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Abstract. We have investigated particle acceleration and shock structure associated with an unmagnetized rel-
ativistic jet propagating into an unmagnetized plasma for electron-positron and electron-ion plasmas. Strong
magnetic fields generated in the trailing jet shock lead to transverse deflection and acceleration of the electrons.
We have self-consistently calculated the radiation from the electrons accelerated in the turbulent magnetic fields
for different jet Lorentz factors. We find that the synthetic spectra depend on the bulk Lorentz factor of the jet,
the jet temperature, and the strength of the magnetic fields generated in the shock. We have investigated the
generation of magnetic fields associated with velocity shear between an unmagnetized relativistic (core) jet and
an unmagnetized sheath plasma. We discuss particle acceleration in collimation shocks for AGN jets formed
by relativistic MHD simulations. Our calculated spectra should lead to a better understanding of the complex
time evolution and/or spectral structure from gamma-ray bursts, relativistic jets, and supernova remnants.

1 Introduction

Kinetic simulations have focused on magnetic field gen-
eration via electromagnetic plasma instabilities in unmag-
netized flows without velocity shears. Three-dimensional
(3D) particle-in-cell (PIC) simulations of Weibel tur-
bulence [26, 28] have demonstrated subequipartition
magnetic field generation. We have calculated, self-
consistently, the radiation from electrons accelerated in
the turbulent magnetic fields beyond the standard models
[25, 35, 36, 38–41]. We found that the synthetic spectra
depend on the Lorentz factor of the jet, the jet’s thermal
temperature, and the strength of the generated magnetic
fields [31, 32].

We have examined the strong magnetic fields gen-
erated by kinetic shear (Kelvin-Helmholtz) instabilities
(KKHI). In particular the KKHI has been shown to lead
to particle acceleration and magnetic field amplification
in relativistic shear flows [2, 11, 33, 34]. It is very im-
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portant to note that this DC magnetic field is not captured
in MHD [42] or fluid theories because it results from in-
trinsically kinetic phenomena. Furthermore, since the DC
field is stronger than the AC field, a kinetic treatment is
clearly required in order to fully capture the field struc-
ture generated in unmagnetized or weakly magnetized rel-
ativistic flows with velocity shear. This characteristic field
structure will also lead to a distinct radiation signature
[4, 16, 31, 32, 37]. A shear flow upstream of a shock
can lead to density inhomogeneities via the MHD Kelvin-
Helmholtz instability (KHI) which may provide important
scattering sites for particle acceleration.

Observations suggest thatγ-ray flares are associated
with a burst in particle and magnetic energy density ac-
companying jet disturbances when they cross the radio
core. This could be explained if the radio core is associated
with a recollimation shock [7, 13–15]. We have simulated
collimation shocks using RAISHIN 3-D GRMHD/RMHD
code [23, 24]. Some initial results are reported for the first
time.
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Figure 1. Figure 1a shows spectra for cold (thin lines) and warm (thick lines) electrons in jets withγ = 10, 20, 50, 100, and 300. Figure
1b shows modeled Fermi spectra inνFν units at early (a) to late (e) times (Abdo et al. 2009). The solid red lines indicate a slope of
νFν = 1

2 Self-consistent radiation calculation
from PIC simulations

Electrons are accelerated in the electromagnetic fields gen-
erated by the Weibel and KKHI instabilities. Radiation
can be calculated using the particle trajectories in the self-
consistent turbulent magnetic fields. This calculation al-
lows for Jitter radiation [17, 18] which is different from
standard synchrotron emission. Radiation details from our
simulations can be found in [31].

We have calculated the radiation spectra directly from
our simulations by integrating the expression for the re-
tarded power, derived from Liénard-Wiechert potentials
for a large number of representative particles in the PIC
representation of the plasma[4, 9, 10, 16, 27, 29–31, 37].
Initially we verified the technique by calculating radiation
from electrons propagating in a uniform parallel magnetic
field [29]. It should be noted that spectra obtained from
colliding jet simulations (fixed contact discontinuity) do
not provide spectra in the observer’s rest frame, and can-
not be compared with observed spectra [37].

