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RESEARCH Open Access

Gene discovery and differential expression analysis
of humoral immune response elements in female
Culicoides sonorensis (Diptera: Ceratopogonidae)
Dana Nayduch1*, Matthew B Lee1 and Christopher A Saski2

Abstract

Background: Female Culicoides sonorensis midges (Diptera: Ceratopogonidae) are vectors of pathogens that impact
livestock and wildlife in the United States. Little is known about their biology on a molecular-genetic level, including
components of their immune system. Because the insect immune response is involved with important processes
such as gut microbial homeostasis and vector competence, our aims were to identify components of the midge
innate immune system and examine their expression profiles in response to diet across time.

Methods: In our previous work, we de novo sequenced and analyzed the transcriptional landscape of female
midges under several feeding states including teneral (unfed) and early and late time points after blood and
sucrose. Here, those transcriptomes were further analyzed to identify insect innate immune orthologs, particularly
humoral immune response elements. Additionally, we examined immune gene expression profiles in response to
diet over time, on both a transcriptome-wide, whole-midge level and more specifically via qRTPCR analysis of
antimicrobial peptide (AMP) expression in the alimentary canal.

Results: We identified functional units comprising the immune deficiency (Imd), Toll and JAK/STAT pathways,
including humoral factors, transmembrane receptors, signaling components, transcription factors/regulators and
effectors such as AMPs. Feeding altered the expression of receptors, regulators, AMPs, prophenoloxidase and
thioester-containing proteins, where blood had a greater effect than sucrose on the expression profiles of most
innate immune components. qRTPCR of AMP genes showed that all five were significantly upregulated in the
alimentary canal after blood feeding, possibly in response to proliferating populations of gut bacteria.

Conclusions: Identification and functional insight of humoral/innate immune components in female C. sonorensis
updates our knowledge of the molecular biology of this important vector. Because diet alone influenced the
expression of immune pathway components, including their effectors, subsequent study of the role of innate
immunity in biological processes such as gut homeostasis and life history are being pursued. Furthermore, since the
humoral response is a key contributor in gut immunity, manipulating immune gene expression will help in
uncovering genetic components of vector competence, including midgut barriers to infection. The results of such
studies will serve as a platform for designing novel transmission-blocking strategies.
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Background
Culicoides biting midges (Diptera: Ceratopogonidae) are
nuisance pests and some species are important vectors
of disease-causing viruses, protists, and nematodes. In
the US, Culicoides sonorensis transmits bluetongue virus
and epizootic hemorrhagic disease virus to wild and do-
mestic ruminants (e.g. sheep, deer, cattle), and has also
shown potential to vector other viruses [1,2]. While both
sexes of midges feed on sugars in the form of extrafloral
nectar, female C. sonorensis midges are anautogenous,
requiring blood meals to initiate egg development. Since
this process also serves as a means of pathogen acquisi-
tion from infected hosts, only female midges are disease
vectors.
Arthropod vectors utilize physical and physiological de-

fenses to combat microbes that may be present in the
blood or sugar meal and to maintain homeostatic balance
in gut bacterial populations. Physical defenses include the
peritrophic matrix, which forms around the ingested blood
meal and partitions microbes such as bacteria by size-
exclusion [3]. A second line of defense involves the innate
immune response, comprised of humoral and cellular
components that act locally (e.g., epithelia, proximal to mi-
crobes) and/or systemically (i.e., fat body and hemolymph).
Three major conserved signaling pathways that orchestrate
the insect humoral immune response have been elucidated
in model organisms such as fruit flies and mosquito vec-
tors and include: Imd (Immune deficiency), Toll and JAK/
STAT (Janus kinase/signal transduction and activators of
transcription) [4]. In some dipteran flies, the Imd pathway
is activated when peptidoglycan cell wall components of
Gram-negative bacteria directly bind transmembrane pep-
tidoglycan recognition protein (PGRP) receptors, pattern
recognition receptors (PRRs) which are present on a var-
iety of cells, especially barrier epithelia and fat body [4].
Imd activation results in the synthesis of antimicrobial
peptides (AMPs) such as Diptericin via the Relish tran-
scription factor [5]. The Toll pathway is activated by pep-
tidoglycan components of Gram-positive bacterial cell
walls and fungal glucans, and thus primarily responds to
infections with these classes of microorganisms [4]. In
the insect hemocoel, binding of these microbe-associated
molecular patterns (MAMPs) to circulating PRRs trig-
gers an extracellular serine protease cascade that eventu-
ally results in intracellular activation of NF-ƙB response
elements and the transcription of Toll-induced AMPs. Al-
ternatively, fungal proteolytic activity also activates the
Toll pathway via the protease Persephone [6]. In the JAK/
STAT pathway, three components, the Domeless recep-
tor, the Janus Kinase Hopscotch, and the transcription
factor STAT are at least partly involved in antiviral de-
fenses in various flies [7,8]. Relatively recently, more evi-
dence is mounting that implicates both the Imd and Toll
pathways in the dipteran antiviral defense repertoire as

well, including defense against entomopathogenic viruses
and arboviruses [9,10].
AMPs are small, potent, antimicrobial effectors that

are quickly synthesized by the insect fat body, hemocytes
or epithelia in response to pathogen or microbe expos-
ure [11,12]. A majority are cationic at physiological pH,
which facilitates interactions with microbial cell enve-
lope components [13]. Immune studies in important in-
sect vectors have demonstrated AMP upregulation in
response to pathogen challenge either by natural or arti-
ficial routes. Anopheles gambiae presented with bacteria
and malaria parasites upregulate defensin in the mid-
gut and carcass and express this AMP in the salivary
glands during late stages of infection [14-16]. Sandflies
express AMPs in response to Leishmania infection and
some AMPs, such as Attacin, are involved in anti-
trypanosomal responses in tsetse flies [17-19]. AMPs and
other effectors also participate in population control of
non-pathogenic gut microbes. Larval dipterans are ex-
posed to environmental bacteria through normal feeding
activities and often harbor these indigenous microbiota
transstadially [20-23]. Populations of gut-associated
microbiota in adult insects are tightly regulated and
reflect a balance between the immune response and
bacterial tolerance [24-26]. In several vectors, a tripar-
tite relationship between gut bacteria, pathogens, and
the vector innate immune response has been demon-
strated, including the impact such associations have on vec-
tor competence [27-29]. Thus, knowledge of the humoral
response of blood feeding vectors helps not only in under-
standing their biology, but can also reveal mechanisms
underlying refractoriness.
Innate immune responses in biting midges, including

