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Electronic charge and spin density distribution in a quantum ring with spin-orbit and
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Charge and spin density distributions are studied within a nanoring structure endowed with Rashba and
Dresselhaus spin-orbit interactions (SOIs). For a small number of electrons, in the presence of an external
magnetic field and of the Coulomb interaction, the energy spectrum of the system is calculated through an
exact numerical diagonalization procedure. The eigenstates thus determined are used to estimate the charge and
spin densities around the ring. We find that when more than two electrons are considered, the charge density
deformations induced by SOIs are dramatically flattened by the Coulomb repulsion, while the spin density
deformations are amplified.

DOI: 10.1103/PhysRevB.84.115311 PACS number(s): 71.70.Ej, 73.21.Hb, 71.45.Lr

I. INTRODUCTION

The possibility of controlling the flow of the electron
spins in semiconductor structures by external electric means
through spin-orbit interactions (SOIs) has dominated the
recent past of spintronics research. This fundamental principle,
first explored in the Datta-Das spin transistor configuration,1

has been guiding a sustained effort to understand all the
phenomenological implications of SOI for electron systems.
The coupling between spin and orbital motion results either
from the two-dimensional confinement2 (Rashba) or from the
inversion asymmetry of the bulk crystal structure3 (Dressel-
haus). The usual expression of the the spin-orbit Hamiltonian
HSO retains only the linear terms in the electron momentum
p = (px,py) and is given by

HSO = α

h̄
(σxpy − σypx) + β

h̄
(σxpx − σypy). (1)

The Rashba and Dresselhaus coupling constants are α and β,
respectively, while σx,y,z are the Pauli matrices. In general,
the two interactions are simultaneously present and often have
comparable strengths. While α, the coupling constant of the
Rashba interaction, can be modified by external electric fields
induced by external gates, the strength of the Dresselhaus SOI,
β, is fixed by the crystal structure and by the thickness of the
quasi-two-dimensional electron system.4,5 In many situations
of interest, an additional energy scale is introduced by the
Zeeman interaction of the electron spin with an external mag-
netic field, proportional to the effective gyromagnetic factor
g∗, which depends on the material energy-band structure.
While g∗ = −0.44 is very small in GaAs, it can be more that
100 times larger in InSb.

The interplay between the two types of SOI, which have
competing effects on the precession of the electron spin as
they rotate it in opposite directions, and the Zeeman splitting,
which minimizes the energy by aligning the spin parallel to
the external field, determines the ground-state polarization
of the electron system and the characteristics of spin transport.
The investigation of such problems in mesoscopic rings has
been pursued intensively by several authors.6–10 In particular,
it was noticed that, in the absence of the Coulomb interaction

among the electrons, the interference between the Rashba and
Dresselhaus precessions relative to the orbital motion leads to
the creation of an inhomogeneous spin and charge distribution
around the ring.8 The charge inhomogeneity created in this
situation has a symmetric structure with two maxima and two
minima around the ring and will be called here a charge density
deformation (CDD). The effect of the Coulomb interaction
on this type of charge distribution has been considered for
two electrons. The result was obtained that, on account of the
electrostatic repulsion, the two electrons become even more
localized in the potential minima associated with the CDD,
leading to an amplitude increase.9,10

In this work we obtain an estimate of the effect of the
Coulomb interaction on the charge and spin distributions
associated with N = 2, 3, and 4 electrons in a ring with
SOI coupling by an exact diagonalization procedure that
uses the configuration-interaction method. Our results indicate
that, when the number of electrons increases, the mutual
repulsion leads to more uniform charge distribution around
the ring, generating a dramatically flattened CDD. In contrast,
the spin density deformation (SDD) is amplified by the
Coulomb effects. This can be explained by the appearance
of a stronger repulsion between same spin electrons, leading
to more favorable spin orientations.

