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Abstract
Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and
Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order
are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/
IRa boundary that duplicates a portion of the 5′ end of ndhH is restricted to the three genera of the
subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by
Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the
subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19–37 direct and inverted repeats
30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found
in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer
(IGS) regions. Examination of simple sequence repeats (SSRs) identified 16–21 potential
polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum
officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa,
Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship.
Alignment of EST sequences and DNA coding sequences identified six C–U conversions in both
Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA
sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood
methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and
Pooideae.

Introduction
Chloroplasts are the most noticeable feature of green cells in leaves and, excluding the vacuole,
probably constitute the largest compartment within mesophyll cells (Lopez-Juez and Pyke
2005). Plastids are multifunctional and are used by the plant for critical biochemical processes
other than photosynthesis, including starch synthesis, nitrogen metabolism, sulfate reduction,
fatty acid synthesis, DNA and RNA synthesis (Zeltz et al. 1993). The chloroplast genome
generally has a highly conserved organization (Palmer 1991; Raubeson and Jansen 2005) with
most land plant genomes composed of a single circular chromosome with a quadripartite
structure that includes two copies of an inverted repeat (IR) that separate the large and small
single copy regions (LSC and SSC). The size of this circular genome varies from 35 to 2,217
kb but among photosynthetic organisms the majority are between 115 and 165 kb (Jansen et
al. 2005).

Our knowledge of the organization and evolution of chloroplast genomes has been expanding
rapidly because of the large numbers of completely sequenced genomes published in the past
decade. The use of information from chloroplast genomes is well established in the study of
the evolutionary patterns and processes in plants (Avise 1994; Raubeson and Jansen 2005).
Genetic markers derived from organelle genomes generally show simple, uniparental modes
of inheritance, which makes them invaluable for the purposes of population genetic and
phylogenetic studies (Bryan et al. 1999; Provan et al. 2001) and this feature also facilitates
transgene containment (Daniell 2002).

Sorghum, with 25 species, is a member of the family Poaceae and tribe Andropogoneae (Garber
1950). Recent molecular phylogenetic analyses indicated that the genus may be paraphyletic
(Spangler et al. 1999), and that it is comprised of three distinct lineages, Sorghum, Sarga and
Vacoparis (Spangler 2003). The genus Sorghum was redefined to include three species,
Sorghum bicolor, Sorghum halepense, and Sorghum nitidum. Sorghum bicolor, grain sorghum,
is the third most important cereal crop in the United States and the fifth most important crop
in the world (Crop Plant Resources 2000). Sorghum is well known for its capacity to tolerate
conditions of limited moisture and to produce during periods of extended drought, in
circumstances that would impede production in most other grains (Crop Plant Resources
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2000). Sorghum is used for human nutrition and feed grain for livestock throughout the world
(Carter et al. 1989). A more recent use of Sorghum is the production of ethanol, with one bushel
producing the same amount of ethanol as one bushel of corn (National Sorghum Producers
2006). Some Sorghum varieties are rich in anti-oxidants and all varieties are gluten-free, an
attractive alternative for those allergic to Triticum aestivum (US Grains Council 2006).

Of the various cereals, Hordeum vulgare L. (barley) is a major food, feed and malt crop. In
2005, H. vulgare ranked fourth in quantity produced and in area of cultivation of cereal crops
in the world (http://faostat.fao.org/faostat/) demonstrating its broad consumption and wide
adoption in a variety of climates, from sub-arctic to sub-tropical. According to the USDA/
NASS, H. vulgare is the third major feed grain crop produced in the United States, after Zea
mays (maize) and Sorghum bicolor. Production is concentrated in the Northern Plains and the
Pacific Northwest. The United States is the eighth largest producer of H. vulgare in the world
with current production estimated at 4.9 million acres. It is a short-season, early maturing crop
grown on both irrigated and dry land production areas in the United States. Whole grain H.
vulgare contains high levels of minerals and important vitamins, including calcium,
magnesium, phosphorus, potassium, vitamin A, vitamin E, niacin and folate.

Among the non-food grasses, Agrostis stolonifera L. (creeping bentgrass) has attracted great
attention in both academia and the biotech industry due to its social and economic importance.
A. stolonifera is a wind-pollinated, highly outcrossing perennial grass used on golf courses
worldwide. It can also enhance the natural beauty of the environment and increase the value
of residential and commercial property, and provide many environmental benefits including
preventing soil erosion, filtering water and trapping dust and pollutants (Bonos et al. 2006). It
has been extensively used, covering millions of acres globally making it an economically
valuable grass crop. Due to its aforementioned importance, transgenic A. stolonifera was
produced conferring the herbicide resistance trait by engineering the CP4 EPSPS gene, which
is one of the first transgenic, perennial, wind-pollinated crops intending to be grown outside
of agricultural fields (i.e., on golf courses). Unfortunately, pollen-mediated transgene flow has
been reported in several studies (Wipff and Fricker 2001; Watrud et al. 2004; Reichman et al.
2006) limiting its commercialization and demonstrating the requirement of effective
containment strategies to protect the environment and to engineer this plant with
environmentally friendly approaches like chloroplast engineering or cytoplasmic male sterility.

The agronomic, economic and/or social importance of H. vulgare, Sorghum bicolor and A.
stolonifera has made them the focus of numerous studies attempting to improve these crop
species. Much of this work has been restricted to investigations of nuclear genomes of these
species (USDA 2006, Cheng et al. 2004). This has resulted in very limited information on the
organization and evolution of chloroplast genomes of H. vulgare, Sorghum bicolor and A.
stolonifera. Therefore, the current study could enhance our understanding of the chloroplast
genome organization of grasses facilitating the improvement of those crops by chloroplast
genetic engineering. The plastid transformation approach has been shown to have a number of
advantages, most notably with regard to its high transgene expression levels (De Cosa et al.
2001), capacity for multi-gene engineering in a single transformation event (De Cosa et al.
2001; Lossl et al. 2003; Ruiz et al. 2003; Quesada-Vargas et al. 2005; Daniell and Dhingra
2002), and ability to accomplish transgene containment via maternal inheritance (Daniell
2002). Moreover, chloroplasts appear to be an ideal compartment for the accumulation of
certain proteins, or their biosynthetic products, which would be harmful if they accumulated
in the cytoplasm (Daniell et al. 2001; Lee et al. 2003; Leelavathi and Reddy 2003; Ruiz and
Daniell 2005). In addition, no gene silencing has been observed in association with this
technique, whether at the transcriptional or translational level (De Cosa et al. 2001; Lee et al.
2003; Dhingra et al. 2004). Because of these advantages, the chloroplast genome has been
engineered to confer several useful agronomic traits, including herbicide resistance (Daniell
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et al. 1998), insect resistance (McBride et al. 1995; Kota et al. 1999), disease resistance
(DeGray et al. 2001), drought tolerance (Lee et al. 2003), salt tolerance (Kumar et al. 2004a),
and phytoremediation (Ruiz et al. 2003). The chloroplast genome has also been utilized in the
field of molecular farming, for the expression of biomaterials, human therapeutic proteins, and
vaccines for use in humans or other animals (Guda et al. 2000; Staub et al. 2000; Fernandez-
San et al. 2003; Leelavathi et al. 2003; Molina et al. 2004; Vitanen et al. 2004; Watson et al.
2004; Koya et al. 2005; Grevich and Daniell 2005; Daniell et al. 2005a, b; Kamarajugadda and
Daniell 2006; Chebolu and Daniell 2007; Arlen et al. 2007; Ruhlman et al. 2007; Daniell et al.
2004a, b).