AMP expression, have not been investigated. In our pre-
vious work, we sequenced and annotated the transcrip-
tome of adult female C. sonorensis and examined the
responding transcriptome profiles of whole midges dur-
ing various feeding states. In the current study, we iden-
tified and describe the components of the humoral
immune response including receptors, signaling mole-
cules and effectors from the Toll, Imd, and JAK/STAT
pathways. Furthermore, we examined their differential
activation on a transcriptome-wide level in whole female
midges under different feeding states (teneral, blood and
sucrose feeding over time). The gut-specific expression
of selected AMPs in response to blood and sugar meals
was quantified over time, and we found that blood feed-
ing alone highly induced expression of five AMPs in the
alimentary canal. This is the first description of these
pathways in the midge, and likewise is the first look at
temporospatial expression of AMP genes in relation to
diet source. The role of these immune pathways in gut
microbial ecology and vector competence in midges is
discussed.
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Methods
Humoral immune gene discovery
The adult female midge reference transcriptome has been
previously described in [30]. In brief, female midges were
unfed (teneral) or were exposed to different diets (blood
or sucrose) and sampled at early (2, 6, 12 h post ingestion,
pooled) or late (36 h post ingestion) time intervals. Total
RNA from whole midges was used to prepare indexed
temporospatial specific sequencing libraries and deep
sequenced on an Illumia HiSeq2000. A de novo transcrip-
tome was constructed and can be downloaded from the
Transcriptome Shotgun Assembly deposited at DDBJ/
EMBL/GenBank under the accession GAWM00000000
and bioproject 238338. The transcriptome is comprised of
19,041 unigene assemblies that can be found in the
GenBank nucleotide database under the following acces-
sions: GAWM01000001- GAWM01019041. Homology
based annotation of the unigene set was carried out through
comparisons to Aedes aegypti and Culex quinquefasciatus
datasets, and the non-redundant protein database at
GenBank. For the current study, functional signatures were
determined by alignment to the Interpro (www.ebi.ac.uk/
interpro) and ImmunoDB (cegg.unige.ch/insect/immu-
nodb) databases to check for domains and orthologs, re-
spectively, and to confirm correct annotation along with
complete ortholog structure/function. Essentially, these
methods were used to determine if the unigene deduced
amino acid sequences contained complete domains and
motifs associated with the immune components function
and structure as defined in other arthropods.

Transcriptome-wide expression profiles of humoral
immune genes
Humoral immune genes were identified by searching the
gene annotations and assigned GO terms, and by apply-
ing knowledge from other arthropod systems. Digital
genome-wide gene expression profiles for female midges
under different feeding and temporal conditions were
described previously [30]. Briefly, treatment groups were
comprised of: teneral (unfed, 2 d old), or those fed either
10% sucrose or blood and collected to represent early
(2, 6, 12 h post-ingestion, pooled) or late (36 h post-
ingestion) conditions; two biological replicates of each of
these five treatment groups were collected and analyzed to
determine condition-specific global gene expression pro-
files. Pairwise comparisons were made between and within
diet source across time using the Tuxedo software package
as we previously described [30], and statistically significant
differences in gene expression were reported (P ≤ 0.01).

Alignments of AMP genes
Multiple alignments of deduced peptide sequences were
performed using CLC Genomics Workbench (www.
clcbio.com). Insect sequences downloaded from NCBI

were manually trimmed, inspected, and aligned with
CLUSTALW.

Antimicrobial peptide expression in C. sonorensis
alimentary canal
Culicoides sonorensis midges (AK colony) were reared at
the US Department of Agriculture Arthropod-Borne
Animal Diseases Research Unit and maintained at 26°C,
70-80% relative humidity, with a 12–12 hour light–dark
photoperiod. One to two day-old female adult midges
were allowed to feed ad libitum for 1.5 h on a 10% su-
crose solution or for 1 h on defribrinated sheep blood
(Colorado Serum Company, Denver, CO) via an artificial
membrane. Each feeding trial was replicated three times.
At 3, 8, 12, and 24 h post feeding, midges (n = 15/time
point per replicate) were anesthetized with carbon dioxide
and removed for processing. The alimentary canal was
dissected from each midge and pooled by time point for
homogenization in Tri-Reagent (Ambion). Total RNA ex-
traction was performed using a modified manufacturer’s
protocol incorporating Bromo-3-chloro-propane in the
extraction step and overnight ethanol precipitation. RNA
quality was analyzed with a Nanodrop spectropho-
tometer and cDNA was synthesized from 500 ng total
RNA using the QuantiTech Reverse Transcription kit fol-
lowing the manufacturer’s instructions (Qiagen, Valencia,
CA). qRT-PCR detection was performed using a 5 PRIME
RealMasterMix SYBR ROX kit (5 Prime, Gaithersburg,
MD) according to the manufacturer’s protocol and run in
10 μl reactions consisting of primers diluted to a final con-
centration of 250 nM and cDNA templates diluted 1:10.
To minimize variability, pipetting was performed using an
Eppendorf epMotion 5070 platform and reactions run in
triplicate on a Mastercycler ep realplex thermalcycler
(Eppendorf, Hauppauge, NY) with the following parame-
ters: 95°C for 2 min, followed by 40 cycles of 95°C for
15 s, 60°C for 20 s, 60°C for 15 s. Primer sequences are
listed in Additional file 1, and include the reference gene
EF1b [GenBank: GAWM01010754], which was previ-
ously identified as a candidate since it is not differentially-
expressed across teneral or sucrose- or blood-fed midges
[30]. CT values were analyzed using the Relative Expres-
sion Software Tool [31], which allows for group wise com-
parison and statistical analysis of relative expression while
accounting for differences in primer efficiencies.

Results and discussion
Components of the C. sonorensis humoral immune system
in the transcriptome
The adult female transcriptome consists of 19,041 uni-
genes as described previously [30]. A search of the assigned
Gene Ontology (GO terms) for humoral and immune
returned 52 and 125 unigenes, respectively. However,
searching of GO terms did not reveal all critical components
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of the pathways described below, and subsequent manual
curation and searching using public resources revealed a
total of 217 unigenes (~1.1% of the adult female midge)
that make up or are involved in the insect humoral im-
mune response. Three major conserved pathways in insect
humoral immunity were revealed, including: Imd (Im-
mune deficiency), Toll and JAK/STAT (Janus kinase/signal
transduction and activators of transcription) with all or
most components such as receptors, signaling intermedi-
ates, transcriptional regulators, effectors and regulators.
All critical components were identified for Toll and JAK/
STAT, but we did not identify two signaling components
of the Imd pathway (Imd, FADD). Below we introduce and
describe the detailed components of the midge humoral
immune response.

