
Clemson University
TigerPrints

Publications Physics and Astronomy

9-2012

Highly Efficient and Exact Method for
Parallelization of Grid-Based Algorithms and its
Implementation in DelPhi
Chuan Li
Clemson University

Lin Li
Clemson University

Jie Zhang
Clemson University

Emil Alexov
Clemson University, ealexov@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/physastro_pubs

Part of the Biological and Chemical Physics Commons

This Article is brought to you for free and open access by the Physics and Astronomy at TigerPrints. It has been accepted for inclusion in Publications
by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Please use publisher's recommended citation.

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro_pubs?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro_pubs?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/196?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Highly efficient and exact method for parallelization of grid-
based algorithms and its implementation in DelPhi

Chuan Li1, Lin Li1, Jie Zhang1,2, and Emil Alexov1,*

1Computational Biophysics and Bioinformatics, Physics Department, Clemson University,
Clemson, SC 29642
2Department of Computer Science, Clemson University, Clemson, SC 29642

Abstract
The Gauss-Seidel method is a standard iterative numerical method widely used to solve a system
of equations and, in general, is more efficient comparing to other iterative methods, such as the
Jacobi method. However, standard implementation of the Gauss-Seidel method restricts its
utilization in parallel computing due to its requirement of using updated neighboring values (i.e.,
in current iteration) as soon as they are available. Here we report an efficient and exact (not
requiring assumptions) method to parallelize iterations and to reduce the computational time as a
linear/nearly linear function of the number of CPUs. In contrast to other existing solutions, our
method does not require any assumptions and is equally applicable for solving linear and
nonlinear equations. This approach is implemented in the DelPhi program, which is a finite
difference Poisson-Boltzmann equation solver to model electrostatics in molecular biology. This
development makes the iterative procedure on obtaining the electrostatic potential distribution in
the parallelized DelPhi several folds faster than that in the serial code. Further we demonstrate the
advantages of the new parallelized DelPhi by computing the electrostatic potential and the
corresponding energies of large supramolecular structures.

Keywords
electrostatics; DelPhi; Poisson- Boltzmann equation; Gauss-Seidel iteration; parallel computing

Introduction
The ability to calculate electrostatic forces and energies is critical in modeling biological
molecules and nano objects immersed in water and salt phase or another medium due to the
fact that biological macromolecules are comprised of charged atoms. Their interactions and
interactions with water and salt contribute to the structure, function and interactions of bio-
molecules. At the same time, modeling the electrostatic potential of biological macro-
molecules is not trivial, and in a continuum case, requires solving the Poisson-Boltzmann
equation (PBE) 1

(1)

which is a second order nonlinear elliptic partial differential equation (PDE) discussed
extensively in Ref. 2. Here φ(x) is the electrostatic potential, ε(x) is the spatial dielectric

*corresponding author: Emil Alexov (864) 656-5307, ealexov@clemson.edu.

NIH Public Access
Author Manuscript
J Comput Chem. Author manuscript; available in PMC 2013 September 15.

Published in final edited form as:
J Comput Chem. 2012 September 15; 33(24): 1960–1966. doi:10.1002/jcc.23033.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

function, κ(x) is a modified Debye-Huckel parameter, and ρ(x) is the charge distribution
function.

The PBE does not have analytical solutions for irregularly shaped objects, and because of
that, the solution must be obtained numerically. Numerous PBE solvers (PBES) have been
designed and developed independently to utilize various mathematical methods to solve the
PBE numerically. A short list includes AMBER 3–6, CHARMM 7, ZAP 8, MEAD 9,
UHBD 10, AFMPB 11, MIBPB 12,13, ACG-based PBE solver 14, Jaguar 15, APBS 16,17 and
DelPhi 1,18. Among these PBES, three popular implementations deserve specific attention in
the light of current work. The APBS is a popular multigrid finite-difference and adaptive
finite element PBE solver developed by Dr. N. Baker and his colleagues and is aimed at
providing force estimates and modeling large biomolecules and assemblages and pKa
calculations. Another popular PB solver is MIBPB12,13,19–22, developed by Dr. G-W. Wei
and coworkers which utilizes interface technique to assure potential and flux continuity at
the interface biomolecule and solvent. Due to this and Krylov subspace technique12,19–22