In this article, we present the complete sequences of the chloroplast genomes of H. vulgare,
Sorghum bicolor and A. stolonifera. One goal is to compare the genome organization of H.
vulgare, Sorghum bicolor and A. stolonifera with six other completely sequenced grass
chloroplast genomes; Oryza sativa, O. nivara, Saccharum hybrid, Saccharum officinarum, T.
aestivum, and Z. mays. In addition to examining gene content and gene order, we determined
the distribution and location of repeated sequences among these genomes, including potential
microsatellite markers. A second goal is to compare levels of DNA sequence divergence of
non-coding regions. Intergenic spacer (IGS) regions have been examined to identify ideal
insertion sites for transgene integration, and to assess the utility of these regions for resolving
phylogenetic relationships among closely related species (Kelchner 2002; Shaw et al. 2005,
2007; Saski et al. 2005; Daniell et al. 2006; Timme et al. 2007). A third goal of this paper is
to examine the extent of RNA editing in the H. vulgare, Sorghum bicolor and A. stolonifera
chloroplast genomes by comparing the DNA sequences with available expressed sequence tag
(EST) sequences. RNA editing is a co- or post-transcriptional process that occurs in organelles
and changes the coding information in mRNAs (Kugita et al. 2003; Wolf et al. 2004; Peeters
and Hanson 2002). Most of our knowledge about the frequency of this process in crop plants
comes from studies in Z. mays (Maier et al. 1995) and Nicotiana tabacum (Hirose et al.
1999), and additional comparative studies are needed in other plant species to understand the
extent of RNA editing in chloroplast genomes. A final goal is to assess phylogenetic
relationships between H. vulgare, Sorghum bicolor, A. stolonifera and other completely
sequenced angiosperm chloroplast genomes.

Materials and methods
DNA sources

Bacterial artificial chromosome (BAC) libraries of H. vulgare cv Morex and Sorghum
bicolor cv BTX623 were constructed by ligating size fractionated partial HindIII digests of
total cellular, high molecular weight DNA with the pINDIGOBAC536 vector. The average
insert size of H. vulgare (HV_MBa) and Sorghum bicolor (SB_BBc) libraries was 106 and
120 kb, respectively. BAC related resources for these public libraries can be obtained from the
Clemson University Genomics Institute BAC/EST Resource Center
(www.genome.clemson.edu).

Bacterial artificial chromosome clones containing chloroplast genome inserts were isolated by
screening the library with a soybean chloroplast DNA probe. The first 96 positive clones from
screening were pulled from the library, arrayed in a 96 well microtitre plate, copied and
archived. Selected clones were then subjected to HindIII fingerprinting and NotI digests. End-
sequences were determined and localized on the chloroplast genome of Arabidopsis thaliana
to deduce the relative positions of the clones; then clones that covered the entire chloroplast
genomes of H. vulgare and Sorghum bicolor were chosen for sequencing.

Saski et al. Page 4

Theor Appl Genet. Author manuscript; available in PMC 2009 April 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Preparation of intact chloroplasts and rolling circle amplification
The A. stolonifera L. cultivar Penn A-4 was supplied by HybriGene, Inc. (Hubbard, OR, USA).
Prior to chloroplast isolation, plants were kept in dark for 2 days to reduce levels of starch.
Chloroplasts from young leaves were isolated using the sucrose step gradient method of Palmer
(1986) as modified by Jansen et al. (2005). About 10 g of leaf tissue was homogenized in
Sandbrink isolation buffer using pre-chilled tissue blender bursts at high speed for 5 s to get
sufficient quantities of chloroplasts. The homogenate was filtered using four layers of
cheesecloth and one layer of miracloth (Calbiochem, catalog number 474855) without
squeezing. The filtrate was transferred to pre-chilled centrifuge tubes and centrifuged at 1,000
g for 15 min at 4°C. Pellets were resuspended in 7 ml of ice-cold wash buffer and gently loaded
over the step gradient consisting of 18 ml of 52% sucrose, over-layered with 7 ml of 30%
sucrose. The sucrose step gradient was centrifuged at 25,000 rpm for 30–60 min at 4°C in a
SW-27 rotor (Beckman). The chloroplast band from the 30–52% interface was removed using
a wide bore pipette, diluted with ten volumes wash buffer, and centrifuged at 1,500 g for 15
min at 4°C. Purified chloroplast pellets were resuspended in a final volume of 2 ml. The entire
chloroplast genome was amplified by Rolling Circle Amplification (RCA) using the Repli-g
RCA kit (Qiagen, Inc.) following the methods described in (Jansen et al. 2005). RCA was
performed at 30°C for 16 h; the reaction was terminated with final incubation at 65°C for 10
min. Digestion of the RCA product with the restriction enzymes BstXI, EcoRI and HindIII
verified successful genome amplification, as well as DNA quality for sequencing.

DNA sequencing and genome assembly
The nucleotide sequences of the BAC clones and RCA product were determined by the bridging
shotgun method. The purified BAC DNA or RCA product was subjected to hydroshearing,
end repair and then size-fractionated by agarose gel electrophoresis. Fractions of approximately
3.0–5.0 kb were eluted and ligated into the vector pBLUE-SCRIPT IIKS+. The libraries were
plated and arrayed into 40 96-well microtitre plates for the sequencing reactions.