Imd pathway
The Imd pathway is part of the dipteran humoral antibac-
terial response that is activated when meso-diaminopimelic
acid-containing peptidoglycan (DAP-PGN) binds trans-
membrane long-form peptidoglycan recognition proteins
(PGRPs) [4,32]. We confirmed the identity of seven long-
form PGRPs in the midge transcriptome (Table 1). For
immune signal transduction to ensue, activated PGRPs
act through the adaptor Imd and subsequently FADD,
which are two death-domain proteins that interact with
DREDD (a Caspase-8 homolog). Interestingly, we did not
identify orthologs for either Imd or FADD in the C. sonor-
ensis transcriptome, although these have been identified in
other nematocera [33], but a DREDD ortholog was identi-
fied [GenBank: GAWM01000519]. In Drosophila, DREDD
cleaves the inhibitory domain from phosphorylated Relish,
and the rel domain then translocates to the nucleus to
induce expression of effectors such as antimicrobial pep-
tides (AMPs) [32]. Relish is phosphorylated by a parallel
component of the Imd pathway involving IAP (inhibitor
of apoptosis), TAB2 (tak-associated binding protein), and
several kinases, such as TAK1 (transforming growth factor
activated kinase) and the IKK complex [4]. Orthologs
for all components of this branching part of the Imd
pathway were found in the transcriptome including:
IAP2 [GenBank: GAWM01008211], TAB2 [GenBank:
GAWM01006076], TAK1 [GenBank: GAWM01010356;
GenBank: GAWM01012184], the ird5 ortholog IKK-beta
[GenBank: GAWM01013537] and the key ortholog IKK-
gamma, also known as Kenny [GenBank: GAWM01018250].
Two non-allelic sequences for TAK1 were identified (Table 1).
This MAP3K also modulates the branch point between
IMD and JNK (c-Jun N-terminal kinase) pathways, by
phosphorylating both the IKK complex and JNKK (jun-
kinase-kinase), respectively [34]. We also identified two
Relish orthologs, with one [GenBank: GAWM01014885]
likely being either rel-2 (a rel-1 paralog), or possibly a
truncated isoform of rel-1 [GenBank: GAWM01014884].

Regulation of the Imd pathway in insects includes both
basal and inducible regulators that modulate the timing
and amplitude of the immune response, respectively
[35]. In C. sonorensis, we identified the inducible negative
regulators PIRK (poor Imd response upon knock-in, also
known as PIMS or RUDRA) [GenBank: GAWM01010231]
and PGRP-SC2/SC3 (a short-form scavenger type of cir-
culating PGRP) [GenBank: GAWM01018647] as well as
the basal negative regulators Caspar (also known as FAS-
associated factor 1, FAF1) [GenBank: GAWM01012793]
and Caudal [GenBank: GAWM01004228].

Toll pathway
Unlike the Imd pathway of humoral immune response,
the Toll pathway functions solely in the systemic (e.g. fat
body and hemolymph) recognition of microbes in in-
sects. This is because microbial MAMPs (e.g. Lys-type
peptidoglycan or fungal glucans) do not directly bind
Toll receptors but instead are pre-processed by circulating
PRRs including PGRP-SA and Gram-negative binding pro-
teins 1 and 3 (GNBP1, GNBP3; also knows as Beta-1,3
Glucan Binding Proteins). These interactions start a prote-
ase cascade that eventually cleaves circulating pro-Spaetzle
to the Toll-binding cytokine Spaetzle, after which signal
transduction and effector expression ensues [36,37].
The upstream humoral components of the Toll pathway
that were identified in C. sonorensis include PGRP-SA
[GenBank: GAWM01018051], three GNBP1 orthologs
[GenBank: GAWM01002165; GenBank: GAWM01003712;
GenBank: GAWM01004143] and GNBP3 [GenBank:
GAWM01011997], three putative Spaetzle orthologs
[GenBank: GAWM01001358; GenBank: GAWM01006049;
GenBank: GAWM01012721], all without signal pep-
tide, and one Spaetzle-1 ortholog, complete with signal se-
quence [GenBank: GAWM01015015] (Table 2).
All cell-associated components of the insect Toll path-

way were identified in the C. sonorensis transcriptome.
Insect Toll receptors have characteristic extracellular
N-terminus leucine-rich repeats (LRR), at least two flank-
ing cysteine-rich motifs (CRR) and intracellular Toll/IL-1
receptor (TIR) domains [38]. We identified two putative
Toll receptors, which were complete except for CRR mo-
tifs: [GenBank: GAWM01015594; GenBank: GAWM0101
9001] and three complete Toll receptors [GenBank:
GAWM01015706; GenBank: GAWM01013057; GenBank:
GAWM01013058] (Table 2). Intracellular Toll signaling
involves three death-domain containing proteins includ-
ing the adaptor MyD88 and the mammalian IRAK1 and
IRAK4 orthologs Pelle and Tube, respectively [4]. Complete
orthologs for MyD88 [GenBank: GAWM01018790], Pelle
[GenBank: GAWM01001221; GenBank: GAWM01011117]
and Tube [GenBank: GAWM01007838] were found in
the transcriptome. CsPelle and CsTube both contain typ-
ical death and kinase domains, and CsPelle has the GD
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Table 1 Components of the insect Immune Deficiency (Imd) pathway and antimicrobial peptides (AMPs) identified in the C. sonorensis transcriptome
Description Acc. No. Seq. no. Aedes Hit Culex Hit e-Value Commentsa

Receptors

Peptidoglycan Recognition Protein (Long; PGRP-LC) GAWM01004359 m.21976 AAEL013112 CPIJ006560 4.49e-23 Complete; cytoplasmic, TM and PGRP domain

PGRP-LC GAWM01003592 m.19794 AAEL014640 CPIJ006561 1.90e-40 Complete; cytoplasmic, TM and PGRP domain

PGRP-LC GAWM01011033 m.42666 AAEL014640 CPIJ006561 1.90e-40 Complete; cytoplasmic, TM and PGRP domain

PGRP-LC GAWM01011035 m.42672 AAEL014640 CPIJ006561 1.90e-40 Complete; cytoplasmic, TM and PGRP domain

PGRP-LC GAWM01011037 m.42675 AAEL014640 CPIJ006561 7.24e-43 Complete; cytoplasmic, TM and PGRP domain

PGRP-LC GAWM01011039 m.42683 AAEL014640 CPIJ006561 1.90e-40 Complete; cytoplasmic, TM and PGRP domain

PGRP-LC GAWM01000194 m.10444 AAEL014989 CPIJ008514 1.30e-22 Complete; cytoplasmic, TM and PGRP domain

Signaling

DREDD (Caspase-8) GAWM01000519 m.11119 AAEL014148 CPIJ009056 4.93e-66 Complete; death related ced-3 nedd2-like; complete ICE domain

Inhibitor of apoptosis (IAP) GAWM01008211 m.33483 AAEL006633 CPIJ019231 4.4e-146 Complete; 3 BIR and one ring domain

tak1-associated binding protein (TAB) GAWM01006076 m.27286 n/a CPIJ000820 5.27e-21 Confirmed; ubiquitin domain (CUE) present

tak1 (MAP3K) GAWM01010356 m.40419 AAEL007035 CPIJ006370 3.82e-62 Complete; dual specificity kinase

tak1 (MAP3K) GAWM01012184 m.47419 AAEL012659 CPIJ006370 8.20e-54 Complete; dual specificity kinase

I-Kappa-B Kinase 2 (IKK2, IKK-gamma), key/kenny GAWM01018250 m.843 AAEL012510 CPIJ006917 2.02e-43 Complete; NEMO and UBAN motifs

I-Kappa-B Kinase 1 (IKK1, IKK-beta), ird5 GAWM01013537 m.5295 AAEL003245 CPIJ015672 0 Complete; kinase domain present

Transcription

NF-kappaB transcription factor, Relish GAWM01014884 m.58438 AAEL007624 CPIJ012236 5.09e-52 Complete; NF-kB/Relish; rel homology domain (RHD), IPT domain,
ankyrin repeat domain, death-like domain.

