is given by vθ = rθ̇ = r i
h̄

[H,θ ],

vθ = −V a

h̄

{
i
∑
n,σ

c†nσ cn+1σ

− Vα

V

∑
n,σ,σ ′

[σ r (θn,n+1)]σσ ′c†nσ cn+1σ ′ + H.c.

}
. (6)

The velocity operator commutes with the Hamiltonian (1) and
thus the eigenvectors of the velocity operator are the same
|	l±〉 shown in Eq. (5), with the associated eigenvalues

vl± = ul + ul±1

2
+ ul − ul±1

2

√
1 + tan2 2θα, (7)

where ul = 2V a
h̄

sin(2πl/N ) is the velocity in the absence of
the SOI.

It is helpful to introduce the tilt-spin operator S2θα
, defined

like in the continuous ring model6

S2θα
= cos 2θαSz − sin 2θαSr , (8)

which is a linear combination of Sz and Sr , the spin operators
for z and radial directions, respectively. The tilt-spin operator
also commutes with the Hamiltonian, it also has the eigenvec-
tors |	l±〉, but associated with eigenvalues ±h̄/2.

In the absence of the SOI, all quantum states are fourfold
degenerate, except those at the edges of the spectrum which
are only twice degenerate.14 This can be seen in Fig. 1(a)
where for Vα = 0 the two branches El+ and El− coincide.
In this case θα = 0, the spin operator S2θα

becomes Sz,
and |	l±〉 become the |↑〉 and |↓〉 eigenstates of Sz. For
Vα 
= 0 the energy spectrum becomes broader (meaning
that | max Elσ − min Elσ | increases) and all states are twice
degenerate since El± = E−l∓. To show this we marked by
two horizontal lines the energies E3− = E−3+ = 1.839 V and
E4+ = E−4− = −0.0357 V in Fig. 1(b).

In Fig. 2 we show the energy spectrum for an interval
of Rashba energies Vα (in units of V). For all Vα 
= 0 each
line corresponds to double-degenerated states. For example,
the thick lines describe the energies of the following paired
states: | − 3+〉 and |3−〉; | − 3−〉 and |3+〉; |0+〉 and |0−〉.
States at the crossing points in the spectrum shown in Fig. 2
preserve their fourfold degeneracy. Since the degenerate states
for Vα 
= 0 carry opposite currents vl± = −v−l∓, but with
opposite spins, the system can support a nonzero spin current.
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FIG. 2. (Color online) Spectrum of the 1D quantum ring with
N = 20 points vs Rashba energy Vα . The eigenvalues E3±, E−3± are
marked with thick lines to illustrate the partial lifting of degeneracy
when Vα 
= 0. The energy unit is V = h̄2/2m∗a2.
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III. EFFECTS OF A TERAHERTZ PULSE

At t = 0 the quantum ring described above is exposed to a
short terahertz two-component pulse

Hn(t) = Ae−
t [sin(ω1t) cos θ + sin(ω2t) cos n(θ + φ)] (9)

of duration ∼
−1 and amplitude A.14 n = 1,2 describes the
multipole order of the second component, while the phase
difference φ between the two components makes the external
perturbation asymmetric in space. The terahertz scale of the
excitation frequencies ω1,2 is at least an order of magnitude
larger than the spin relaxation rates in InAs semiconductor
heterostructures which reaches values from anywhere between
tens and hundreds of picoseconds.16,17

The time evolution of the system’s observables is deter-
mined by using the density operator ρ(t), which at t > 0
satisfies a quantum Liouville equation

ih̄ρ̇(t) = [H + Hn(t), ρ(t)]. (10)

Here the total Hamiltonian is interpreted as the many-body
Hamiltonian of ne noninteracting electrons. The initial con-
dition is that ρ(t = 0) represents the ground-state density
operator which is constructed with the Slater determinant ψ̃

formed out by the wave functions |	lσ 〉 shown in Eq. (5),
corresponding to the ne lowest-lying eigenstates of the initial
time-independent Hamiltonian, Eq. (1):

ρ(t = 0) = |ψ̃〉〈ψ̃ |. (11)

For any t > 0, Eq. (10) is solved numerically and ρ(t)
is obtained by using the Crank-Nicholson finite difference
method13 with small time steps δt � 
−1. The expectation
value of any observable O is then calculated as 〈O〉 =
Tr[ρ(t)O].

The charge current around the ring is I c = evθ , while the az-
imuthal spin current corresponding to the spin projection along
direction ν is I s

ν = h̄
2 (σνvθ + vθσν). As amply discussed in

Refs. 6 and 8 this expression represents the fully symmetrized
product between the velocity and spin operators, which in
systems with SOI in general do not commute.