implementation, the MIBPB was demonstrated to be very robust PBE solver achieving
second-order convergence for solving linear PBE13. The third popular solver is DelPhi,
developed in Dr. B. Honig’s lab 1,18, which adopts the Gauss-Seidel (GS) method, combined
with the successive over-relaxation (SOR) method which estimates the best relaxation
parameter at run time 23 to solve both linear and nonlinear PBEs. DelPhi has many unique
features, such as abilities of modeling geometric objects (spheres, parallelepipeds, cones and
cylinders) and assigning multiple dielectric regions and charge distributions, and capabilities
of allowing users to specify different types of salts and boundary conditions, as well as
various output maps.

However, existing methods implemented in serial PBES are only suitable for electrostatic
calculations of relatively small bio-molecular systems due to time constraints. Nowadays,
problems arising from computational biology are complex and usually of nano scale
resulting in systems consisting of large amounts of charged atoms and tens of thousands of,
even millions, of mesh points. The size and complexity of these problems make
parallelization of current serial PBES highly desired to improve their performance to solve
the problems in reasonable time. For example, APBS was parallelized by a “parallel
focusing” method based on the (spatial) domain decomposition method, together with
standard focusing techniques. The results of parallel solution of the PBE for supramolecular
structures, such as microtubule and ribosome structures, are presented in Ref. 17. It should
be mentioned that the solution obtained by this parallel method may not be identical to that
obtained by the serial calculation, since, in order to perform calculations in parallel on
subsets of global mesh, additional values at boundaries of subsets must be, for instance,
interpolated from the solution on a much coarser mesh in the first place.

In contrast to the (spatial) domain decomposition approach implemented in APBS, this
paper reports a novel approach to parallelize the GS method and its application to create a
parallelized DelPhi. The implementation was facilitated due to the techniques already
implemented in the serial DelPhi, such as the “checkerboard” ordering (also known as the
“red-black” ordering 24) and contiguous memory mapping 1, to fulfill the GS method and
latter, the SOR method. In addition, the parallelization was possible because of the message
passing interface version 1.0 (MPI-1), which allows the high-performance message passing
operations available for the advance distributed-memory communication environment
supplied with parallel computers/clusters. Later on, MPI-2 was released to include new
features such as parallel I/O, dynamic process management and remote memory
operations 25. With the aid of powerful MPI libraries, we developed an efficient and exact
method to parallelize the serial DelPhi (from the algorithmic point of view) to achieve
linear/nearly-linear speedup of its performance without compromising the accuracy and

Li et al. Page 2

J Comput Chem. Author manuscript; available in PMC 2013 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

without introducing any assumptions. While the approach was implemented in DelPhi, the
very same parallelization technique can be translated and employed by other software to
implement/parallelize GS/SOR methods and other grid-based algorithms.

This paper is organized as follows: (a) the techniques of implementing GS/SOR methods
reported in Ref. 1 are described in the next section. Then, (b) parallel technique using MPI-2
remote memory operations is reported, and (c) implementation results and performance
analysis on two examples of large supramolecular structures are demonstrated.

Efficient Implementation Techniques of the GS Method
In this section, we briefly describe the numerical methods and the techniques implemented
in the serial DelPhi code. More details can be found in supporting information and original
papers 1,18,26.

Consider a three dimensional cubical domain Ω. We discretize Ω into L grids per side with
uniform grid size h. The total number of grid points is N = L * L * L. Let K0 (x0, y0, z0) be
an arbitrary grid point away from the boundary of Ω. Applying finite difference formulation
yields an iteration equation for eqn. (1):

(2)

where φ and q0 are the potential and charge assigned to K0, φi, i =1,…,6 are potentials at six
nearest neighboring grids of K0, and εi, i =1,…,6 are the dielectric constants (taking value εi
= εout outside the protein and εi =εin inside the protein), at midpoints of K0 and its nearest
neighbors (see supporting information for details). Eqn. (2) can be rewritten in matrix form
as

(3)

where T is the coefficient matrix, Φ and Q are column vectors.