NF-kappaB transcription factor, Relish GAWM01014885 m.58439 AAEL007624 CPIJ012236 2.64e-27 Partial; possibly Rel-2 or truncated isoform; RHD only

AMPs

Attacin-like AMP GAWM01008443 m.3410 n/a n/a 3.53e-07 Attacin-like AMP,one glycine-rich G domain (AA 56–115); no signal peptide

Attacin GAWM01017969 m.7821 AAEL003389 n/a 1.39e-22 Complete; two glycine-rich domains (AA 75–191);
signal peptide (AA 1–18)

Defensin GAWM01019039 m.9997 n/a n/a 1.46e-04 Complete and probable paralog; 6 cysteines present; signal AA 1-22

Defensin GAWM01019040 m.9998 n/a n/a 5.14e-08 Complete and probable paralog; 6 cysteines present; signal AA 1-21

Cecropin GAWM01000005 m.10000 n/a n/a 3.93e-14 Complete; cecropin family signature sequence AA 31–54; signal AA 1-23

Regulators

Caudal homeobox protein GAWM01004228 m.2158 AAEL014557 CPIJ802291 1.83e-82 Homeobox domain present

Poor imd response upon knock-in (PIRK); PIMS; RUDRA GAWM01010231 m.4008 n/a CPIJ014088 3.27e-09 Putative, needs functional confirmation

FAS-associated factor 1, caspar GAWM01012793 m.49687 AAEL003579 CPIJ012219 0 Complete; has FAF1, UAS and UBS domains

Peptidoglycan Recognition Protein (Short form); PGRPSC2/SC3 GAWM01018647 m.9236 AAEL007039 CPIJ016770 4.37e-84 Complete; Short form PGRP domain, signal AA 1-16
aTM, transmembrane helix; AA, amino acids; BIR, baculovirus IAP repeat; NEMO, NF-kappaB essential modulator; UBAN, ubiquitin binding motif; AMP, antimicrobial peptide.
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Table 2 Components of the insect Toll pathway identified in the C. sonorensis transcriptome
Description Acc. no. Seq. no. Aedes Hit Culex Hit e-Value Commentsa

Upstream signaling

Peptidoglycan Recognition Protein (Short);
PGRP-SA

GAWM01018051 m.7996 AAEL009474 CPIJ007162 6.18e-17 Complete; PGRP amidase domain, signal AA 1-20

Gram-Negative Binding Protein (GNBP), or
Beta-1,3-Glucan Binding Protein (BGBP); GNBP-1

GAWM01002165 m.15449 AAEL009176 CPIJ004321 3.81e-90 Complete; glycoside hydrolase, glucanase domains; signal AA 1-20

GNBP-1/BGBP-1 GAWM01003712 m.20067 AAEL009176 CPIJ004324 3.81e-90 Complete; glycoside hydrolase, glucanase domains; signal AA 1-29

GNBP-1/BGBP-1 GAWM01004143 m.21344 AAEL009176 CPIJ004321 3.81e-90 Complete; glycoside hydrolase, glucanase domains; signal AA 1-16

GNBP-3/BGBP-3 GAWM01011997 m.46772 AAEL000652 CPIJ013556 2.96e-38 Complete; GNBP domain, signal AA 1-25

Spaetzle-like cytokine, Spz3 GAWM01001358 m.13389 AAEL014950 CPIJ001752 3.56e-129 Putative, no signal

Spaetzle-like cytokine, Spz5 GAWM01006049 m.2718 AAEL001929 CPIJ009906 1.29e-44 Putative, no signal

Spaetzle-like cytokine, Spz6 GAWM01012721 m.49435 AAEL012164 CPIJ002281 2.42e-37 Truncated, no signal

Spaetzle-like cytokine, Spz1? GAWM01015015 m.58907 AAEL000499 CPIJ014270 1.59e-35 Complete; either Spz1A or 1B; signal AA 1-31

Receptors

Toll receptor GAWM01015594 m.61585 AAEL009551 CPIJ013183 5.73e-106 Possible toll; LRR/TIR but no flanking CRRs

Toll receptor GAWM01019001 m.9915 AAEL000633 CPIJ019764 0 Possible toll; LRR/TIR but no flanking CRRs

Toll receptor GAWM01015706 m.62033 AAEL009551 CPIJ008497 4.24e-152 Complete toll (LRR, flanking CRR, TIR)

Toll receptor GAWM01013057 m.50841 AAEL002583 CPIJ016598 0 Complete toll (LRR, flanking CRR, TIR)

Toll receptor GAWM01013058 m.50847 AAEL002583 CPIJ016598 0 Complete toll (LRR, flanking CRR, TIR)

Cell signaling

myeloid differentiation primary response
protein 88 (MYD88)

GAWM01018790 m.948 AAEL007768 CPIJ018307 1.44e-46 Complete; death domain (DD), TIR domain

Ser/Thr Kinase, Pelle (IRAK1) GAWM01001221 m.12898 AAEL006571 CPIJ015474 1.62e-92 Complete; N terminal DD and C terminal kinase

Ser/Thr Kinase, Pelle (IRAK1) GAWM01011117 m.42913 AAEL006571 CPIJ015474 1.62e-92 Complete; N terminal DD and C terminal kinase

Tube (IRAK4) GAWM01007838 m.32196 AAEL007642 CPIJ013746 1.93e-42 Complete; similar to other nematocera, CsTube has death
domain and kinase domain with RD motif

cactus (IkappaB) GAWM01009580 m.37494 AAEL001584 CPIJ004774 1.95e-16 Complete; ankyrin repeats AA 119-356

Transcription

dorsal/dif (REL1)b GAWM01010293 m.40244 AAEL014821 CPIJ801839 4.73e-95 Complete; confirmed to have N-terminal rel homology domain
and C-terminal IPT domain

dorsal/dif (REL1) GAWM01010294 m.40249 AAEL014821 CPIJ801839 4.73e-95 Complete; confirmed to have N-terminal rel homology domain
and C-terminal IPT domain

dorsal/dif (REL1) GAWM01010296 m.40254 AAEL014821 CPIJ801839 4.73e-95 Complete; confirmed to have N-terminal rel homology domain
and C-terminal IPT domain

dorsal/dif (REL1) GAWM01010297 m.40255 AAEL014821 CPIJ801839 4.73e-95 Complete; confirmed to have N-terminal rel homology domain
and C-terminal IPT domain

aAA, amino acids; LRR, leucine rich region; CRR, cysteine rich region; TIR, Toll/interleukin-1 receptor domain; IPT, Ig-like, plexins, transcription factor domain.
bmost likely only two of these unigene sequences are true paralogs, but due to the conserved RHD and IPT domains the assembly could not delineate during annotation.
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dipeptide motif while CsTube has the RD dipeptide motif
[39]. In DrosophilaTube, the kinase function has been evo-
lutionarily lost; however, Tube proteins from the nema-
tocerans Aedes aegypti [GenBank: AAEL007642], Culex
pipiens [GenBank: CPIJ013746] and now C. sonorensis
retain complete kinase domains [39,40]. Transcription
of effector molecules in the insect Toll pathway is
controlled by the Rel-inhibitor, and IkappaB ortholog,
Cactus, and the Rel-1 transcription factors Dorsal or
Dif. In the C. sonorensis transcriptome, we identified a
complete Cactus ortholog [GenBank: GAWM01009580],
containing typical ankyrin repeats, as well as several
Dorsal orthologs. The CsDorsal sequences represent
at least two dorsal genes and possibly two additional
spliceforms (Table 2), and the sequence was highly similar
to that from the single-copy dorsal gene in mosquitoes
(data not shown) [41].