The spectra shown in Figure 1a are for emission from
jets with Lorentz factorsγ = 10, 20, 50, 100, and 300
[31, 32]. In the figure we show two spectra for each
Lorentz factor (represented by the same color line) for ini-
tially cold (vjet,th = 0.01c) (thin, lower lines) and initially
warm (vjet,th = 0.1c) (thick, upper lines) jet electrons. Here
the spectra are calculated for emission along the jet axis
(θ = 0◦). The radiation shows a Bremsstrahlung-like spec-
trum at low frequencies for the eleven cases [9] because
the magnetic fields generated by the Weibel instability are
rather weak and jet electron acceleration is modest. A low
frequency slope ofνFν = 1 is indicated by the straight red
lines. The low frequency slopes in our synthetic spectra
are very similar to those of the spectra in Figure 1b from

[1], and show change with the Lorentz factor like the tem-
poral evolution observed by Fermi (e.g., Fig.1b).

We have calculated radiation from accelerated elec-
trons which are simulated using large system 8000×240×
which will be reported separately.

3 Our Core-Sheath Jet KKHI Results

The simulation setup for our study of velocity shears (not
counter-streaming shear flows as used by [2, 11] is shown
in Figure 2a. In our simulation a relativistic jet plasma
is surrounded by a sheath plasma [33, 34]. This setup is
similar to the setup of our RMHD simulations [22]. In
our initial simulation the jet core hasvcore = 0.9978c (γ =
15) pointing in the positivex direction in the middle of
the simulation box as in [2]. Unlike Alves et al. [2] the
upper and lower quarter of the simulation box contain a
stationary,vsheath= 0, sheath plasma. Our setup allows for
motion of the sheath plasma in the positivex direction.

Overall, this structure is similar in spirit, although
not in scale, to that proposed for active galactic nuclei
(AGN) relativistic jet cores surrounded by a slower mov-
ing sheath, and is also relevant to gamma-ray burst (GRB)
jets. In particular, we note that this structure is also rel-
evant to the “jet-in-a-jet" or “needles in a jet" scenarios
[5], which have been invoked to provide smaller scale high
speed structures within a much larger more slowly moving
AGN jet. Similar smaller scale structures within GRB jets
are also conceivable.

This more realistic setup is different from the initial
conditions used by the previous simulations with counter-
steaming flows [2], and hence allows us to compute syn-
thetic spectra in the observer frame. As mentioned by
[2], in a non-counterstreaming or unequal density coun-
terstreaming setup the growing KKHI will propagate with
the flow. For GRB jets, the relativistic jet core will have
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Figure 2. Figure 2a shows our simulation model where the sheath plasma can be stationary or moving in the same direction as the jet
core. In this simulation the sheath velocity is zero. Figure 2b shows the magnitude ofBy is plotted in thex − z plane (jet flow in the
+x-direction indicated by the large arrow) at the center of the simulation box,y = 100∆ at simulation timet = 70ω−1

pe for the case of
γj = 15 andmi/me = 1836. This panel covers one fifth of the whole simulation system. The arrows show the magnetic field in the
plane.
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Figure 3. Magnetic field structure generated by a relativistic electron-ion jet core withγ = 15 and stationary sheath plasma at simulation
time t = 70ω−1

pe. The magnitude ofBy is plotted (a) in they − z plane (jet flow out of the page) at the center of the simulation box,
x = 500∆ at the center of the simulation box,y = 100∆. Figure 3b showsBy (red),Bx (black), andBz (blue) atx = 500∆ andy = 100∆.
Figure 3c shows thex component of the electric current (jet flow is out of the page) in the region indicated the square box in Fig. 3a.
The current is positive on the core side and negative on the sheath side of the velocity shear. The positive current is stronger than the
negative current, leading toBy as shown in Figure 3b. The small arrows show the magnetic field in the plane.

much higher density relative to the external medium. On
the other hand, for an AGN jet the relativistic core is less
dense than the surrounding sheath.

We previously reported results from our first simula-
tions for a core-sheath case withγj = 15 andmi/me = 20
[33]. We have also reported simulation results using the
real mass ratiomi/me = 1836[33]. We find some differ-
ences from previous counter-streaming cases.

We have performed a simulation using a system with
(Lx, Ly, Lz) = (1005∆, 205∆, 205∆) and with an ion to
electron mass ratio ofmi/me = 1836 (∆ = 1 is the system
size). The jet and sheath plasma density isnjt = nam = 8.