Given appropriate boundary conditions at the edge of Ω and an initial guess for the potential
at each grid point (usually zero for convenience), we may solve eqn. (3) iteratively using
numerical methods such as Jacobi, GS or SOR methods. In the case of serial calculations,
the GS method is, in general, superior to the Jacobi method in the sense that it converges
faster than the Jacobi method. The gain of convergence rate comes from the fact that the GS
method uses latest updated potentials at neighboring points in current iteration, instead of
values obtained in the previous iteration as in the Jacobi method. However, without special
treatment, the requirement of using latest updated neighboring values makes the GS method
less favorable to parallel computing due to the fact that calculations at one point cannot start
prior to the completion of calculations at its neighbors. In order to efficiently parallelize the
GS method, an implementation technique, called the “checkerboard” ordering 1, which has
been implemented in serial DelPhi, will be discussed in the following section.

Li et al. Page 3

J Comput Chem. Author manuscript; available in PMC 2013 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

The “Checkerboard” Ordering
Solving eqn. (3) iteratively requires construct mapping to convert potentials and charges at
three dimensional grid points to column vectors Φ and Q. One common mapping,
alternating index in x-direction first, followed by indices in y- and z- direction, is given by

(4)

which maps the potential and charge at point P(x, y, z) to Φ(x) and Q(w), respectively.

The associated coefficient matrix T is determined by the order in which the grid points are
mapped. However, it has been pointed out in Ref. 27 that this mapping does not affect the
spectral radius of matrix T. That is, the convergence rate of the iteration method is
independent of the mapping order, which allows us to reorder the components of Φ and Q,
and reconstruct associated matrix T in desired fashion without losing the overall
convergence rate of the iteration method.

Another important observation on the grid-to-vector mapping is that each grid point P(x, y,
z) can be assigned as odd or even by the sum of its grid coordinates, sum = x + y + z 1. We
call P an even point if sum is even, and P an odd point if sum is odd. The six nearest
neighbors of P are of opposite nature, i.e., every even point is surrounded by odd points and
vice versa since the sums of their coordinates only differ by one. As shown in eqn. (2),
updating of the potential at any point only depends on the potentials at its six nearest
neighbors, we see that even is updated by surrounding odds, and odd is updated by
surrounding evens. Moreover, provided L an odd number, index w obtained by eqn. (4) is of
the same even/odd nature as sum which leads to the following reorganization of Φ and Q
simply by sum

(5)

where Φeven and Qeven are potentials and charges at even points, and Φodd and Qodd are
those at odd points. The corresponding coefficient matrix T is then of the form

(6)

such that Todd is the submatrix which updates Φeven with Φodd, and in turn, Teven updates
Φodd with newly obtained Φeven. Eqn. (3) is thereby equivalent to

(7)

Eqn. (7) allows the GS method to be implemented in Jacobi’s fashion and makes it suitable
for parallelization.

Contiguous Memory Mapping
Before we move to the next section introducing techniques on how to parallelize the GS
scheme effectively, one more implementation technique, namely contiguous memory
mapping, needs to be described.

Li et al. Page 4

J Comput Chem. Author manuscript; available in PMC 2013 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

It is noticed 1 that the performance of the “checkerboard” ordering implementing the GS
method is slowed down by using a logical operation (“IF” statement) in the most inner loop
of the algorithm in order to separate the process of updating Φ into odd and even cycles.
Considering a case such that Φ is composed of millions of points and the numerical
algorithm requires hundreds of iterations to converge, the cost of this logical operation is
unaffordable. Therefore, it was suggested in Ref. 1 that the best way to efficiently code the
ordering is to map the odd and even points separately into two contiguous memory/arrays,
i.e., Φodd and Φeven. This leads to a more complex coding of the algorithm but avoids
branching the inner loop 1.