II. THE RING MODEL

The system of interest in our problem is a two-dimensional
quantum ring of exterior and interior radii Rext and Rint,
respectively. The ring is placed in a perpendicular magnetic
field B associated in the symmetric gauge with a vector
potential A = (B/2)(−y,x,0). The single-particle Hamilto-
nian of an electron of momentum p = −ih̄∇ + eA and
effective mass m∗ is written as the sum of an orbital term
HO = p2/2m∗, a Zeeman contribution HZ = (1/2)g∗μBBσz,
and the spin-orbit coupling given in Eq. (1). The ensuing
expression,

H = HO + HZ + HSO, (2)
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FIG. 1. (Color online) The discretized ring with Rint = 0.8Rext,
and 10 radial × 50 angular sites. The sites are shown as circular
points. The thin dotted lines connecting sites are for guiding
the eye.

is discretized in a standard manner6,7,11 on a grid12 defined by
Nr radial and Nϕ angular sites, as shown in Fig. 1. The radial
coordinate of each site is rk = Rext − (k − 1)δr , with k =
1,2, . . . ,Nr , while δr = (Rext − Rint)/(Nr − 1) is the distance
between adjacent sites with the same angle. Similarly, the
angular coordinate is ϕj = (j − 1)δϕ, where j = 1,2, . . . ,Nϕ

and δϕ = 2π/Nϕ is the angle between consecutive sites with
the same radius. The Hilbert space is spanned by the ket vectors
|kjσ 〉, where the first integer, k, stands for the radial coordinate,
the second one, j , for the angular coordinate, and σ = ±1
denotes the spin projection in the z direction.

In this basis {|kjσ 〉}, the matrix elements of the orbital
Hamiltonian are given by

〈kjσ |HO |k′j ′σ ′〉 = T δσσ ′

{[
tϕ + tr + 1

2
t2
B

(
rk

4Rext

)2]
δkk′δjj ′

−
[
tϕ + tB

i

4δϕ

]
δkk′δjj ′+1 + tr δkk′+1δjj ′

}

+ H.c. (3)

T = h̄2/(2m∗R2
ext) is the energy unit, while Rext is the length

unit. In T units, we obtain tϕ = [Rext/(rkδϕ)]2 for the angular
hopping energy, tr = (Rext/δr)2 for the radial hopping energy,
and tB = h̄eB/(m∗T ) for the magnetic cyclotron energy. (H.c.
denotes the Hermitian conjugate.)

In the same basis, the Zeeman Hamiltonian is simply
diagonal in the spatial coordinates,

〈kjσ |HZ|k′j ′σ ′〉 = 1
2T tBγ (σz)σσ ′δkk′δjj ′ , (4)

where γ = g∗m∗/(2me) is the ratio between the Zeeman gap
and the cyclotron energy, me being the free-electron mass.

For the spin-orbit Hamiltonian we obtain

〈kjσ |HSO |k′j ′σ ′〉 = 1

2
T tα

[
tB

rk

4Rext

(
σ j

r

)
σσ ′δkk′δjj ′

+ it1/2
ϕ

(
σ

j
r +σ

j+1
r

)
σσ ′

2
δkk′δjj ′+1−it1/2

r

(
σ j

ϕ

)
σσ ′δkk′+1δjj ′

]

+ T tβ
∑
k,j

[
σ j

r → (
σ j

ϕ

)∗
and σ j

ϕ → −(
σ j

r

)∗] + H.c., (5)

where tα = α/(RextT ) and tβ = β/(RextT ) are the two types of
spin-orbit relative energy, while σr (ϕ) = σx cos ϕ + σy sin ϕ

and σϕ(ϕ) = −σx sin ϕ + σy cos ϕ are the radial and angular
Pauli matrices, respectively. We used the slightly shorter
notations σ

j
r = σr (ϕj ) and σ

j
ϕ = σϕ(ϕj ) for the matrices at the

particular angles on our lattice. The Rashba spin-orbit terms
are all included in the first square brackets. The Dresselhaus
terms are very similar to the Rashba ones, being given by the
substitutions indicated in the second square brackets.

The single-particle states of the noninteracting Hamiltonian
(2), Hψa = εaψa , are computed as eigenvalues and eigenvec-
tors of the matrices (3)–(5), ψa(rk,ϕj ) = ∑

σ �a,σ (k,j )|σ 〉,
where �a,σ (k,j ) are c numbers. The implicit boundary
condition is that ψa ≡ 0 everywhere outside the ring, i.e., for
r < Rint and r > Rext.