Sequencing was performed using the Dye-terminator cycle sequencing kit (Perkin Elmer
Applied Biosystems, USA). Sequence data from the forward and reverse priming sites of the
shotgun clones were accumulated. Sequence data equivalent to eight times the size of the
genome was assembled using Phred-Phrap programs (Ewing et al. 1998).

Gene annotation
Annotation of the Sorghum bicolor, H. vulgare and A. stolonifera chloroplast genomes was
performed using DOGMA (Dual Organellar GenoMe Annotator, Wyman et al. 2004,
http://bugmaster.jgi-psf.org/dogma/). This program uses a FASTA-formatted input file of the
complete genomic sequences and identifies putative protein-coding genes by performing
BLASTX searches against a custom database of previously published chloroplast genomes.
The user must select putative start and stop codons for each protein-coding gene and intron
and exon boundaries for intron-containing genes. Both tRNAs and rRNAs are identified by
BLASTN searches against the same database of chloroplast genomes.

Molecular evolutionary comparisons
Comparisons of gene content and gene order—Gene content comparisons were
performed with Multipipmaker (Schwartz et al. 2003). Comparisons included nine genomes:
O. sativa (NC_001320, Hiratsuka et al. 1989), O. nivara (NC_005973, Shahid-Masood et al.
2004), Saccharum officinarum (NC_006084, Asano et al. 2004), Saccharum hybrid
(NC_005878, Calsa et al. unpublished), T. aestivum (NC_002762, Ogihara et al. 2000), Z.
mays (NC_001400, Maier et al. 1995), H. vulgare (NC_008590, current study), Sorghum
bicolor (NC_008602, current study) and A. stolonifera (NC_008591, current study) using O.
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sativa as the reference genome. Gene orders were examined by pair-wise comparisons between
the above genomes using PipMaker (Elnitski et al. 2002).

Examination of repeat structure—Shared and unique repeats were identified for H.
vulgare, Sorghum bicolor and A. stolonifera genomes and compared to other grass genomes
using Comparative Repeat Analysis (CRA, N. Holtshulte and S. K. Wyman, unpublished,
http://bugmaster.jgi-psf.org/repeats/). This program filters the redundant output of REPuter
(Kurtz et al. 2001) and identifies shared repeats among the input genomes. For repeat
identification, the following constraints were set in CRA: a minimum repeat size of 30 bp and
a Hamming distance of 3 (i.e., a sequence identity of ≥90%). Oryza sativa was used as the
reference genome. Blast hits 30 bp and longer with a sequence identity of ≥90% were identified
to determine the shared repeats among the seven genomes examined. To detect SSRs we used
a modified version of the Perl script SSRIT (Temnykh et al. 2001). The modified script,
CUGISSR (Jung et al. 2005), was used to search for SSRs ranging from di-to penta-nucleotide
repeats.

Comparison of intergenic spacer regions—Intergenic spacer regions from seven grass
chloroplast genomes were compared using MultiPipMaker (Schwartz et al. 2003,
http://pipmaker.bx.psu.edu/pipmaker/tools.html). MultiPipMaker has a suite of software tools
to analyze relationships among more than two sequences. We used a program known as ‘all_bz’
that iteratively compares a pair of nucleotide sequences at a time until all possible pairs from
all species have been examined. However, this program processes only one set of IGS regions
at a time. For genome-wide comparisons of corresponding intergenic regions from all species,
we developed two programs written in PERL. The first iteration creates a set of input files
containing corresponding intergenic regions from each species and compares them using
‘all_bz’ program, until all the intergenic regions in the chloroplast genome are processed. The
second program parses the output from the above comparisons, calculates percent identity by
using the number of identities over the length of the longer sequence, and generates results in
tab-delimited tabular format.

Variation between coding sequences and cDNAs—Each of the genes from the H.
vulgare, Sorghum bicolor and A. stolonifera chloroplast genomes were used to perform a
BLAST search of expressed sequence tags (ESTs) from the NCBI Genbank. The retrieved EST
sequences from A. stolonifera, H. vulgare and Sorghum bicolor were then aligned with the
corresponding annotated gene for each species separately, using Clustal X. The aligned
sequences were then screened and nucleotide and amino acid changes were detected using the
Megalign software and the plastid/bacterial genetic code. Due to variation in length between
an EST and the corresponding gene, the length of the analyzed sequence was recorded.

Phylogenetic analyses
The 61 genes included in the analyses of Goremykin et al. (2003a, 2004a, 2005), Leebens-
Mack et al. (2005), Chang et al. (2006), Lee et al. (2006a, b), Jansen et al. (2006) and Ruhlman
et al. (2006) were extracted from the chloroplast genome sequence of A. stolonifera, H.
vulgare and Sorghum bicolor using DOGMA (Wyman et al. 2004). The same set of 61 genes
was extracted from chloroplast genome sequences of 35 other sequenced genomes (see Table
1 for complete list). All 61 protein-coding genes of the 38 taxa were translated into amino acid
sequences, aligned using MUSCLE (Edgar 2004) followed by manual adjustments, and then
nucleotide sequences of these genes were aligned by constraining them to the aligned amino
acid sequences. A Nexus file with character sets for phylogenetic analyses was generated after
nucleotide sequence alignment was completed. The complete nucleotide alignment is available
online at Chloroplast Genome Database (Cui et al. 2006, http://chloroplast.cbio.psu.edu).
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Phylogenetic analyses using maximum parsimony (MP) and maximum likelihood (ML) were
performed with PAUP* version 4.10b10 (Swofford 2003) and GARLI version 0.942 (Zwickl
2006, http://www.bio.utexas.edu/grad/zwickl/web/garli.html), respectively. Phylogenetic
analyses excluded gap regions to avoid alignment ambiguities in regions with variation in
sequence lengths. All MP searches included 100 random addition replicates and TBR branch
swapping with the Multrees option. Non-parametric bootstrap analyses (Felsenstein 1985)
were performed for MP analyses with 1,000 replicates with TBR branch swapping, one random
addition replicate, and the Multrees option. Modeltest 3.7 (Posada and Crandall 1998) was
used to determine the most appropriate model of DNA sequence evolution for the combined
61-gene dataset. Hierarchical likelihood ratio tests and the Akaike information criterion were
used to assess which of the 56 models best fit the data, which was determined to be GTR + I
+ Γ by both criteria. For ML analyses in GARLI two independent runs were performed using
the default settings (see Garli manual at
http://www.bio.utexas.edu/grad/zwickl/web/garli.html). Non-parametric bootstrap analyses
(Felsenstein 1985) were performed in GARLI for ML analyses using default settings.