Since the spin operator S2θα
(8) commutes with the unper-

turbed Hamiltonian (1), we calculate the expectation value of
I s

2θα
which corresponds to the direction of the spin e2θα

=
cos 2θαez − sin 2θαer . To simplify the notation we denote
I s(t) = 〈I s

2θα
〉, vθ (t) = 〈vθ 〉, and I c(t) = evθ (t). Since vθ and

I s
2θα

commute with H , the charge and spin currents become
constant after the external perturbation vanishes.

IV. NUMERICAL RESULTS

To illustrate our results we consider an InAs quantum
ring of radius r0 = 14 nm the electron effective mass being
m∗ = 0.023me. We choose our Rashba energy parameter Vα =
0.05 (units of V), which corresponds to a SOI strength α =
37.56 meV nm, within the range of experimentally determined
values.18 The number of sites used in the discretization is
N = 20, leading to a length unit of a = 4.4 nm and an energy
unit of V = 85.6 meV. For a system with ne = 6 electrons,
in the many-particle noninteracting ground-state ψ̃ , and for
Vα = 0.05 the occupied states are |lσ 〉 = |0±〉, |1±〉, and
| − 1±〉. In this configuration, that is, at t = 0, using Eq. (7)

one obtains the average velocity vθ (t = 0) = 0 and the spin
current I s(t = 0) = 2h̄(v0+ + v1+ + v−1+) = −0.089V a/h̄.

The first external pulse we consider is the superposition
of two dipoles corresponding to n = 1 in Eq. (9). For the
selected parameters of the ring, in the absence of the SOI, we
obtain the Bohr frequencies (given by ωl,l′ = |El − El′ |/h̄) as
h̄ω0,1 = 2.89 meV and h̄ω1,2 = 8.60 meV. In Figs. 3 and 4
we show the numerical results obtained for frequencies h̄ω1 =
2.83 meV, h̄ω2 = 8.11 meV, with the attenuation factor 
 =
4ω1, and amplitude A = 67.68 meV. The duration of the pulse
is tf ≈ 0.5 ps. Since the pulse produces many-particle excited
states, in our computation ω1 and ω2 are chosen to be slightly
different from the obtained Bohr frequencies in an effort to
create a more realistic algorithm that reproduces closely what
happens in an experimental situation. Moreover, for ω1 and ω2

exactly equal to the Bohr frequencies the calculated results are
similar.
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FIG. 3. (Color online) (a) The time evolution of the azimuthal
velocity v(t) = 〈vθ 〉 = I c(t)/e, (b) the spin current I s(t) = 〈I s

2θα
〉 for

the selected phase difference φ = 0,π/2,π . The charge current is
zero for both φ = 0 and φ = π , and thus in these cases a pure
spin current is created. The inset shows the time dependence of
the two components of the radiation pulse described by Eq. (9)
with n = 1 for θ = φ = 0. The lower peak corresponds to the
first term and the higher peak to the second term. The time unit
is h̄/V = 0.0076 ps.
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FIG. 4. (Color online) The stationary values of the velocity vθ

and spin current I s
2θ after the external pulse vanishes (at t � tf ) vs

the phase difference φ. The external pulse is H1(t), Eq. (9) with
n = 1, i.e., a combination of two dipolar fields. The SOI parameter is
Vα = 0.05. Pure spin current, corresponding to zero charge current,
is obtained when the phase difference φ is a multiple of π .

The time evolution of velocity vθ (t) (proportional with the
charge current) and that of the spin current I s(t) are illustrated
in Fig. 3 for phase differences φ = 0, π/2, and π . In Fig. 3(a)
we recover the result of Ref. 13 where it was demonstrated that
a charge current can be nonadiabatically generated through
the application of a spatially asymmetric terahertz excitation.
Thus, for φ = 0, vθ = 0, while for φ = π/2, vθ ≈ 0.37V a/h̄.

In Fig. 3(b) we present the time evolution of the spin current
I s(t) corresponding to the spin projected on the proper axis
e2θα

. As previously stated, in the presence of SOI, the initial
state of the system has a nonzero spin current, I s(0) 
= 0. On
account of the external pulse, the electrons in the ring are
nonadiabatically excited, and the spin current evolves toward
a new steady-state value. After the external pulse vanishes, the
spin current Is(t) is constant in time, but its amplitude varies
with the phase difference.