In the basis provided by {ψa} the interacting many-body
Hamiltonian is written in the second quantization as

H =
∑

a

εac
†
aca + 1

2

∑
abcd

Vabcdc
†
ac

†
bcdcc, (6)

where c
†
a and ca are the creation and annihilation operators on

the single-particle state a. The matrix elements of the Coulomb
potential V (r − r′) = e2/(κ|r − r′|), κ being the dielectric
constant of the material, are in general give by

Vabcd = 〈ψa(r)ψb(r′)|V (r − r′)|ψc(r)ψd (r′)〉. (7)

In the present discrete model the double scalar product is in
fact a double summation over all the lattice sites and spin
labels,

Vabcd = T tC
∑
kjσ

k′j ′σ ′

�∗
a,σ (kj )�∗

b,σ ′(k′j ′)
Rext

|rjk − rj ′k′ |

×�c,σ (kj )�d,σ ′(k′j ′). (8)

The new energy parameter introduced by the Coulomb
repulsion is tC = e2/(κRextT ). In the above summation over
the sites, the contact terms (k = k′,j = j ′) are avoided, as their
contribution vanishes in the continuous limit.

The many-body states 
μ are found by solving the
eigenvalue problem for the Hamiltonian (6),

H
μ = Eμ
μ.

A potential solution of the equation is written in the
configuration-interaction representation13–15 as a linear
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combination of the noninteracting system eigenstates (Slater
determinants),


μ =
∑
A

cμA|A〉, (9)

with {|A〉 = |iA1 ,iA2 , . . . ,iAK〉} where iAa = 0,1 is the occupation
number of the single-particle state ψa and K is the number of
single-particle states considered. The occupation numbers iAK
are listed in increasing energy order, so εK is the highest energy
of the single-particle state included in the many-body basis. For
any |A〉 we have

∑
a iAa = N , which is the number of electrons

in the ring. It is straightforward to derive the matrix elements of
HAA′ using the action of the creation and annihilation operators
on the many-body basis. In practice, Eq. (9) is convergent
with K for a sufficiently small number of electrons and
sufficiently small ratio of Coulomb to confinement energy, tC .
This procedure, also known as “exact diagonalization,” does
not rely on any mean-field description of the Coulomb effects,
like Hartree, Hartree-Fock, or density functional theory.16

To be able to carry out the numerical calculations in a
reasonable amount of time, we choose a small ring of radii
Rext = 50 nm and Rint = 0.8Rext, containing N � 4 electrons.
The discretization grid has 10 radial and 50 angular points
(500 sites), as shown in Fig. 1. Two common semiconductor
materials used in the experimental spintronics are used for
the selection of the material constants needed: InAs with
m∗ = 0.023me, g∗ = −14.9, κ = 14.6, and estimated (or
possible) values for the spin-orbit interactions α ≈ 20 and β ≈
3 meV nm; InSb with m∗ = 0.014me,g

∗ = −51.6,κ = 17.9,
and α ≈ 50, β ≈ 30 meV nm.4,5 The relative energies which
we defined are as follows: for InAs tα = 0.60, tβ = 0.09, tC =
2.9,γ = −0.17; for InSb tα = 0.92, tβ = 0.55, tC = 1.5,γ =
−0.36. In our calculations we have considered material pa-
rameters somewhere in between these two sets: tα = 0.7, tβ =
0.3, tC = 2.2,γ = −0.2.

III. RESULTS

A. Single-particle calculations

In the absence of the SOI (α = β = 0), the single-particle
Hamiltonian (2) shares its eigenstates ψa with the ẑ com-
ponents of the angular momentum Lz and spin Sz = h̄σz/2.
In the presence of only one type of SOI, either α 	= 0 or
β 	= 0, the Hamiltonian commutes with the ẑ component of
the total angular momentum, Lz + Sz, which is conserved.
When both α 	= 0 and β 	= 0, the angular momentum is no
longer conserved. However, ψa continue to be eigenstates of
the parity operator P = �σz, � being the (three-dimensional)
spatial inversion operator. Indeed, the general Hamiltonian
(2) commutes with P , which can be easily verified by using
�p = −p� and the commutation rules of the Pauli matrices.
So in general Pψa = sψa , and thus the parity s = ±1 of any
state a is conserved, i.e., it is independent of the magnetic field.
In particular, when α = β and g∗ = 0, all states become parity
degenerate at any magnetic field.8,10,17 We identify the parity of
the single-particle states calculated on our discrete ring model
by looking at the relation ψa,σ (k,j ) = sσψa,σ (k,j̄ ), where
(k,j ) and (k,j̄ ) are diametrically opposed sites, with angular
coordinates ϕj̄ = ϕj + π .
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FIG. 2. (Color online) (a) The lowest 12 energies of the single-
particle states vs the magnetic energy tB . The solid (red) and the
dashed (green) lines show the states with positive and negative parity,
respectively. (b) The expected value of the spin projection along the
z direction, Sz, in units of h̄/2, for the first four states on the energy
scale. (c) The standard deviation �c of the charge distribution around
the circle with radial site index k = 6, for the first four energy states:
ground state (GS), first, second, and third excited states (ES1, ES2,
and ES3). The same association of line types with states is used
in (b).