Results
Size, gene content and organization of the H. vulgare, S. bicolor and A. stolonifera
chloroplast genomes

The complete sizes of the H. vulgare, Sorghum bicolor and A. stolonifera chloroplast genomes
are 136,462, 140,754 bp and 136,584 bp, respectively (Fig. 1). The genomes include a pair of
IRs of 21,579 bp (H. vulgare), 22,782 bp (Sorghum bicolor) and 21,649 bp (A. stolonifera)
separated by a small single copy region of 12,704 bp (H. vulgare), 12,502 bp (Sorghum
bicolor) and 12,740 bp (A. stolonifera) and a large single copy region of 80,600 bp (H.
vulgare), 82,688 bp (Sorghum bicolor) and 80,546 bp (A. stolonifera).

The H. vulgare, Sorghum bicolor and A. stolonifera chloroplast genomes contain 113 different
genes, and 18 of these are duplicated in the IR, giving a total of 131 genes (Fig. 1). There are
30 distinct tRNAs, and 7 of these are duplicated in the IR. Sixteen genes contain one or two
introns, and six of these are in tRNAs. The H. vulgare chloroplast genome consists of 56.7%
coding regions that includes 48% protein coding genes, 8.7% RNA genes and 43.3% non-
coding regions, containing both IGS regions and introns. The Sorghum bicolor chloroplast
genome is composed of 52.1% coding regions that includes 43.4% protein coding genes, 8.7%
RNA genes and 47.9% non-coding regions. The A. stolonifera chloroplast genome is composed
of 53.6% coding regions that includes 44.7% protein coding genes, 8.9% RNA genes and 46.4%
non-coding regions. The overall GC and AT content of the H. vulgare, Sorghum bicolor and
A. stolonifera chloroplast genomes are 38.31% (H. vulgare), 38.50% (Sorghum bicolor),
38.45% (A. stolonifera) and 61.69% (H. vulgare), 61.50% (Sorghum bicolor) and 61.55% (A.
stolonifera), respectively.

Gene content and gene order
Gene content and order of the H. vulgare, Sorghum bicolor and A. stolonifera chloroplast
genomes are similar to the other six sequenced grass chloroplast genomes (O. sativa, O. nivara,
Saccharum hybrid, Saccharum officinarum, T. aestivum, and Z. mays). Like other grass
chloroplast genomes, the IR in H. vulgare, Sorghum bicolor and A. stolonifera has expanded
to include rps19. However, the extent of the IR at the SSC/IRa boundary differs between two
of the genomes with the IR of H. vulgare and A. stolonifera expanded to duplicate a portion
of ndhH, a feature that is shared with the T. aestivum chloroplast genome (Ogihara et al.
2000). This expansion includes 207 bp (69 amino acids) in H. vulgare, 174 bp (58 amino acids)
in A. stolonifera, and 96 bp (32 amino acids) in T. aestivum. The H. vulgare, Sorghum
bicolor and A. stolonifera genomes also share the loss of introns in clpP and rpoC1 with other
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grasses. There are insertions and deletions (indels) of nucleotides within several coding
sequences. For example, CAAAAC is uniquely present within matK of Sorghum bicolor, but
absent in the rest of the grasses examined (Supplementary Figure 1). There is also a 6 bp
deletion in the ndhK gene in H. vulgare, A. stolonifera, T. aestivum and both species of
Oryza (Supplementary Figure 1).

Repeat structure
Repeat analyses identified 19–37 direct and IRs 30 bp or longer with a sequence identity of at
least 90% among the nine chloroplast genomes examined (Fig. 2). With one exception of a 91
bp repeat, all other repeats range in size between 30 and 60 bp, and 78.4% are in the direct
orientation while 21.6% are inverted. The longest repeats other than the IRs found in H.
vulgare and Sorghum bicolor are 540 and 524 bp, respectively. BlastN comparisons of the O.
sativa repeats against the chloroplast genomes of the eight other grasses identified 26 shared
repeats ≥30 bp with a sequence identity ≥90% (Table 2). H. vulgare and T. aestivum share four
repeats (31, 32, 36, and 38 bp) not found in any other genomes. Both Oryza species share 41
and 59 bp repeats. Zea mays has the most repeats with 37 and A. stolonifera has the fewest
with 19. Seventeen of the 26 repeats are found in all eight chloroplast genomes and all of these
are located in the same genes or IGS regions.

Previous studies of grass chloroplast genomes identified three inversions relative to the
established consensus chloroplast gene order identical to that found in tobacco (Hiratsuka et
al. 1989, Doyle et al. 1992, Palmer and Stein 1986). Because inversions are often associated
with repeated sequences (Palmer 1991) we examined inversion endpoint regions for repeats.
We located shared repeats flanking the endpoints of the largest 28 kb inversion of grasses.
Repeat analyses identified a 21 bp direct repeat in O. sativa that contains the motif
GTGAGCTACCAAACTGCTCTA and flanks the inversion endpoints. This repeat has a
Hamming distance of 2, and is shared by all the other grasses examined. Repeat analyses at
the endpoints of the two other grass inversions failed to identify any shared repeats at the
settings used in this analysis.

Our analyses identified 16–21 SSRs per genome and these are composed of di-to penta-
nucleotide repeating units (Supplementary Table 3). Nearly 50% of all SSRs are tetra-
nucleotide repeats with no common motif. The next most common SSR consists of di-
nucleotide repeats and accounts for 30% of the SSRs with a predominant motif of TA or AT.
The remaining 20% of the SSRs are composed of tri- and penta-nucleotide repeats. Of the SSRs
identified, the same dinucleotide repeat (AT) is located within the coding region of the gene
rpoC2 in all chloroplast genomes examined.

Intergenic spacer regions
We analyzed the similarity and divergence of IGS regions from seven grass chloroplast
genomes including A. stolonifera, H. vulgare, Z. mays, O. sativa, Sorghum bicolor, Saccharum
officinarum and T. aestivum. The results of these analyses are presented in Tables 3 and 4,
Figs. 3 and 4, and in Supplementary Tables 1 and 2. These species were subdivided into two
groups for comparative analyses based on their position in phylogenetic trees (Figs. 5, 6). The
first group includes O. sativa, T. aestivum, H. vulgare and A. stolonifera and the second group
contains Z. mays, Saccharum officinarum and Sorghum bicolor.