The electron skin depth,λs = c/ωpe = 12.2∆, where
ωpe = (e2na/ǫ0me)1/2 is the electron plasma frequency and
the electron Debye lengthλD is 1.2∆. The jet Lorentz
factor is γj = 15. The jet-electron thermal velocity is
vj,th,e = 0.014c in the jet reference frame, wherec is the
speed of light. The electron/ion thermal velocity in the
ambient plasma isva,th,e = 0.03 c. Ion thermal velocities
are smaller by (mi/me)1/2. We use periodic boundary con-
ditions on all boundaries [3, 28]

Figure 2b shows the magnitude ofBy plotted in thex−z
plane (jet flow in the+x-direction indicated by the large
arrow) at the center of the simulation box,y = 100∆ at

The Innermost Regions of Relativistic Jets and Their Magnetic Fields 
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Figure 4. Figure 4show the collimation shocks att = 600Rj/c in 2-D (left panel) and 3-D (right panel) withη = ρj/ρa = 10−3, γj =

4,M = 1.69,Rj = 1.0. The left column shows gas pressure (left) and Lorentz factor (right) with velocity vector onxz-plane aty = 0.

simulation timet = 70ω−1
pe. The arrows show the magnetic

field Bx,z in the plane.

Figure 3 shows the magnetic field structures generated
by the relativistic electron-ion core withγ = 15 and with
a stationary sheath plasma at timet = 70ω−1

pe. Figure
3a shows the magnitude ofBy plotted in they − z plane
(jet flow is out of the page) at the center of the simulation
box, x = 500∆. Figure 3b showsBy (red), Bx (black),
andBz (blue) magnetic field components atx = 500∆ and
y = 100∆. Figure 3c shows thex component of the current
in the region indicated by the square box in Fig. 3a. Rela-
tivistic jet flow is out of the page and positive (red) current
flows along the jet side, whereas negative (blue) current
flows along the sheath side. Positive currents are stronger
than the negative currents, leading toBy as shown in Figs.
3a and 2b.

We have compared the differences between cases with
mass ratiosmi/me = 20 and 1836 for the relativistic jet
with γj = 15. We find that the structure and growth rate of
kinetic KHI is very similar [34]. The heavier ions in the
real mass ratio case keep the system thermal fluctuations
smaller, but the kinetic KHI grows similarly. The magnetic
field energy becomes larger than the electric field energy
at a similar time in both cases aroundt = 87ω−1

pe. We also

performed a simulation withγj = 1.5 andmi/me = 20. For
this non-relativistic case the magnetic field grows earlier
and overtakes the electric field energy att = 46ω−1

pe, which
is much earlier than those in the relativistic cases [34].

In forthcoming work we will obtain synthetic spectra
from particles accelerated by KKHI as we have done for
shock simulations [31, 32]. Electrons which are drifting
the regions where the strong DC magnetic fields are gen-
erated may radiate in a different way. Ultimately we need
to simulate a relativistic jet injected in an ambient plasma
where shocks and KKHI are simultaneously investigated.

4 RMHD Simulations of Recollimation
Shocks

Both moving “internal” shocks and standing “external”
shocks can occur in a relativistic jet. The former are
driven by velocity and/or pressure fluctuations in the in-
jected flow. External shocks result from non-linear in-
stabilities, including pressure mismatches with the ex-
ternal medium that cause quasi-periodic collimation/de-
collimation shocks and rarefactions to form.

To obtain a better understanding of the jet dynamics
associated with relativistic shocks we have started to per-
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form relativistic magnetohydrodynamical (RMHD) simu-
lations using the RAISHI code [23, 24]. In order to ob-
tain a series of strong recollimation shocks, we assume
that external gas pressure decreases with axial distance.
The lighter jet with weak helical magnetic field is continu-
ously injected from inner boundary with pressure matched
with external medium. The simulations are performed in
3-D cartesian coordinates. The simulation size is−5Rj <

x, y < 5Rj , 0 < z < 100Rj with 80× 80× 800 grids. Fig-
ure 4 (left panel) shows the gas pressure (left) and Lorentz
factor (right) with velocity vector onxz-plane aty = 0
at t = 600Rj/c. The preliminary simulation shows the
propagating jet is accelerated and over-pressured against
external medium due to the decreasing external medium.
In long-term evolution, the multiple recollimation shock
structure is developed. The jet Lorentz factor is corre-
lated with the recollimation shock structure. The higher
gas pressure region has lower jet velocity and lower gas
pressure region has higher jet velocity.

Using the magnetohydrodynamical results as input,
synchrotron emission is then computed at different observ-
ing frequencies [6, 7, 21]. Analysis of the core position in
the simulated emission maps reveals the expected behav-
ior in case the VLBI core corresponds to a recollimation
shock, as the multi-wavelength analysis ofγ-ray flares in
blazar suggests.