In Fig. 2 we show the single-particle-state energy for
0 < tB < 10 (units of T ), which corresponds to a magnetic
field strength between 0 and 1.32 Tesla. Further increment of
the magnetic field requires an augmentation of the number of
sites on the ring in order to maintain the discrete model as
a reasonable approximation of a physically continuous ring.
The displayed results change by less than 1% if the number
of sites increases, for example, from 500 to 600. At zero
magnetic field all states are parity degenerate, which is just
the ordinary spin degeneracy. The degeneracy is in general
lifted by a finite magnetic field. There are, however, some
particular values of tB where the degeneracy persists. This
situation is represented in Fig. 2(a) by all intersection points
of two lines corresponding to the two possible parities. Such
intersections do not occur between states with the same parity.
Due to the spin-orbit coupling, the orbital momentum of one
state depends on the spin of the other state and vice versa,
and, consequently, states of the same parity do in fact interact
and thus avoid intersections.10 Although in Fig. 2(a) many
states represented by the same line type apparently cross
each other, in reality there are always tiny gaps between
them, similar to those visible at tB ≈ 2 between the first and
the second excited states or at tB ≈ 5.5 between the first,
second, and third excited states. The magnitude of these gaps
depends on the g factor, reducing in size for a smaller g∗
parameter.
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In Fig. 2(b) the evolution of the expected spin in the z

direction, Sz = h̄〈ψa|σz|ψa〉/2, is presented for the first four
states in the energy order. One can see how the spin flips for
states avoiding the crossing, like those with negative parity at
tB ≈ 2 [dashed and dotted lines in Fig. 2(b)].

Only one type of SOI, either Rashba or Dresselhaus,
is sufficient to avoid the crossing of states with the same
parity, but in this case the charge and the spin densities
are uniform around the ring. When both SOI types are
present the charge and spin densities become nonuniform.
This situation is equivalent to the presence of a potential
with two maxima and two minima around the ring, having
reflection symmetry relative to the axes y = x (or ϕ = π/4,
corresponding to the crystal direction [110]) and y = −x (or
ϕ = −π/4, corresponding to the crystal direction [11̄0]).8,10

The amplitude of the CDD is illustrated in Fig. 2(c) where the
standard deviation (in the statistical sense) �c of the charge
density calculated around one circle on the ring, close to
the mean radius, with radial site index k = 6, is plotted for
the four lowest-energy states. The density deformation occurs
on account of the two combined SOI types which lead to spin
interference and additional interaction between states with the
same parity. Consequently, the amplitude of the CDD for a
certain state is maximum at those magnetic fields where the
parity degeneracy is lifted (the state avoids a crossing with
another state of the same parity). In Fig. 2(c) this is clearly
seen at tB ≈ 2 for the excited state. In this example the CDD
in the ground state is very weak. The sharp peak at tB ≈ 0.4
indicates the existence of a narrow gap between the fourth and
fifth energy states that avoid crossing.
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FIG. 3. (Color online) Energy spectra of the first 12 states for
N = 2, 3, and 4 electrons without Coulomb interaction, tC = 0, in
(a),(c),(e), and with Coulomb interaction, tC = 2.2, in (b),(d),(f). The
solid (red) and the dashed (green) lines show the states with positive
and negative parity, respectively.

B. Many-particle calculations

In the following considerations, we will include more than
one electron. In Fig. 3 we compare the energy spectra for the
first 12 many-body states vs the magnetic energy, for N = 2, 3,
and 4 electrons, without and with Coulomb interaction. The
number of single-particle states used to calculate the spectra
with interaction varied between K = 12 and 14, the results
being convergent within less than 1%. Since the Coulomb
interaction is invariant at spatial inversion (and independent of
spin) the parity s is also conserved in the many-body states.
Spectra drawn for tC = 0 and tC = 2.2 have qualitatively
similar features. To allow the comparison of the noninteracting
and interacting spectra, we used on the horizontal axes exactly
the same values of the magnetic energy and on the vertical
axes different energy intervals, but with the same length. The
interacting spectra present a shift to higher energies, on account
of the additional Coulomb energy. Moreover, the crossings and
the anticrossings of the energy levels (the points where the
crossings were avoided) occur at different magnetic fields.