Five IGS regions (ndhD:psaC, psbJ:psbL, psbN:psbH, rrn23:trnA-UGC, trnA-UGC:rrn23)
have 100% sequence identity among Z. mays, Saccharum officinarum and Sorghum bicolor,
whereas no spacer regions are identical among O. sativa, T. aestivum, H. vulgare and A.
stolonifera despite of their close phylogenetic relationship. Divergence among Z. mays,
Sorghum bicolor and Saccharum officinarum chloroplast genomes is much less because there
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are only nine IGS regions with less than 80% average sequence identity versus 19 among O.
sativa, T. aestivum, H. vulgare and A. stolonifera (Figs. 3, 4). Only three of the intergenic
regions in the two sets of comparisons have more than 80% average sequence divergence
(rpl16:rps3, psbH:petB, and rps12_3end:rps7; compare Figs. 3, 4). Some spacer regions have
indels resulting in extremely low sequence identity. For example, in Z. mays, deletion of a 558
bp intergenic region between rps12 3′ end and rps7 IGS has resulted in only 9% sequence
identity between Z. mays:Sorghum bicolor and Z. mays:Saccharum officinarum comparisons.
Nevertheless, this region shows 100% identity between Sorghum bicolor and Saccharum
officinarum (see Supplementary Table 2). Regions marked with asterisks or plus signs in Figs.
3 and 4 are in the top 25 most variable IGSs in Solanaceae (Daniell et al. 2006) and Asteraceae
(Timme et al. 2007), respectively.

Variation between coding regions and cDNAs
Alignment of EST sequences and DNA coding sequences identified 15 nucleotide substitution
differences in the Sorghum bicolor chloroplast genome (Table 5), 25 in the H. vulgare genome
(Table 6) and 1 in A. stolonifera (not shown). Sorghum bicolor has six C–U conversions, five
of which result in amino acid changes. H. vulgare also has six C–U conversions, all of which
result in amino acid changes. Of these substitutions, 11 are non-synonymous and 4 are
synonymous in Sorghum bicolor. In H. vulgare, 17 substitutions are non-synonymous and eight
are synonymous. Sorghum bicolor experienced 1–2 substitutions per gene while H. vulgare
has 1–5 variable sites per identified gene. H. vulgare and Sorghum bicolor share three variable
positions in the rpoC2, psaA and atpB genes (Tables 5, 6). At the time of the analysis of A.
stolonifera, there were only 9018 EST sequences available to analyze potential RNA editing
sites. Comparing the coding regions of the A. stolonifera chloroplast genome to available ESTs
reveals only one potential editing site. This site is located within the psbZ gene at position 54
and suggests a C–U change, which does not result in a change in the amino acid. There are 89
ESTs that show support for a C–U change, and five that don’t show the edit.

Phylogenetic analyses
The data matrix comprises 61 protein-coding genes for 38 taxa, including 36 angiosperms and
two gymnosperm out-groups (Pinus and Ginkgo, Table 1). The aligned sequences include
46,188 nucleotide positions but when the gaps are excluded to avoid ambiguities due to
insertion/deletions there are 39,574 characters. MP analyses resulted in a single most-
parsimonious tree with a length of 62,437, a consistency index of 0.407 (excluding
uninformative characters) and a retention index of 0.627 (Fig. 5). Bootstrap analyses indicate
that 26 of the 35 nodes have bootstrap values ≥95%, five nodes have 80–94%, and four nodes
have 50–79%. ML analysis results in a single tree with a ML value of −lnL = 348,086.2268
(Fig. 6). Support is very strong for most clades in the ML tree with 32 of the 35 nodes with
≥95% bootstrap values and 3 with 60–69% support. The ML and MP trees only differ in the
relationships among the rosids (compare Figs. 5, 6), although this difference is not strongly
supported in the ML tree (63% bootstrap value). In the MP tree the eurosid II clade is sister to
a clade that includes both members of eurosid I and Myrtales, whereas in the ML tree the
eurosid II clade is sister to a clade that includes the Myrtales and one member of the eurosid I
(Cucurbitales).

Discussion
Significance of transgene integration into grass chloroplast genomes

Although plastid transformation has been accomplished via organogenesis in a number of
eudicots, two major obstacles have been encountered to extend plastid transformation
technology to crop plants that regenerate via somatic embryogenesis: (1) the expression of
transgenes in non-green plastids, in which gene expression and gene regulation systems are

Saski et al. Page 9

Theor Appl Genet. Author manuscript; available in PMC 2009 April 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



quite distinct from those of mature green chloroplasts, and (2) our current inability to generate
homoplastomic plants via subsequent rounds of regeneration, using leaves as explants. Despite
these limitations, plastid transformation has recently been accomplished via somatic
embryogenesis in several eudicot crops, including Glycine max L. Merr. (soybean), Daucus
carota L. (carrot) and Gossypium hirsutum L. (cotton, Dufourmantel et al. 2004, 2005; Kumar
et al. 2004a, b) and foreign genes have been expressed in high levels in non-green plastids,
including proplastids and chromoplasts (Kumar et al. 2004a). Breakthroughs in plastid
transformation of recalcitrant crops, such as G. hirsutum and G. max, have raised the possibility
of engineering plastid genomes of other major crops via somatic embryogenesis. To date, only
fragmentary data were reported for O. sativa plastid transformation (Khan and Maliga 1999).
However, a promising step toward stable plastid transformation in O. sativa has been reported
recently (Lee et al. 2006b). Transplastomic O. sativa plants generated in this study exhibited
stable integration and expression of the aadA and sgfp transgenes in their plastids. Moreover,
the transplastomic O. sativa plants generated viable seeds, which were confirmed to transmit
the transgenes to the T1 progeny. Unfortunately, conversion of the transplastomic O. sativa
plants to homoplasmy was not successful, even after two generations of continuous selection.
Thus, tissue culture and selection of transformed events continues to be a major challenge.