For a physical explanation of how the currents are generated
one has to observe that the pulse described by Eq. (9)
with n = 1, that is, two combined dipoles, creates along the
circumference of the ring a sinusoidal angular potential with
one maximum and one minimum. The amplitude of this sine
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FIG. 5. (Color online) The stationary values of the velocity vθ and
spin current I s

2θ after the external pulse vanishes (at t � tf ) vs the
phase difference φ. The external pulse is H2(t), Eq. (9) with n = 2,
i.e., a combination of a dipolar and a quadrupolar field. The SOI
parameter is Vα = 0.05. Pure spin current is now obtained when the
phase difference φ is a multiple of π/2. The results are shown for
0 � φ � π and they are identical for π � φ � 2π .

wave first increases in time and then decreases and vanishes.
When φ = 0, that is, no spatial phase shift between the two
components of the pulse, the maximum and minimum of the
angular potential remain fixed in space, at θ = 0 and θ = π ,
respectively. In this case the combination of two dipolar
components is equivalent to a single dipolar pulse. Charge
current cannot flow in this situation because the velocities
of electrons from the maximum to the minimum potential
on both sides of the ring (i.e., through θ = π/2 and through
θ = 3π/2) are opposite and cancel each other. However, spin
current exists because the (average) spin orientations are also
opposite on both sides following the velocity orientation and
so the spin current on both halves of the ring have the same
angular direction. Thus in order to generate a pure spin current
a single dipolar pulse is sufficient. When φ 
= 0 the sinusoidal
potential is no longer fixed on the ring, but it rotates in time. An
angular momentum is transferred to the electrons and charge
current is created, in addition to the spin current.
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The small oscillatory behavior of the current in Fig. 3, best
seen at � = π when the spin current is at its lowest value, can
be attributed to the damped oscillatory variation of the pulse in
Eq. (9). The second term of the pulse, illustrated by the large
peak in Fig. 3(a), becomes slightly negative around t = 10
units, creating a small oscillation both of the amplitude and of
the rotation angle of the total potential on the ring, which is
reflected in the currents.

We denote by vθ and I2θ the constant values of the velocity
and spin current after the perturbation vanished [i.e., vθ (t �
tf ) and I s(t � tf ), respectively]. They are plotted as a function
of the phase difference φ ∈ [0,2π ] in Fig. 4, but we note that
they reflect the periodicity in φ of the applied pulse. For φv1 =
1.89 and φv2 = 4.40 (rad) the charge current is maximum and
minimum, respectively, and the spin current has intermediate
values. For φ equal to 0 and π no charge current flows through
the ring (vθ = 0), whereas a spin current is present, I2θ 
= 0,
being maximum for φs1 = 0 and minimum for φs2 = π . These
are the critical phase differences angles for which only pure
spin currents exist. In this case, the numerical results show that
the states with opposite velocity, |l+〉 and | − l−〉, are equally
excited by the external pulse netting zero total velocity and
no charge current in the steady state. This is not the case for
intermediate angles where states with opposite velocity are
asymmetrically excited and consequently generating nonzero
values for both charge and spin currents.

In Fig. 5 we display vθ and I2θ obtained by exciting the
system with a pulse given by Eq. (9) written for n = 2, which
is a combination of a dipole and phase shifted quadrupole.
The frequencies ω1, ω2, the attenuation factor 
, and the
amplitude A remain the same as in the previous case. Due to
the quadrupolar component of the pulse, the period of vθ and
I2θ is halved to �φ = π . The maximum and minimum values
of vθ are reached for φv1 = 0.87 and φv2 = 2.27 (rad). For
the critical angles φs1 = 0 and φs2 = π/2 no charge current
is induced in the ring (vθ = 0), but the induced spin current
reaches extreme values, minima or maxima, respectively.

Again, in these situations only a pure spin current is induced
in the ring.

V. CONCLUSIONS

In conclusion we studied the nonadiabatic excitation of
spin and charge currents in a 1D quantum ring in the presence
of Rashba SOI. The ring was subjected to an external pulse
that is spatially asymmetric, having two components with an
internal phase difference between them. We investigated two
models, a dipole plus a rotated dipole and a dipole plus a
rotated quadrupole. By numerical calculation we showed that
for certain values of φ called φv1 and φv2 the induced charge
current reaches extreme values with I c(φv1) = −I c(φv2). In
the presence of the SOI, a nonzero spin current is always
induced in the ring for both pulse models with amplitudes
depending on the external parameters. We found critical values
of the phase difference φs1 and φs2 for which the induced
charge current disappears, whereas the spin current reaches
maxima or minima. The method may be used in practice to
convert an optical signal into a dissipationless (persistent) spin
current for information transfer purposes. Similar results are
obtained with the Dresselhaus SOI instead of Rashba SOI,
due to the equivalence of the corresponding Hamiltonians. We
also tested other parameters of the terahertz pulse (amplitude,
frequencies, attenuation factor) and we obtained qualitatively
similar results.
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