The total spin Sz for each of the first three energy states is
shown in Fig. 4. At zero magnetic field, for an even number of
electrons, here N = 2 or 4, the ground state is nondegenerate
and has total spin Sz = 0, i.e., the spin-up and spin-down states
of individual electrons compensate. For N = 3 the ground
state is spin (doubly) degenerate at zero field. When the field
is applied, the first spin flip in the interacting ground state, as
well as the spin saturation, occur at lower magnetic fields than
in the absence of the Coulomb repulsion. This is a result of

-2

-1

 0

 1

 2

0 2 4 6 8 10 0 2 4 6 8 10

 

 

(a) N=2 tC=0

GS
ES1
ES2

-2

-1

 0

 1

 2

0 2 4 6 8 10 0 2 4 6 8 10

 

 

(b) N=2 tC=2.2

-1

 0

 1

 2

0 2 4 6 8 10 0 2 4 6 8 10

S
z

 

(c) N=3 tC=0
-1

 0

 1

 2

0 2 4 6 8 10 0 2 4 6 8 10

 

 

(d) N=3 tC=2.2

-1

 0

 1

 2

 3

0 2 4 6 8 10 0 2 4 6 8 10

 

tB

(e) N=4 tC=0
-1

 0

 1

 2

 3

0 2 4 6 8 10 0 2 4 6 8 10

 

tB

(f) N=4 tC=2.2

FIG. 4. (Color online) The total spin projection in the z direction,
in units of h̄/2, for the many-body states with N = 2,3,4 electrons,
without interaction, i.e., tC = 0, in (a),(c),(e), and with interaction,
with tC = 2.2, in (b),(d),(f). Only the first three states are shown here,
the ground state (GS), the first excited state (ES1), and the second
excited state (ES2). The magnetic energy tB varies between 0 and 10
and the dashed lines, showing the excited states, are shifted to the
right for clarity.
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the mixing of spin states with the same parity produced by the
interaction. This effect might also be related to the Coulomb
exchange enhancement of the g factor obtained in the Hartree-
Fock approximation for quantum dots,18 although with about
20 electrons or more, and also to the similar enhancement of
the SOI known in the homogeneous two-dimensional electron
gas.19 However, since here we have only up to four electrons,
this comparison remains only qualitative.

As for nonineracting electrons (Fig. 2) abrupt or (relatively)
smooth spin transitions occur with increasing magetic field,
depending on whether the energy levels have crossings or
anticrossings. Such transitions may repeat back and forth,
resulting in sharp peaks of Sz, seen for example in Fig. 4(b)
or 4(c).

As in the case of one electron (N = 1, Fig. 2), the
charge deformation of each state is maximized for those
magnetic fields where the state has an anticrossing (or
repulsion) with another state of the same parity. The charge
deformation parameter �c is shown in Fig. 5. For N = 2 the
amplitude of the CDD increases with the Coulomb interaction.
There is a simple reason for that: the potential associated with
the charge deformation has two minima diametrically opposite
each other on the ring, and each of the two electrons tends to
be localized in one of these minima. The mutual Coulomb
repulsion fixes the electrons in those places better.9,10 The
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FIG. 5. (Color online) The standard deviation �c of the charge
on the circle k = 6 around the ring, as a measure of the amplitude
of the charge deformation. Shown are the results for the ground
state (GS), the first excited state (ES1), and the second excited state
(ES2), for N = 2,3,4 electrons without (tC = 0) and with (tC = 2.2)
interaction. The amplitude of the CDDs is strongly reduced by the
Coulomb effects for N = 3,4; notice the different scales used in
the paired panels (c),(d) and (e),(f). The magnetic energy tB varies
between 0 and 10 and the dashed lines, corresponding to the excited
states, are shifted to the right for clarity. The sharp peaks correspond
to narrow gaps in the energy spectra shown in Fig. 3 and the broader
peaks to wider gaps.

situation changes, however, for N > 2. The Coulomb forces
spread the electrons differently, more or less uniformly, such
that the charge deformation created by the SOI is drastically
reduced. In other words, the associated potential is strongly
screened even by one extra electron above N = 2. This effect
can be clearly seen in Fig. 5, comparing Fig. 5(c) with 5(d)
and 5(e) with 5(f). The vertical scale of Figs. 5(d) and 5(e) has
been magnified three times, for visibility.