The success of chloroplast genetic engineering of crop plants is dependent, at least in part, on
access to conserved spacer regions for inserting transgenes. The availability of sequences of
complete chloroplast genomes for multiple crop plants in the grass family should facilitate
plastid genetic engineering. Several studies have demonstrated that the use of IGS regions that
have low sequence identities between the target genome and the flanking sequences in the
chloroplast transformation vectors can result in substantially lower frequencies of
transformants (Nguyen et al. 2005; Ruf et al. 2001; Sidorov et al. 1999). Given the low number
of intergenic sequences that have high sequence identities among the seven sequenced
chloroplast genomes (Tables 3, 4) it is unlikely that a single, highly conserved IGS region will
be appropriate throughout the grass family. Among Solanaceae chloroplast genomes, only four
spacer regions have 100% sequence identity among all sequenced genomes and three of these
regions are within the IR region (Daniell et al. 2006). Five IGS regions have 100% sequence
identity among Z. mays, Saccharum officinarum and Sorghum bicolor chloroplast genomes.
Thus the variation in the IGS region is quite similar between solanaceae and grass chloroplast
genomes. However, not a single IGS region is identical among O. sativa, T. aestivum and H.
vulgare chloroplast genomes. Thus, conservation of IGS regions is not uniform even within
the same family. However, it is noteworthy that the same IGS regions have very low sequence
identity within Poaceae, Solanaceae and Asteraceae, as discussed below.

Genome organization and evolutionary implications
Organization and evolution of grass chloroplast genomes—The organization of
chloroplast genomes is highly conserved in most land plants but alterations in gene content
and order have been identified in several lineages (Raubeson and Jansen 2005). Notable
rearrangements are known in two families with many crop species, a single 51-kb inversion
common to most papilionoid legumes (Palmer et al. 1988; Doyle et al. 1996; Saski et al.
2005) and three inversions in the grasses (Quigley and Weil 1985; Howe et al. 1988; Hiratsuka
et al. 1989; Doyle et al. 1992; Katayama and Ogihara 1996). The H. vulgare, Sorghum
bicolor and A. stolonifera chloroplast genomes contain all three of the inversions present in
grasses.

Gene order and content of the sequenced grass chloroplast genomes are similar. However, two
microstructural changes have occurred. First, the expansion of the IR at the SSC/IR boundary
that duplicates a portion of the 5′ end of ndhH is restricted to the three genera of the subfamily
Pooideae (Agrostis, Hordeum and Triticum). These three genera form a monophyletic group
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in the phylogenetic trees based on DNA sequences of protein-coding genes (Figs. 5, 6) but the
extent of the IR expansion differs in each of the three genera (32, 69 and 58 amino acids in
wheat, barley and bentgrass, respectively). Thus, it is not possible to determine if there have
been three independent expansions or a single expansion followed by two subsequent
contractions. Second, a 6 bp deletion in ndhK (Supplementary Figure 1) is shared by
Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between
the subfamilies Erhartoideae and Pooideae (Figs. 5, 6).

Other than the IR, repeated sequences are considered to be relatively uncommon in chloroplast
genomes (Palmer 1991). The analysis of the repeated sequences of grass chloroplast genomes
revealed 26 groups of repeats shared among various members of the family (Table 2, Fig. 2).
Furthermore, 17 of the 26 repeats are shared among all eight of the chloroplast genomes
examined suggesting a high level of conservation of repeat structure among grasses.
Examination of the location of these repeats suggests that all of them occur in the same location,
either in genes, introns or within IGS regions. This high level of conservation of both sequence
identity and location suggests that these elements may play a functional role in the genome,
although we cannot rule out the possibility that this conservation may simply be due to a
common ancestry. Because organellar genomes are often uniparentally inherited, chloroplast
DNA polymorphisms have become a marker of choice for investigating evolutionary issues
such as sex-biased dispersal and the directionality of introgression (Willis et al. 2005). They
are also invaluable for the purposes of population-genetic and phylogenetic studies (Bryan et
al. 1999; Raubeson and Jansen 2005). Also, knowledge of mutation rates is important because
they determine levels of variability within populations, and hence greatly influence estimates
of population structure (Provan et al. 1999). Based on our mining for SSRs, we identified 16–
18 SSRs within the nine genomes examined. These initial findings indicate a potential to test
and utilize SSRs to rapidly analyze diversity in germplasm collections.

Previous studies of grass chloroplast genomes have identified three inversions in the family
(Quigley and Weil 1985; Howe et al. 1988; Hiratsuka et al. 1989; Doyle et al. 1992; Katayama
and Ogihara 1996). Our analysis of the inversion endpoints indicate that there are shared repeats
flanking the endpoints of the largest 28 kb inversion. This first inversion has endpoints between
trnG-UCC and trnR-UCU at one end and rps14 and trnfM-CAU at the other creating an
intermediate form of the chloroplast genome prior to the second inversion when compared to
N. tabacum (Hiratsuka et al. 1989; Doyle et al. 1992). Repeat analyses identified a 21 bp direct
repeat in O. sativa that flanks the inversion endpoints, and this repeat is shared by all other
grasses examined. It is likely that the shared repeat facilitated this large inversion by
intramolecular recombination. Two additional inversions, one largely overlapping the 28 kb
event, subsequently gave rise to the gene order observed in O. sativa and T. aestivum (Hiratsuka
et al. 1989). The endpoints of the second inversion (ca 6 kb) occur between trnS and psbD on
one end and trnG-UCC and trnT-GGU on the other (Doyle et al. 1992). The third inversion
has endpoints between trnG-UCU and trntT-GGU and trnT-GGU and trnE-UUC. This
inversion is quite small and accounts for the inverted orientation of trnT-GGU (Hiratsuka et
al. 1989). Our repeat analyses found no shared repeats that may have played a role in these two
inversions. Chloroplast genome organization is also known from other monocots based on both
gene mapping and complete genome sequencing (de Heij et al. 1983; Chase and Palmer
1989; Chang et al. 2006). Four non-grass monocots Spirodela oligorhiza (Lemnaceae), two
orchids (Oncidium excavatum and Phalaenopsis aphrodite), and members of the Alliaceae
(Allium cepa), Asparagaceae (Asparagus sprengeri) and Amaryllidaceae (Narcissus ×
hybridus) have the same gene order as tobacco. Thus, the inversions in H. vulgare, Sorghum
bicolor and A. stolonifera reported here are confined to the grass family as was previously
suggested by Doyle et al. (1992).
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Comparisons of DNA and EST sequences for H. vulgare, Sorghum bicolor and A.
stolonifera identified many differences (Tables 5, 6), most of which are not likely due to RNA
editing. Previous investigations of RNA editing in chloroplast genomes in the angiosperms N.
tabacum (Hirose et al. 1999) and Atropa (Schmitz-Linneweber et al. 2002) and in the fern
Adiantum (Wolf et al. 2004) indicated that RNA edits only result in C–U changes. In the case
of H. vulgare, Sorghum bicolor and A. stolonifera, only seven differences in the DNA and EST
sequences were C–U changes. Thus, these are the only changes that may be the result of RNA
editing. The other 9 differences in Sorghum bicolor and 19 differences in H. vulgare are likely
due to either polymorphisms resulting from the use of different plants or cultivars or sequencing
errors. In the case of A. stolonifera, only one C–U change was found. This could be attributed
to the lack of available expression information since only 9,018 EST sequences were available
for A. stolonifera when the analysis was performed, suggesting a need for more comprehensive
investigations into the chloroplast and nuclear transcriptomes.