Discussions of Parallelization Techniques and Parallel Algorithm
After implementing the techniques described above, parallelizing eqn. (7) of the GS method
is conceptually straightforward: Provided Ncpu processes or computing units (CPUs) at our
disposal, we divide Φodd and Φeven evenly into Ncpu segments. Each pair of segments of
Φodd and Φeven is given to one CPU for updating. In order to reproduce values obtained
from serial calculations without imposing additional boundary conditions, additional
memory is allocated to synchronize values near both ends of the segments. Synchronization
takes place right after the segments of Φodd and Φeven are updated locally.

Implementing the above idea effectively requires network communication to be reduced. An
efficient algorithm must minimize the ratio between the amount of data to be synchronized
and the amount of data to be computed locally per CPU, i.e. the CPU must spend more time
computing than communicating.

Details of the Parallelization
Notice Φ is of the length L3 and therefore, segments of Φodd and Φeven to be updated locally
per CPU are of the same length L3 / (2NCPU). Let p0 (x0, y0, z0) be an even point and the

potential at p0 is mapped to Φeven(w0) with , the potentials at
six nearest neighbors of p0 are then mapped to six entries of Φodd shown in the second
column of Table 1. Similarly, when p0 is odd and the potential at p0 is mapped to Φodd (w0)

with , the potentials at its six neighbors are shown in the third
column of Table 1.

We can see from Table 1 that, on each CPU, at most elements near the
ends of segments of Φodd and Φeven are required to be synchronized in iterations. Therefore,
the ratio of the number of elements to be exchanged and the number of elements to be
calculated locally is

(8)

Eqn. (8) provides an insight to the speedup, efficiency and scalability of the parallel
algorithm. For example, small r (r≪1, or equivalently, NCPU ≪ L) indicates that
communication cost in the parallel computation contributes only a minor portion of the
overhead, assuming cost of network communication is comparable to that of CPU floating
point calculations. In such cases, linear speedup of the parallel computing is very likely to be
achieved.

Li et al. Page 5

J Comput Chem. Author manuscript; available in PMC 2013 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Many other factors may affect the performance of the parallelized code. In particular,
appropriate MPI communication operations must be chosen carefully to avoid unwanted
delays due to queue in synchronization. Synchronization across all processors can be
achieved by either blocking or non-blocking operations provided by MPI. Blocking
operations require the sender to wait for receiving the confirmation from the receiver before
the sender can process to the next operation. In our case, one processor needs to exchange
boundary values with both neighboring processors on its left and right sides. If blocking
operations are chosen to use, in the worst scenario, processor 2 needs to talk to processor 1
and wait for response from processor 1 before it can talk to processor 3, and so on. In this
case, a communication queue is created and the last processor communicates the last. It is
obviously not efficient. Therefore, non-blocking operations are more favorable for this
application. Moreover, since the computer cluster is equipped with Myrinet, on which one-
sided operations have potentials to perform better than two-sided operations, one-sided
direct memory access operations were used in this method.

MPI-2 library provides two communication models: two-sided communication based on
blocking/non-blocking send and receive operations and one-sided communication allowing
direct remote memory access (DRMA) of a remote process 28. Two-sided communication
requires actions on both sides of sender and receiver. In contrast, one-sided communication
specifies communication parameters only on the “requester” side (called the origin process)
and leaves the “host” (called the target process) alone without interrupting its on-going work
during communication. One-sided communication requires additional operations to create an
area of memory (call a “window”) in the target process for the origin process to access prior
to communication takes place.