In principle, the screening of the charge deformation is not
particularly related to the spin-orbit effects. SOI only generates
the specific effective potential which determines the CDD. In
the absence of SOI (α = β = 0), we checked that a similar
screening effect occurs in the presence of a potential that
induces a charge deformation comparable to that obtained
with the SOI. It is, however, surprising that by adding only
one extra electron such a drastic effect ensues.

Next, we investigate the effect of the Coulomb interaction
on the spin distribution around the ring. The standard deviation
of the spin density projected along the z direction, �z, is plotted
in Fig. 6, where we show the results calculated as before for
the circle corresponding to the sites with radial coordinate
k = 6. The spin density deformation is actually amplified by
the Coulomb interaction for all N = 2,3,4. Like the CDDs, the
SDDs reach their maxima at the magnetic fields where level
repulsion occurs and remains prominent even when the gaps
are very small. The Coulomb amplification is a result of the
mixing of states with the same parity, but with different spin

 0

 1

 2

0 2 4 6 8 10 0 2 4 6 8 10

 

(a) N=2 tC=0 GS
ES1
ES2

 0

 1

 2

0 2 4 6 8 10 0 2 4 6 8 10

 

 

(b) N=2 tC=2.2

 0

 1

 2

0 2 4 6 8 10 0 2 4 6 8 10

10
3  Δ

z

 

(c) N=3 tC=0

 0

 1

 2

0 2 4 6 8 10 0 2 4 6 8 10

 

 

(d) N=3 tC=2.2

 0

 1

 2

0 2 4 6 8 10 0 2 4 6 8 10
tB

(e) N=4 tC=0

 0

 1

 2

0 2 4 6 8 10 0 2 4 6 8 10

 

tB

(f) N=4 tC=2.2

FIG. 6. (Color online) The standard deviation �z of the spin
projection along the z direction on the circle k = 6 around the ring,
as a measure of the amplitude of the spin density wave. As in the
previous figures, GS, ES1, and ES2 in the legend indicate the ground
state, the first excited state, and the second excited state, respectively.
The results are shown for N = 2,3,4 electrons without (tC = 0), and
with (tC = 2.2) interaction. Unlike the CDDs, the SDDs are amplified
by the Coulomb interactions for all N . The magnetic energy tB varies
between 0 and 10, and the dashed lines, corresponding to the excited
states, are shifted to the right for clarity.
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FIG. 7. (Color online) (a) The charge density for N = 4 elec-
trons with interaction (tC = 2.2), in the second excited state, i.e.,
ES2 in Fig. 5(f), with magnetic energy energy tB = 4.5. (b) The
corresponding total spin distribution along the ring k = 6 where the
standard deviation of the z component is calculated and shown in
Fig. 6(f).

orientations produced by the Coulomb potential. Consequently
the SDDs have in general a richer structure than the CDDs.

Finally, in Fig. 7 we display an example of CDD and
SDD, obtained for N = 4 interacting particles. The charge
and spin distributions correspond to the second excited state
and tB = 4.5, the deformations being shown in Figs. 5(f) and
6(f), respectively. The CDD is weak, but still it has four
visible maxima. For two electrons the CDD has only two
maxima which are along the directions x = y or x = −y,
depending on the state and on the magnetic field, both with
and without the Coulomb interaction. In particular, for a strictly

one-dimensional ring model and N = 2, in the ground state,
the maxima are always along the line x = −y,8,9 whereas for a
two-dimensional model they can also be along x = y.10 But in
general, for N > 2 electrons, screening effects may distribute
the charge in more complicated configurations. Similar profiles
with multiple local oscillations may be obtained for the spin
density, eventually becoming spin density waves around the
ring.8

IV. CONCLUSIONS

We calculated the many-body states of a system of N =
2, 3, and 4 interacting electrons located in a ring of finite
width with Rashba and Dresselhaus spin-orbit coupling, in
the presence of a magnetic field perpendicular to the surface
of the ring. The Coulomb effects are fully included in the
calculation via the exact diagonalization method. We obtained
inhomogeneous charge densities, or CDDs, around the ring
due to the combined effect of the two types of SOI. When
the Coulomb interaction is included the charge deformation is
amplified for N = 2, as also shown by other authors.9,10 For
N > 2 we find that the CDD is dramatically flattened out in the
presence of the Coulomb interaction. We interpret the result
as a screening effect. In contrast, the spin inhomogeneities, or
SDDs, are amplified by Coulomb effects for all N > 1.
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