Several recent comparisons of DNA and EST sequences for other crop species including G.
hirsutum (Lee et al. 2006a), Vitis vinifera (Jansen et al. 2006), Citrus sinensis L. (Bausher et
al. 2006), carrot (Ruhlman et al. 2006), Lactuca and Helianthus (Timme et al. 2007) and
Solanum lycopersicum and Solanum bulboscastanum (Daniell et al. 2006) have identified both
putative RNA editing sites and possible sequencing errors. The much greater depth of coverage
in the chloroplast genome sequences (generally 4-20X coverage) suggests that most of the
differences other than changes from C to U are likely due to errors in EST sequences.

Phylogenetic utility of intergenic spacer regions—Phylogenetic studies at the inter-
and intraspecific levels in plants have relied extensively on IGS regions of chloroplast genomes
because the coding regions are generally too highly conserved at these lower taxonomic levels
(Kelchner 2002; Raubeson and Jansen 2005; Jansen et al. 2005; Shaw et al. 2005, 2007). There
have been many efforts to identify the most divergent IGSs for phylogenetic comparisons at
lower taxonomic levels with the hope that some universal regions could be found for
angiosperms (Shaw et al. 2005, 2007, Daniell et al. 2006; Timme et al. 2007). Only two
previous studies have performed genome-wide comparisons among multiple, sequenced
genomes in the families Asteraceae (Timme et al. 2007) and Solanaceae (Daniell et al. 2006).
Comparison of our results in the Poaceae with these earlier studies indicates that there are
considerable differences regarding which IGS regions are most variable in these three families
(see asterisks and plus signs in Figs. 3, 4). Only three (Fig. 4) to five (Fig. 3) of the 25 most
variable regions of Solanaceae are among the most variable IGSs in grasses. The overlap in
the regions with high sequence divergence between the Asteraceae and grasses is higher, with
three (Fig. 4) to nine (Fig. 3) of the most variable IGS regions in the Poaceae among the 25
most variable regions in the Asteraceae. Overall, genome-wide comparisons among these three
families indicate that there may be few universal IGS regions across angiosperms for
phylogenetic studies at lower taxonomic levels. Thus, it will likely be necessary to identify
variable IGS regions in chloroplast genomes for each family to locate the most appropriate
markers for phylogenetic comparisons.

Phylogenetic relationships of angiosperms—During the past three years there has been
a rapid increase in the number of studies using DNA sequences from completely sequenced
chloroplast genomes for estimating phylogenetic relationships among angiosperms
(Goremykin et al. 2003a, b, 2004, 2005; Leebens-Mack et al. 2005; Chang et al. 2005; Lee et
al. 2006a; Jansen et al. 2006; Ruhlman et al. 2006; Bausher et al. 2006; Cai et al. 2006). These
studies have resolved a number of issues regarding relationships among the major clades,
including the identification of either Amborella alone or Amborella + Nymphaeales as the sister
group to all other angiosperms, strong support for the monophyly of magnoliids, monocots and
eudicots, the position of magnoliids as sister to a clade that includes both monocots and
eudicots, the placement of Vitaceae as the earliest diverging lineage of rosids, and the sister
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group relationship between Caryophyllales and asterids. However, some issues remain
unresolved, including the monophyly of the eurosid I clade and relationships among the major
clades of rosids. The phylogenetic analyses reported here (Figs. 5, 6) with expanded taxon
sampling are congruent with these earlier studies so our discussion will focus on relationships
among grasses.

Our study has added complete chloroplast genome sequences for three genera of grasses
representing two subfamilies (Pooideae and Erhartoideae, sensu Grass Phylogeny Working
Group 2001). This expands the number sequenced grass genera to seven from three different
subfamilies, Panicoideae, Pooideae and Erhartoideae. Our phylogenetic trees (Figs. 5, 6)
indicate that the Erhartoideae is sister to the Pooideae with weak to moderate bootstrap support
(60 or 81% in ML and MP trees, respectively). The sister relationship of these subfamilies is
also supported by a 6 bp deletion in ndhK (Supplementary Figure 1). This result is congruent
with phylogenetic trees based on sequences of six genes (four chloroplast and two nuclear,
Grass Phylogeny Working Group 2001). This multigene tree, which included 68 genera of
grasses, also provided only moderate bootstrap support (71%) for a close phylogenetic
relationship between these two subfamilies. Furthermore, the clade including Pooideae and
Erhartoideae also contained members of the Bambusioideae. Clearly, many additional
chloroplast genome sequences are needed from the grasses to provide sufficient taxon sampling
to generate a family-wide phylogeny based on whole genomes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Gene map of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera chloroplast
genomes. The thick lines indicate the extent of the inverted repeats (IRa and IRb), which
separate the genome into small (SSC) and large (LSC) single copy regions. Genes on the outside
of the map are transcribed in the clockwise direction and genes on the inside of the map are
transcribed in the counterclockwise direction
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Fig. 2.
Histogram showing the number of repeated sequences ≥30 bp long with a sequence identity
≥90% in nine grass chloroplast genomes
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Fig. 3.
Histogram showing pairwise sequence divergence of the intergenic spacer regions of rice
(Oryza sativa), wheat (Triticum aestivum) barley (Hordeum vulgare) and bentgrass (Agrostis
stolonifera) chloroplast genomes. Comparisons of 19 most variable intergenic regions with
less than 80% average sequence identity. The values plotted in this histogram come from
Supplementary Table 1, which shows percent sequence identities for all intergenic spacer
regions. The plotted values were converted from percent identity to sequence divergence on a
scale from 0 to 1 and included on the Y-axis. Asterisk indicates regions that are in the top 25
most variable intergenic spacer regions in Solanaceae (adapted from Daniell et al. 2006),
plus indicates regions that are in the top 25 most variable intergenic spacer regions in
Asteraceae (adapted from Timme et al. 2007)
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Fig. 4.
Histogram showing pairwise sequence divergence of the intergenic spacer regions of maize
(Zea mays), sugarcane (Saccharum officinarum) and sorghum (Sorghum bicolor) chloroplast
genomes. Comparisons of the nine most variable intergenic spacer regions with less than 80%
average sequence identity. The values plotted in this histogram come from Supplementary
Table 2, which shows percent sequence identities for all intergenic spacer regions. The plotted
values were converted from percent identity to sequence divergence on a scale from 0 to 1 and
included on the Y-axis. Asterisk indicates regions that are in the top 25 most variable intergenic
spacer regions in Solanaceae (adapted from Daniell et al. 2006), plus indicates regions that are
in the top 25 most variable intergenic spacer regions in Asteraceae (adapted from Timme et
al. 2007)
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Fig. 5.
Phylogenetic tree of 38 taxa based on 61 plastid protein-coding genes using maximum
parsimony. The tree has a length of 62,437, a consistency index of 0.407 (excluding
uninformative characters) and a retention index of 0.627. Numbers above node indicate number
of changes along each branch and numbers below nodes are bootstrap support values. Ordinal
and higher level group names follow APG II (2003). Taxa in red are the new genomes reported
in this paper
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Fig. 6.
Phylogenetic tree of 38 taxa based on 61 plastid protein-coding genes using maximum
likelihood. The tree has a ML value of −lnL = 348086.2268. Numbers at nodes are bootstrap
support values 50%. Ordinal and higher level group names follow APG II (2003). Taxa in
red are the new genomes reported in this paper
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Table 1
Taxa included in phylogenetic analyses with GenBank accession numbers and
references