One-sided communication fits in our requirements very well. It is more convenient to use,
and has the potential to perform better on the networks like InfiniBand and Myrinet, where
one-sided communication is supported natively 29. One-side communication requires
explicit synchronization to ensure the completion of communication. Three synchronization
mechanisms are provided in MPI-2 30: the fence synchronization, the lock/unlock
synchronization and the post-start-complete-wait synchronization. Among these three
synchronization mechanisms, the scope of the post-start-complete-wait synchronization can
be restricted to only a pair of communicating, which makes it the best candidate in our
scenario: synchronizations between two successive processes take place at almost the same
time, and moreover, provided the problem size is fixed (see eqn. (8)), the amount of data to
be exchanged between two processes is of the same no matter how many processes are
allocated.

Parallel Algorithm
In the light of above results and discussions, we followed the Master-Slaves paradigm and
developed an efficient and exact algorithm to parallelize the iterations in the GS method
using MPI-2 one-sided DRMA operations. It is shown in Table 2.

Implementation Results and Conclusions
Analyzing the performance of parallel programs requires background in parallel computing.
For readers who are not familiar with parallel computing, it is suggested to refer to the
supporting information for some commonly used quantities, such as speedup and efficiency,
as well as some important theoretical results, for performance analysis of parallel
algorithms.

The numerical experiments reported in this section were done with parallelized DelPhi
(version 5.1, written in FORTRAN95) and performed on two types of computer nodes of the

Li et al. Page 6

J Comput Chem. Author manuscript; available in PMC 2013 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Palmetto cluster at Clemson University 31: (I) Computer node 1112-1541 of Sun X6250
with Intel Xeon L5420 @ 2.5 GHz x2 processors, 8 cores, 6 MB L2 cache, and 32 GB
memory; (II) Computer node 1553-1622 of HP DL 165 G7 with AMD Opteron 6172 @ 2.1
GHz x2 processors, 24 cores, 12 MB L2 cache, and 48 GB memory. 10 GB Myrinet
network is equipped on the Palmetto cluster. All experiments, except those of serial
nonlinear implementations which require more than 30 GB memory, were performed on the
first set of nodes for consistency. Each identical experiment was repeated 5 times and the
average is reported here to reduce random fluctuations caused by system workload and
network traffic in real time.

All calculations used the same Amber force field. Scale = 2.0 and 70% percentage filling of
the box domain were set in the parameter file resulting in the dimensions of the box domain
≈ 407 Å× 407 Å × 407 Å and 815 × 815 × 815 mesh points in total.

The first series of experiments, requiring solving linear and nonlinear PB equations, were
performed on a fraction of the protein of human adenovirus 1VSZ downloaded from the
Protein Data Bank (PDB) 32 and protonated by TINKER 33. The CPU time achieved by
solving the linear and nonlinear PBE as a function of increasing number of processors is
shown in Figure 2(a) with vertical bars indicating variations of 5 runs. To compare their
performance, log-scale plots of speedup and efficiency are shown in Figure 2(b). The
resulting potential and electrostatic field are plotted by VMD 34 and demonstrated in Figure
2(c)–(d).

The next series of experiments were performed on the protein of adeno-associated virus
3KIC, which has significantly more atoms (≈ 484,500 atoms in a pdb file of size 25.4 MB)
than those of 1VSZ (≈180,574 atoms in a pdb file of size 9.5 MB). The results are presented
in Figure 3(a)–(d).

It should be emphasized that the reported parallelization and its implementation in DelPhi
are exact. No approximations were made. This is demonstrated by the fact that the
calculated potentials and energies are identical for serial and parallelized DelPhi (see
supporting information). The importance of achieving exact solution stems from the fact that
in many biologically relevant cases the potential and energy differences are of order of
several kT/e or kT units or even less. Any assumption may induce an error larger than that,
especially if computing large size systems, and thus to obscure the outcome.