Antimicrobial peptides
When Toll and Imd pathways are activated, their transcrip-
tion factors (e.g. Dorsal, Relish) translocate to the nucleus
and bind NF-kB promoters upstream of effector genes,
such as those encoding antimicrobial peptides (AMPs).
Full sequences for several AMPs were present in the midge
transcriptome (Table 1). Two members of the Attacin
superfamily were identified, with one having the full char-
acteristics of insect Attacins [GenBank: GAWM01017969],
bearing two C-terminus glycine-rich (G) domains in tan-
dem (Figure 1A). The other attacin-like glycine-rich AMP
[GenBank: GAWM01008443] had only one G domain,
showing high similarity to the G1 domain of other
dipteran glycine-rich AMPs (Figure 1A). This short
CsAttacin-like AMP is not a Diptericin since it lacks
both an N-terminus proline-rich P-domain and a pen-
taglycine repeat domain, which is characteristic of fly
Diptericins [42,43]. In mosquitoes, glycine-rich short
AMPs annotated as “Attacins” also bear only one G
domain (Figure 1A). Therefore, these nematoceran Attacin-
like AMPs categorically are neither Diptericins nor
Attacins, but rather represent another member of this
AMP family. We infer that CsAttacin-like AMP is
likely a truncated paralog of CsAttacin, rather than
being an ortholog of the short Attacin-like AMPs in
mosquitoes.
A single midge Cecropin was identified and is 58 amino

acids in length including signal [GenBank: GAWM01000005]
(Figure 1B). Cecropins have alpha-helical peptide struc-
tures that form pores in bacterial cell envelopes [11,44,45].
CsCecropin contains numerous, conserved positive amino
acid residues (mainly lysine and arginine) which comprise
a characteristic motif associated with this AMP class and
is important in interactions with negatively charged bac-
terial cell membranes. The CsCecropin deduced amino

acid sequence was most similar in sequence to Cecropins
from other nematocera.
Two paralogous Defensins [GenBank: GAWM01019039;

GenBank: GAWM01019040] were identified from the
C. sonorensis transcriptome and only shared 34.8% se-
quence identity (Table 1, Figure 1C). Like other insect
Defensins, both CsDefensins contain six conserved cyste-
ines which are critical to the secondary structure of this
AMP and the interaction with the bacterial envelope [46].

JAK/STAT pathway
The JAK/STAT pathway is involved in the antiviral
defense in insects, as well as cell proliferation, differenti-
ation and development in flies such as Drosophila [10].
Viral infection causes upregulation of the cytokine Upd
(unpaired), which is a ligand for the receptor Domeless
(Dome). Pathway activation ensues after dimeric Dome re-
ceptors change conformationally and cause the autophos-
phorylation, and activation, of the JAK-kinase Hopscotch
(Hop). Hop goes on to phosphorylate Dome, which pro-
vides STAT docking sites, after which Hop phosphorylates
the SH2 domains on recruited STATs. Phosphorylated
STAT dimers translocate to the nucleus and induce ex-
pression of target genes. We identified all components of
the JAK/STAT pathway in the C. sonorensis transcriptome
(Table 3) including partial [GenBank: GAWM01016058]
and complete [GenBank: GAWM01016156] sequences
for Dome, complete Hop [GenBank: GAWM01005626],
and two partial [GenBank: GAWM01007780; GenBank:
GAWM01011778] and one complete [GenBank: GAWM
01013279] STAT. The mechanism by which the STAT-
induced genes control viral amplification remains un-
known, but reverse-genetic approaches have shown that
hop mutant Drosophila have higher Drosophila-C virus
(DCV) loads [7]. Similarly, RNAi knockdown of either
dome or hop results in higher susceptibility to dengue
virus infection in mosquitoes [8]. Two negative regulators
of the JAK/STAT pathway include SOCS (suppressor of
cytokine signaling), which prevents STAT activation by
binding phosphorylated Hopscotch or by preventing or
blocking docking sites on Dome receptors, and PIAS (pro-
tein inhibitor of activated STAT), which blocks STAT
from accessing binding sites upstream of target genes
[47]. Complete sequences for the JAK/STAT negative
regulators SOCS and PIAS were identified. One of the
Culicoides SOCS [GenBank: GAWM01008465] was struc-
turally homologous to Drosophila SOCS36E, which has
been confirmed to be a JAK/STAT repressor in flies [48],
and the other [GenBank: GAWM01008657] is a possible
ortholog of SOCS7. The two complete orthologs for
the SUMO ligase PIAS [GenBank: GAWM01011450;
GenBank: GAWM01011451] contain all the domains
associated with the transcription-blocking functions of
this inhibitor [49] (Table 3).
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Other immune related genes
Other humoral immune components and effectors were
found in the transcriptome including hemolymph defense
molecules such as thioester-containing proteins (TEPs)
and prophenoloxidase (PPO). Insect TEPs are active in
the systemic response to invasive microbes, and help in

opsonization for subsequent clearance by phagocytosis
[50]. We identified two TEP3 orthologs [GenBank:
GAWM01009528; GenBank: GAWM01016118] in C.
sonorensis. In mosquitoes, TEP3 has been shown to
be involved in both the antibacterial and antiparasitic
(antimalarial) defense [50]. PPO zymogen is stored in