Taxon GenBank accession numbers Reference

Gymnosperm outgroups

Pinus thunbergii NC_001631 Wakasugi et al. 1994

Ginkgo biloba NC_008788 Leebens-Mack et al. 2005

Basal angiosperms

Amborella trichopoda NC_005086 Goremykin et al. 2003a

Nuphar advena NC_008788 Leebens-Mack et al. 2005

Nymphaea alba NC_006050 Goremykin et al. 2004

Magnoliids

Calycanthus floridus NC_004993 Goremykin et al. 2003b

Drimys granatensis NC_008456 Cai et al. 2006

Liriodendron tulipifera NC_008326 Cai et al. 2006

Piper coenoclatum NC_008457 Cai et al. 2006

Monocots

Acorus americanus DQ069337-DQ069702 Leebens-Mack et al. 2005

Agrostis stolonifera NC_008591 Current study

Hordeum vulgare NC_008590 Current study

Oryza sativa NC_001320 Hiratsuka et al. 1989

Phalaenopsis aphrodite NC_007499 Chang et al. 2006

Saccharum officinarum NC_006084 Asano et al. 2004

Sorghum bicolor NC_008602 Current study

Triticum aestivum NC_002762 Ogihara et al. 2000

Typha latifolia DQ069337-DQ069702 Leebens-Mack et al. 2005

Yucca schidigera DQ069337-DQ069702 Leebens-Mack et al. 2005

Zea mays NC_001666 Maier et al. 1995

Eudicots

Arabidopsis thaliana NC_000932 Sato et al. 1999

Atropa belladonna NC_004561 Schmitz-Linneweber et al. 2002

Citrus sinensis NC_008334 Bausher et al. 2006

Cucumis sativus NC_007144 Plader et al. unpublished

Eucalyptus globulus NC_008115 Steane 2005

Glycine max NC_007942 Saski et al. 2005

Gossypium hirsutum NC_007944 Lee et al. 2006a

Lotus corniculatus NC_002694 Kato et al. 2000

Medicago truncatula NC_003119 Lin et al. unpublished

Nicotiana tabacum NC_001879 Shinozaki et al. 1986

Oenothera elata NC_002693 Hupfer et al. 2000

Panax schinseng NC_006290 Kim and Lee 2004

Populus trichocarpa NC_008235 Unpublished

Ranunculus macranthus NC_008796 Leebens-Mack et al. 2005

Solanum lycopersicum DQ347959 Daniell et al. 2006
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Taxon GenBank accession numbers Reference

Solanum bulbocastanum NC_007943 Daniell et al. 2006

Spinacia oleracea NC_002202 Schmitz-Linneweber et al. 2001

Vitis vinifera NC_007957 Jansen et al. 2006
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Table 4
Analysis of intergenic spacer regions of Z. mays, S. officinarum and S. bicolor

Intergenic spacer region Z. mays/S. officinarum Z. mays/S. bicolor S. officinarum/S. bicolor

ndhD:psaC 100 100 100

psbJ:psbL 100 100 100

psbN:psbH 100 100 100

rrn23:trnA-UGC 100 100 100

trnA-UGC:rrn23 100 100 100

ndhB:trnL-CAA 100 99 99

trnL-CAA:ndhB 100 99 99

rps19:trnH-GUG 100 96 96

trnH-GUG:rps19 100 96 96

ndhB:ndhB 99 100 99

rps12:trnV-GAC 99 99 100

trnA-UGC:trnA-UGC 99 99 100

trnV-GAC:rps12 99 99 100

rrn16:trnV-GAC 98 98 100

trnN-GUU:trnR-ACG 98 98 100

trnR-ACG:trnN-GUU 98 98 100

trnV-GAC:rrn16 98 98 100

rpl23:trnI-CAU 97 97 100

rps2:atpI 97 97 100

rps7:rps12 97 97 100

rrn4.5:rrn5 97 97 100

trnI-CAU:rpl23 97 97 100

petG:trnW-CCA 96 96 100

ndhI:ndhA 95 100 95

psbC:trnS-UGA 95 95 100

rrn4.5:rrn23 95 95 100

rpl22:rps19 94 94 100

rpl36:infA 94 94 100

trnM-CAU:atpE 93 93 100

trnE-UUC:trnY-GUA 92 92 100

cemA:petA 91 91 100

ndhJ:ndhK 90 90 100

rps3:rpl22 89 89 100

trnA-UGC:trnI-GAU 86 86 100

psbT:psbN 69 69 100

rps12:rps7 9 9 100

Intergenic spacer regions that are 100% identical in at least two of the three species are shown below
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