It was shown that the parallelization drastically improves the speed of calculations,
especially in case of solving non-linear PBE. The case of 1VSZ was purposely included in
the testing, although the structure represents only part of the capsid, simply to illustrate a
case of highly charged entity with very irregular (different from sphere) shape. This
particular case, at the limits of our testing, utilizing 100 CPUs resulted in speed up of 63 for
solving non-linear PBE. This illustrates that problems requiring heavy computations will
benefit from parallelization substantially. Eqn. (8) provides an efficient formula to estimate
the conditions at which the parallel algorithm will be outperforming the serial one.
Obviously the cases involving large systems made of protein complexes will be the primary
choice of investigation with the parallel DelPhi. In another words, the speedup of the
parallel algorithm will depend on the ratio of the CPU time and communication time, as
indicated by Eqn. (8). With decrease of the size of the system, as small biomolecules with
small mesh, the CPU time will decrease, making the coefficient “r” in Eqn. (8) larger and
reducing the efficiency of the algorithm. Because of that, calculations involving small
biomolecules are not expected to take advantage of this approach.

Analysis of Figure 2(b) and 3(b) reveals another important aspect of parallelization in case
of solving non-linear PB. The speedup is almost linear when running on a small number of

Li et al. Page 7

J Comput Chem. Author manuscript; available in PMC 2013 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

processors. It keeps increasing with the increase of processors (up to 100 processors in our
test) and even shows potential to increase further since its curve has not reached its peak and
flattened out, as pointed out in the Amdahl’s law (introduced in supporting information).
The best result we obtained is a speedup of 63 when running on 100 processors to solve the
nonlinear PBE for 1VSZ. At the same time, the efficiency decreases slowly when the
number of employed processors increases for solving both linear and nonlinear PBE (Figure
2(b) and 3(b)). This observation confirms our previous discussion and reflects the ratio
outlined in Eqn. (8). However, one can see that the new parallel method maintains better
efficiency when solving nonlinear PBE, because more computations are involved comparing
with solving linear PBE. Moreover, Figure 2(b) shows that “super-linear” speedup is
achieved when solving nonlinear PBE for 1VSZ on less than 15 processors (see the
beginning of the graph when only a few processors are involved in the calculations). It is
another indication of the high efficiency of the algorithm.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank Shawn Witham for reading the manuscript prior to submission. This work is supported by a grant from
NIGMS, NIH with grant number R01 GM093937.

References
1. Nicholls A, Honig B. Journal of computational chemistry. 1991; 12(4):435–445.

2. Gilson MK, Rashin A, Fine R, Honig B. Journal of molecular biology. 1985; 184(3):503–516.
[PubMed: 4046024]

3. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C,
Wang B, Woods RJ. Journal of computational chemistry. 2005; 26(16):1668–1688. [PubMed:
16200636]

4. Luo R, David L, Gilson MK. Journal of computational chemistry. 2002; 23(13):1244–1253.
[PubMed: 12210150]

5. Hsieh MJ, Luo R. Proteins: Structure, Function, and Bioinformatics. 2004; 56(3):475–486.

6. Tan C, Yang L, Luo R. The Journal of Physical Chemistry B. 2006; 110(37):18680–18687.
[PubMed: 16970499]

7. Brooks BR, Brooks C III, Mackerell A Jr, Nilsson L, Petrella R, Roux B, Won Y, Archontis G,
Bartels C, Boresch S. Journal of computational chemistry. 2009; 30(10):1545–1614. [PubMed:
19444816]

8. Grant JA, Pickup BT, Nicholls A. Journal of computational chemistry. 2001; 22(6):608–640.

9. Bashford, D. In Lecture Notes in Computer Science. Ishikawa, Y.; Oldehoeft, R.; Reynders, J.;
Tholburn, M., editors. Springer; Berlin / Heidelberg: 1997. p. 233-240.