The “Turbulent Extreme Multi-Zon” (TEMZ) code
is developed by Marscher [12], calculates the spectral
energy distribution (multi-wavelength light curves) from
synchrotron radiation and inverse Compton scattering, as
well as the linear polarization of the synchrotron emis-
sion at various frequencies, as a function of both time
and location within the jet. The RMHD simulation re-
sults will provide necessary information for this calcula-
tion by TEMZ. In the current version of the code, a stand-
ing conical collimation shock energizes electrons in the
turbulent plasma. The energy density at the jet input varies
with time stochastically within a power-law power spec-
trum with slope similar to that observed for flux varia-
tions. The magnetic field direction varies randomly from
one cell of plasma to the next. Further development, in ad-
dition to parallelization of the code to run on a high-energy
computer, is needed to include (1) shocks and rarefac-
tions that are more realistic, as generated by the proposed
RMHD simulations; (2) moving shocks, which are not cur-
rently incorporated; (3) dynamically generated rather than
randomly assigned turbulent magnetic field and veloc-
ity fluctuations, as produced by the simulations proposed
here; and (4) nonthermal seed photons from the many (es-
sentially co-moving) cells, a slower moving sheath, and
emission-line clouds near the jet. More generally, we will
continue to investigate the possibility thatγ-rays flares in
AGN jets can be produced by the interaction of moving
shocks with standing recollimation shocks.

5 Summary and Discussion

We have investigated generation of magnetic fields asso-
ciated with velocity shear between an unmagnetized rela-

tivistic jet and an unmagnetized sheath plasma (core jet-
sheath configuration). We have examined the evolution
of electric and magnetic fields generated by kinetic shear
(Kelvin-Helmholtz) instabilities. Compared to the previ-
ous studies using counter-streaming performed by Alves
et al. (2012) [2], the structure of KKHI of our jet-sheath
configuration is slightly different even for the global evo-
lution of the strong transverse magnetic field. We find
that the major components of growing modes areEz and
By. After the By component is excited, the induced elec-
tric field Ex becomes larger. However, other components
are very small. We find that the structure and growth rate
with electron KKHI with the cases to the real mass ration
mi/me = 1836 andmi/me = 20 are similar. In our simu-
lations with jet-sheath case no saturation at the later time
is seen as in the counter-streaming cases. This difference
seems come from that fact that the jet is highly relativis-
tic and our simulation is done in jet-sheath configuration.
The growth rate with mildly-relativistic jet case (γj = 1.5)
is larger than the relativistic jet case (γj = 15).

We have extended the analysis presented in [8] to core-
sheath electron-proton plasma flows allowing for differ-
ent core and sheath electron densitiesnjt andnam, respec-
tively, and core and sheath electron velocitiesvjt andvam,
respectively. In this analysis the protons are considered
to be free-streaming whereas the electron fluid quantities
and fields are linearly perturbed. We consider electrostatic
modes along the jet. The dispersion relation becomes:

(k2c2 + γ2
amω

2
p,am− ω

2)1/2(ω − kVam)2

×[(ω − kVjt)2 − ω2
p,jt ]

+(k2c2 + γ2
jtω

2
p,jt − ω

2)1/2(ω − kVjt)
2

×[(ω − kVam)2 − ω2
p,am] = 0, (1)

whereωp,jt andωp,am are the plasma frequencies (ω2
p ≡

4πne2/γ3me) of jet and ambient electrons, respectively,
k = kx is the wave number parallel to the jet flow, and
γjt andγam are Lorentz factors of jet and ambient elec-
trons, respectively. Some analytical and numerical results
are described in the previous reports [33, 34].

We have calculated, self-consistently, the radiation
from electrons accelerated in the turbulent magnetic fields
in the relativistic shocks. We found that the synthetic spec-
tra depend on the Lorentz factor of the jet, the jet’s thermal
temperature, and the strength of the generated magnetic
fields [31, 32]. In forthcoming work we will obtain syn-
thetic spectra from particles accelerated by KKHI as we
have done for shock simulations [31, 32].

The initial simulation results with recollimation
shocks encourage us to more simulations and prepare next
steps to calculate emission and calculate particle acceler-
ation using relativistic Monte Carlo based on the realistic
recollimation shock structures [19, 20].
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