Figure 1 ClustalW alignment of antimicrobial peptides from Culicoides sonorensis and other insects. Deduced amino acid sequence for
midge and other insect AMPs were compared and included: (A) Attacin family peptides, (B) Cecropins and (C) Defensins. Key features of each
AMP are indicated in the alignment graphics: (A) Glycine-rich domains (G domains) of Attacins, (B) Conserved cationic amino acid residues (+)
of Cecropins and (C) Six conserved cysteine residues (yellow) of Defensins. GenBank ID for protein sequences used in alignments were as follows:
Attacins, T. yao ABX80077.1, G. morsitans morsitans CAP78961.1, D. melanogaster NP_523745.1, C. capitata XP_00451776.1, A. gambiae EAA11542.2,
C. quinquefasciatus XP_001849658.1, A. aegypti EAT43734.1, C. sonorensis GAWM01008443 (attacin-like), C. sonorensis GAWM01017969 (attacin),
H. cecropia AAA29183; Cecropins, C. quinquefasciatus XP_001861741.1, A. aegypti XP_001649178.1, A. albimanus ABS18287.1, C.sonorensis
GAWM01000005, G. morsitans morsitans AAY41177.1, D. melanogaster AAF57026.1, M. domestica ABD38961.1, B. mori AAC60501.1; Defensins,
A. gambiae ABB00948.1, A. aegypti XP_001657293.1, C. pipiens pipiens AAO38519.1, L. sericata ADI87383.1, S. peregrina P18313.1, M. domestica
AAP33451.1, P. terraenovae P10891.2, G. morsitans Q8WTD4.1, C. sonorensis GAWM01019039 & GAWM01019040, A. mellifera AAA67443.1,
B. terrestris ADB29129.1.
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insect hemocytes and is activated via a serine protease
cascade to phenoloxidase (PO) in response microbial
challenge. PO enzymes oxidize phenols to orthoqui-
nones, which polymerize into melanin, and this results in
melanization of invading microbes or wounds [4]. Two
complete PPO paralogs were found in the Culicoides
transcriptome [GenBank: GAWM01015170; GenBank:
GAWM01010754]. Mosquitoes have from nine (A. gam-
biae) to ten (Ae. aegypti) genes coding for PPOs, and
members of this family have been implicated in refractori-
ness to Plasmodium infection in A. gambiae [51].

Dietary effects on transcriptome-wide expression of
humoral immune genes
Many of the Imd, Toll and JAK/STAT genes were differ-
entially expressed after female midges fed on blood or
sucrose. The humoral immune response to diet is not
due to direct stimulation, but rather is likely mediated
through alteration of the gut microbial community. Such
a circuitous influence on the gut epithelial immune re-
sponse has been shown in mosquitoes, where diet causes
proliferation of gut bacteria, which produce immunosti-
mulatory MAMPs such as peptidoglycan (PGN). The

diet promotes bacterial proliferation by two mechanisms:
(1) directly, where the meal provides nutrients to support
microbial growth or (2) indirectly, where components
of the meal, such as free heme in blood, block the ac-
tivity of reactive oxygen species that otherwise act in
suppressing gut flora populations [52,53]. The MAMPs
produced by proliferating gut bacteria activate both local
responses by binding PRRs on epithelial cells (e.g., Imd
responses) and systemic responses in the hemocoel
(e.g., Imd or Toll on the fat body), mediated through
second messengers [54,55] or by PGN diffusing into the
hemolymph [56,57]. A tripartite interaction between
gut microbes, innate immune responses and vector
competence for pathogens has been demonstrated in mos-
quitoes and other hematophagous insects [27,29,58-60]. In
our gene expression analyses of the midge transcrip-
tomes, we found that altered expression of humoral
immune genes was more often associated with blood
feeding than sugar feeding. Ongoing studies in our labora-
tory have shown that the blood meal induces proliferation
of midge gut bacteria, and more specific analyses on these
microbial-ecological dynamics are being assessed (data
not shown).

Table 3 Components of the insect JAK/STAT pathway identified in the C. sonorensis transcriptome

Description Acc. no. Seq. no. Aedes hit Culex hit e-value Commentsa

Receptors

Domeless (Dome) GAWM01016058 m.63662 AAEL012471 CPIJ017416 4.38e-85 Partial; Transmembrane Receptor, Domeless;
has 2 fibronectin III (FNIII) domains

GAWM01016156 m.64065 AAEL012471 CPIJ017416 4.38e-85 Complete; Transmembrane Receptor, Domeless;
has 3 extracellular FNIII like domains

Cell signaling

Hopscotch janus
kinase (Hop)

GAWM01005626 m.25895 AAEL012553 CPIJ001760 0 Complete; Janus Kinase (JAK) signature; confirmed
domains: ferm domain, SH2 domain, two TK domains

Transcription

Signal transducer
and activator of
transcription (STAT)

GAWM01007780 m.32041 AAEL013265 CPIJ016471 1.01e-43 Partial; has p53 domain, SDE2 domain, STAT domain

GAWM01011778 m.45760 AAEL013265 CPIJ016471 1.01e-43 Partial; missing STAT coiled coil domain

GAWM01013279 m.51827 AAEL013265 CPIJ016471 1.01e-43 Complete; Stat-4 N-domain, AA 1–128; coiled coil,
AA 132–327, STAT DNA-binding domain (P53 like),
AA 328–467, EF-hand domain, AA 468–590,
SH2 domain, AA 566-698

Regulators

Suppressor of cytokine
signaling 5 (SOCS36E?)

GAWM01008465 m.34186 AAEL000393 CPIJ003380 5.70e-102 Complete SOCS box, C-terminal; SH2 domain;
confirmed in insects as JAK/STAT repressor

Suppressor of cytokine
signaling (SOCS7?)

GAWM01008657 m.34752 AAEL006949 CPIJ003985 1.62e-104 Complete SOCS box, C-terminal; SH2 domain;
homologous to Drosophila SOCS16D;
function unknown

Protein inhibitor of
activated stat; PIAS,
sumo ligase

GAWM01011450 m.44071 AAEL015099 CPIJ009163 1.66e-150 Complete; SAP domain; PINIT domain; Zinc finger,
MIZ-type; Zinc finger, RING/FYVE/PHD-type

GAWM01011451 m.44074 AAEL015099 CPIJ009163 1.66e-150 Complete; SAP domain; PINIT domain; Zinc finger,
MIZ-type; Zinc finger, RING/FYVE/PHD-type

aAA, amino acids; SH2, Src homology 2; TK, tyrosine kinase; SDE2, silencing defective 2.
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Table 4 Imd pathway and antimicrobial peptide (AMP) genes differentially expressed with diet