10. Davis ME, McCammon JA. Journal of computational chemistry. 1989; 10(3):386–391.

11. Lu B, Cheng X, Huang J, McCammon JA. Journal of Chemical Theory and Computation. 2009;
5(6):1692–1699. [PubMed: 19517026]

12. Yu S, Wei G. Journal of Computational Physics. 2007; 227(1):602–632.

13. Chen D, Chen Z, Chen C, Geng W, Wei GW. Journal of computational chemistry. 2011; 32(4):
756–770. [PubMed: 20845420]

14. Boschitsch AH, Fenley MO, Zhou HX. The Journal of Physical Chemistry B. 2002; 106(10):2741–
2754.

15. Cortis CM, Friesner RA. Journal of computational chemistry. 1997; 18(13):1591–1608.

16. Holst M, Baker N, Wang F. Journal of computational chemistry. 2000; 21(15):1319–1342.

Li et al. Page 8

J Comput Chem. Author manuscript; available in PMC 2013 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

17. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Proceedings of the National Academy of
Sciences. 2001; 98(18):10037.

18. Klapper I, Hagstrom R, Fine R, Sharp K, Honig B. Proteins: Structure, Function, and
Bioinformatics. 1986; 1(1):47–59.

19. Zhao S, Wei G. Journal of Computational Physics. 2004; 200(1):60–103.

20. Zhou Y, Zhao S, Feig M, Wei G. Journal of Computational Physics. 2006; 213(1):1–30.

21. Zhou Y, Wei G. Journal of Computational Physics. 2006; 219(1):228–246.

22. Yu S, Zhou Y, Wei G. Journal of Computational Physics. 2007; 224(2):729–756.

23. Sridharan S, Nicholls A, Honig B. Biophys J. 1992; 61:A174.

24. Demmel, JW. Demmel. ASV; 1999. p. 419xi+

25. Gropp, W.; Lusk, E.; Thakur, R. MIT Press; Cambridge, MA, USA: 1999.

26. Jayaram B, Sharp KA, Honig B. Biopolymers. 1989; 28(5):975–993. [PubMed: 2742988]

27. Bulirsch, R.; Stoer, J. Introduction to Numerical Analysis. Springer-Verlag; New York: 1980.

28. Geist, A.; Gropp, W.; Huss-Lederman, S.; Lumsdaine, A.; Lusk, E.; Saphir, W.; Skjellum, T.; Snir,
M. In Lecture Notes in Computer Science. Bouge, L.; Fraigniaud, P.; Mignotte, A.; Robert, Y.,
editors. Springer; Berlin / Heidelberg: 1996. p. 128-135.

29. Thakur R, Gropp W, Toonen B. International Journal of High Performance Computing
Applications. 2005; 19(2):119.

30. Barrett, B.; Shipman, G.; Lumsdaine, A. Recent Advances in Parallel Virtual Machine and
Message Passing Interface. 2007. p. 242-250.

31. Galen, C. Palmetto Cluster User Guide. http://desktop2petascale.org/resources/159

32. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O,
Shimanouchi T, Tasumi M. European Journal of Biochemistry. 1977; 80(2):319–324. [PubMed:
923582]

33. Ponder J, Richards F. J Comput Chem. 1987; 8:1016–1024.

34. Humphrey W, Dalke A, Schulten K. Journal of molecular graphics. 1996; 14(1):33–38. [PubMed:
8744570]

Li et al. Page 9

J Comput Chem. Author manuscript; available in PMC 2013 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://desktop2petascale.org/resources/159

Figure 1.
Graphical demonstration of an algorithm for parallelizing the iterations in the GS/SOR
method uisng MPI-2 DRMA operations. (a) The “checkerboard” ordering. (b) Contiguous
memory mapping. (c) Distribution of Φeven and Φodd to multiple CPUs. (d) DRMA to the
previous CPU.

Li et al. Page 10

J Comput Chem. Author manuscript; available in PMC 2013 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
Performance results and electrostatic properties of 1VSZ. (a) Execution (purple) and
iteration (red) time for solving the linear PBE, compared to execution (orange) and iteration
(blue) time for solving the nonlinear PBE. (b) Speedup (red) and efficiency (purple)
achieved by solving the linear PBE, compared to speedup (blue) and efficiency (orange)
obtained by solving the nonlinear PBE. (c) Resulting electrostatic field. (d) Resulting
electrostatic potential.