Description Acc. no. Seq. no. Diff. exp.a Log2 fold chg P-value

Receptors

PGRP-LC GAWM01003592 m.19794 Up (LS) 1.08 0.008

GAWM01011033 m.42666 Up (EB to LB) 1.98 0.004

GAWM01011035 m.42672 Up (EB to LB) 1.99 0.004

GAWM01011037 m.42675 Down (EB) −1.79 0.006

Up (LB) 1.24 0.001

Up (EB to LB) 3.04 1.61E-06

GAWM01011039 m.42683 Down (EB) −1.78 0.004

Up (LB) 1.01 0.004

Up (EB to LB) 3.04 2.95E-06

GAWM01000194 m.10444 Down (EB) −1.38 0.004

Up (LB) 0.85 0.009

Up (EB to LB) 2.23 2.05E-06

Up (LS) 0.84 0.005

Cell signaling

DREDD GAWM01000519 m.11119 Up (EB) 1.71 2.85E-07

Up (LB) 0.96 0.005

IAP2 GAWM01008211 m.33483 Up (EB) 1.24 0.0001

IKK-g/kenny GAWM01018250 m.843 Up (EB) 1.82 5.18E-07

Down (EB to LB) −1.25 2.00E-04

IKK-b/ird5 GAWM01013537 m.5295 Up (EB) 1.54 8.19E-07

Down (EB to LB) −0.99 1.00E-03

Transcription

Relish GAWM01014884 m.58438 Down (EB) −1.29 3.00E-04

Up (EB to LB) 1.54 1.08E-05

GAWM01014885 m.58439 Down (EB) −2.79 2.00E-04

Up (EB to LB) 3.03 5.23E-05

AMPs

Attacin-like GAWM01008443 m.3410 Up (EB) 2.63 1.00E-03

Up (LB) 7.14 0

Up (EB to LB) 4.5 2.89E-15

Up (LS) 2.44 3.00E-04

Attacin GAWM01017969 m.7821 Up (EB) 6.31 0

Up (LB) 1.66 0.01

Down (EB to LB) −4.64 0

Up (ES) 3.16 0.0002

Down (ES to LS) −2.14 0.003

Defensin 1 GAWM01019039 m.9997 Up (EB) 2.6 0.006

Up (ES) 2.7 0.012

Defensin 2 GAWM01019040 m.9998 Up (LB) 2.72 0.012

Up (ES) 3.87 0.002

Cecropin GAWM01000005 m.10000 Up (EB) 4.57 8.12E-13

Up (LB) 3.42 2.31E-08

Down (EB to LB) −1.14 0.009
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Expression of most of the Imd pathway genes changed
significantly after female midges fed on blood or sucrose
(P ≤ 0.01; Table 4). After feeding on blood or sucrose,
three PGRP genes were upregulated, and three were down
regulated, showing no clear pattern of response for these
receptors. In regards to Imd cell signaling components, all
were significantly upregulated after either early or late
blood feeding (or both) except for TAB2 and TAK1, which
were not differentially expressed. kenny and ird5 were
downregulated in late blood fed midges relative to expres-
sion levels after early blood feeding (P ≤ 0.001; Table 4).

Genes involved with feedback modulation of the Imd
response were also differentially expressed in blood-fed
midges. In early blood-fed midges, the negative regulators
pirk and caspar were downregulated, which would permit
early transcription of Imd-response target genes, including
AMPs [35]. Expression of the transcription factor relish
was downregulated in early blood fed-midges (Table 4,
Figure 2), which may represent feedback mechanisms to
modulate the amplitude of the immune response, which
may represent feedback mechanisms to modulate the amp-
litude of the immune response. Transcripts coding for the

Figure 2 Transcriptome-wide differential expression analyses of selected Culicoides sonorensis Imd and antimicrobial peptide genes.
Early transcriptomes are 2, 6, 12 h post ingestion (pooled) and late transcriptomes are 36 h post ingestion, for each diet (blood or sucrose).
Teneral midges were newly emerged and unfed. Log10 FPKM values indicated in legend of the heat map. Further description of these genes can
be found in Table 1, and fold-change values and statistics can be found in Table 4.

Table 4 Imd pathway and antimicrobial peptide (AMP) genes differentially expressed with diet (Continued)

Up (ES) 3.11 6.15E-05

Down (ES to LS) −2.69 1.00E-04

Regulators

PIRK/PIMS GAWM01010231 m.4008 Down (EB) −2.28 1.38E-05

Down (LB) −2.38 5.40E-10

Caspar, FAF1 GAWM01012793 m.49687 Down (EB to LB) −0.94 1.00E-03

PGRP-SC2/SC3 GAWM01018647 m.9236 Up (LB) 3.96 3.00E-10

Up (EB to LB) 2.27 8.00E-04
aEB, early blood fed; LB, late blood fed; ES, early sucrose fed; LS, late sucrose fed.
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scavenger amidase PGRP-SC2/SC3 were upregulated in
late blood fed midges, possibly serving as a negative regula-
tor to suppress excessive Imd stimulation [35].
All five AMP target genes were differentially expressed

following blood feeding (Table 4, Figure 2). Genes for
the AMPs attacin-like and attacin were both highly

upregulated after blood feeding, but differed in their
temporal expression patterns, with attacin-like being late-
induced, and attacin being early-induced (Table 4, Fig-
ure 2). Sucrose feeding also caused upregulation of each
gene, with similar patterns in temporal expression. Both
defensin paralogs were upregulated in midges in the early

Table 5 Toll pathway genes differentially expressed with diet

Description Acc. no. Seq. no. Diff. exp.a Log2 fold chg P-value

Upstream signaling

PGRP-SA GAWM01018051 m.7996 Down (EB) −5.35 2.00E-04

Down (LB) −3.06 6.05E-06

GNBP1 GAWM01002165 m.15449 Up (LB) 3.7 1.34E-07

Up (EB to LB) 3.25 1.00E-04

GAWM01003712 m.20067 Up (LS) 1.15 3.18E-03

GAWM01004143 m.21344 Down (EB) −1.73 3.00E-04

Up (LS) 0.78 1.00E-02

GNBP3 GAWM01011997 m.46772 Up (LB) 2.71 1.35E-06

Up (EB to LB) 4.44 2.07E-07

Up (LS) 2.01 2.00E-04

spaetzle1 GAWM01015015 m.58907 Up (LB) 2.6 1.78E-10

Up (EB to LB) 3.55 9.54E-09

Receptors

toll GAWM01015594 m.61585 Down (LB) −1.35 4.00E-03

GAWM01019001 m.9915 Down (EB to LB) −2.58 1.00E-04

GAWM01013057 m.50841 Down (LB) −1.5 1.00E-03

Down (EB to LB) −1.94 1.00E-04

GAWM01013058 m.50847 Down (LB) −2.56 3.00E-04

Up (EB to LB) 1.95 7.00E-03

Cell signaling

MYD88 GAWM01018790 m.948 Up (EB) 1.28 5.29E-06

Down (EB to LB) −0.92 4.00E-04

Pelle GAWM01001221 m.12898 Up (EB) 1.44 2.00E-03

Up (LB) 1.23 3.00E-03

Tube GAWM01007838 m.32196 Up (EB) 2.37 2.60E-14

Up (LB) 1.3 9.22E-05

Down (EB to LB) −1.07 1.00E-04

Up (LB) 1.3 9.22E-05

Cactus GAWM01009580 m.37494 Up (EB) 0.85 6.00E-03

Down (EB to LB) −0.89 4.00E-03

Transcription

dorsal GAWM01010293 m.40244 Down (LB) −0.99 7.00E-03

Down (EB to LB) −1.11 6.00E-03

GAWM01010294 m.40249 Down (LB) −1.12 2.00E-03

Down (EB to LB) −1.06 1.00E-02

GAWM01010297 m.40255 Down (LB) −1.21 8.00E-03
aEB, early blood fed; LB, late blood fed; ES, early sucrose fed; LS, late sucrose fed.
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sucrose-fed transcriptomes, but they differed in their up-
regulation in response to blood feeding, with one being
early-blood and one being late-blood induced (Table 4,
Figure 2). Expression of cecropin was upregulated by both
sucrose and blood feeding, with early responses being sig-
nificantly higher than late (P ≤ 0.009; Table 4).
Many Toll pathway components were differentially

expressed in midges following blood or sucrose feeding
(Table 5). PGRP-SA was downregulated in both early
and late blood-fed midges, but most of the other up-
stream signaling components were significantly upregu-
lated (P ≤ 0.01) in either blood or sugar fed midges (except
one of the GNBP1; Table 5, Figure 3). In contrast, toll
receptors and dorsal transcription factors were down-
regulated after blood feeding (Table 5). The signaling
components myd88, pelle, tube and cactus were all upreg-
ulated in early blood fed midges. Systemic responses to
conditions in the gut suggest that there is communication
between these two body compartments in midges. Further,
the expression patterns of Toll components could be a
glimpse into feedback mechanisms designed to quell the
systemic response to proliferating gut microbiota which
are immunostimulatory, yet are not invasive or threaten-
ing to the midge.