Li et al. Page 11

J Comput Chem. Author manuscript; available in PMC 2013 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
Performance results and electrostatic properties of 3KIC. (a) Execution (purple) and
iteration (red) time for solving the linear PBE, compared to execution (orange) and iteration
(blue) time for solving the nonlinear PBE. (b) Speedup (red) and efficiency (purple)
achieved by solving the linear PBE, compared to speedup (blue) and efficiency (orange)
obtained by solving the nonlinear PBE. (c) Resulting electrostatic field. (d) Resulting
electrostatic potential.

Li et al. Page 12

J Comput Chem. Author manuscript; available in PMC 2013 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li et al. Page 13

Table 1

Potentials at six nearest neighbor points of p0 in Φodd and Φeven

Neighboring points of p0(x0, y0, z0) Entries of Φodd when p0 is even Entries of Φeven when p0 is odd

p1(x0 − 1, y0, z0) Φodd(w0 − 1) Φeven(w0)

p2(x0 + 1, y0, z0) Φodd(w0) Φeven(w0+1)

p3(x0, y0 − 1, z0)

p4(x0, y0 + 1, z0)

p5(x0, y0, z0 − 1)

p6(x0, y0, z0 + 1)

J Comput Chem. Author manuscript; available in PMC 2013 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li et al. Page 14

Table 2

An algorithm for parallelizing iterations in the GS method using MPI-2 DRMA operations

• Step 1: The master CPU assigns three dimensional points as even and odd according to the sum of its coordinates. An arbitrary grid
point p(x, y, z) and its six nearest neighbors are shaded and shown in Figure 1(a). The master CPU maintains Qeven, Qodd, Φeven and
Φodd. Relative positions of p in Φeven and its neighbors in Φodd are demonstrated in Figure 1(b). Qeven, Qodd, Φeven and Φodd are then
divided evenly and distributed to every slave CPU.

• Step 2: Each slave CPU allocates contiguous memory for segments of Qeven and Qodd of length L3 / (2NCPU), and segments of Φeven

and Φodd of length L3 / (2NCPU) + L2. In Φeven and Φodd, the first and last L2 / 2 elements (unshaded regions in Figure 1(c)) are for
receiving updated potentials on the previous and next CPUs, and, in between (shaded regions in Figure 1(c)), L3 / (2NCPU)
potentials are updated locally on this CPU. The colored regions in Figure 1(c) indicate where synchronization takes place.

• Step 3: The first (Ncpu − 1) slave CPUs create two windows, win1 and win2, of size L2 at the right end of Φeven and Φodd by
MPI_WIN_CREATE (shown in Figure 1(d)).

• Step 4: Slave CPU(i) opens window win2 using MPI_WIN_POST. CPU(i+1) starts request of DRMA using MPI_WIN_START,
copies L2 /2 elements in the shaded red region of Φodd to the unshaded red region of Φodd on CPU(i) by MPI_PUT, brings another
L2 /2 elements in the shaded blue region of Φodd on CPU(i) back to the unshaded blue region of Φodd on CPU(i+1) by MPI_READ,
and completes the request by MPI_WIN_COMPLETE. The whole access epoch is completed after CPU(i) calls MPI_WIN_WAIT,
as shown in Figure 1(d).

• Step 5: Each slave CPU updates the elements of Φeven in the shaded region one by one using eqn. (2), or more efficiency method
described in 1.

• Step 6: Follow the same procedures in Step 4–5 to update Φodd using updated Φeven.

• Step 7: Repeat Step 4–6 until pre-defined tolerance or the maximal number of iterations is achieved. The computed results are sent
back to the master CPU for reassembling.

J Comput Chem. Author manuscript; available in PMC 2013 September 15.

	Clemson University
	TigerPrints
	9-2012

	Highly Efficient and Exact Method for Parallelization of Grid-Based Algorithms and its Implementation in DelPhi
	Chuan Li
	Lin Li
	Jie Zhang
	Emil Alexov
	Recommended Citation

	tmp.1423507899.pdf.dq97y