The negative regulators of the JAK/STAT pathway,
SOCS and PIAS, were upregulated in midges early
after blood feeding (P ≤ 0.000009; Table 6). In
addition, although hop was upregulated after early
blood feeding, expression of STAT transcription fac-
tors was downregulated in early blood-fed midges.
Except for the dome receptors, expression levels of all
JAK/STAT components returned to baseline (teneral)
levels at 36 h post ingestion (Table 6). The phenomenon
of blood feeding alone suppressing the JAK/STAT path-
way would play an important role in the infection suc-
cess of arboviruses present in the blood meal, since the
expression of some antiviral genes is regulated by
STAT [8]. We are currently investigating whether this
early downregulation occurs locally in gut epithelial cells,
which serve as the midge’s primary line of defense against
arboviruses.
Expression of other systemic immune components also

changed significantly after blood feeding (P ≤ 0.00001).
This included tep3 [GenBank: GAWM01016118], which
was downregulated nearly 4-fold early after blood feed-
ing but then returned to baseline expression levels 36 h
after the blood meal, and two genes for prophenoloxidase
(ppo). One ppo gene [GenBank: GAWM01010754] was

Figure 3 Transcriptome-wide differential expression analyses of selected Culicoides sonorensis Toll genes. Early transcriptomes are 2, 6,
12 h post ingestion (pooled) and late transcriptomes are 36 h post ingestion, for each diet (blood or sucrose). Teneral midges were newly emerged
and unfed. Log10 FPKM values indicated in legend of the heat map. Further description of these genes can be found in Table 2, and fold-change
values and statistics can be found in Table 5.
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upregulated nearly 9-fold in early blood fed midges and
over 1000-fold in late blood fed midges. However, the
other C. sonorensis ppo [GenBank: GAWM01015170] was
downregulated over 16-fold in early blood-fed midges
before returning to the baseline expression level at 36 h
post-blood feeding.

AMP expression in the gut of female C. sonorensis
As a follow up to the transcriptome-wide analysis of in-
nate immune gene expression in female C. sonorensis,
we performed tissue-specific qRTPCR analysis of AMP
expression in the alimentary canal (“gut”). The aim was to
more finely assess the temporo-spatial expression of these
effector genes after blood and sucrose feeding. In congru-
ence with our whole midge transcriptome-wide expression
analyses (Table 4, Figure 4), blood feeding resulted in
upregulation of all five AMPs in the gut (Figure 4).
The attacin-like AMP was significantly upregulated in
late blood-fed midges while attacin was upregulated early
and sustained through 24 h post-blood ingestion (Figure 4A
and B, respectively). On a whole-midge level, the two
defensin genes showed different patterns of expression
with defensin m.9997 being upregulated early after blood
feeding, and defensin m.9998 being induced late after
blood feeding (Table 4). However, in the gut-specific
qRTPCR analysis, both defensin genes showed similar
patterns of upregulation after blood feeding, and the

fold-increase was significantly different from teneral
midge expression levels at 12 and 24 h after blood feeding
(Figure 4C and D). This suggests that the differential ex-
pression patterns seen in the transcriptome-level analyses
would be attributable to tissues other than the alimentary
canal, possibly the fat body. Both local (gut) and systemic
(fat body) defensin responses to the ingested blood meal
have been reported in other hematophagous arthropods
[61-63]. Midge cecropin was upregulated at all four time
points after blood ingestion, and expression levels were
significantly different from teneral midges at 12 and 24 h
post-blood feeding (Figure 4E). Sucrose feeding did not re-
sult in significant upregulation of attacin-like, attacin or
cecropin in the alimentary canal, but did induce expression
of both defensin genes. The expression of these AMPs
after the blood meal is likely a consequence of altered
microflora populations, whose proliferation would have an
immunostimulatory effect on the gut epithelial cells. Intri-
guingly, this suggests that blood feeding alone indirectly
impacts the conditions of the gut and, putatively, the vec-
tor competence of midges for pathogens in the blood
meal.

Conclusions
We demonstrated conservation of humoral immune compo-
nents in the three major immune pathways of insects (Imd,
Toll and JAK/STAT) in the C. sonorensis transcriptome.

Table 6 JAK/STAT pathway genes differentially expressed with diet

Description Acc. no. Seq. no. Diff. Exp.a Log2 fold chg P-value

Receptors

Dome GAWM01016156 m.64065 Down (LB) −1.23 2.00E-04

Down (EB to LB) −1.69 6.83E-08

Down (LS) −0.94 1.00E-03

Cell signaling

Hop GAWM01005626 m.25895 Up (EB) 1.15 6.00E-05

Down (EB to LB) −1.23 1.15E-05

Transcription

STAT GAWM01007780 m.32041 Down (EB) −3.54 4.77E-13

Up (EB to LB) 3.41 1.03E-12

GAWM01011778 m.45760 Up (EB to LB) 1.21 5.00E-04

GAWM01013279 m.51827 Down (EB to LB) −0.68 8.00E-03

Regulators

SOCS GAWM01008657 m.34752 Up (EB) 1.26 8.98E-06

Down (EB to LB) −1.18 1.25E-05

PIAS, sumo ligase GAWM01011450 m.44071 Up (EB) 2.01 1.03E-10

Down (EB to LB) −2.22 1.37E-12

GAWM01011451 m.44074 Up (EB) 2.29 1.93E-11

Down (EB to LB) −2.41 1.18E-12
aEB, early blood fed; LB, late blood fed; ES, early sucrose fed; LS, late sucrose fed.
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We have also provided insight into these defense pathways
in the midge, by examining their patterns of expression
on a transcriptome-wide level. We showed that blood
feeding alone greatly impacts the expression of many
components of these pathways, most importantly ef-
fector molecules such as AMPs, PPO and TEPs, which
may be directly involved with the midge’s vector compe-
tence for pathogens. This knowledge allows us to take
the next steps in assessing function by utilizing reverse-
genetics (e.g. RNAi) approaches to more clearly define
the role of the innate immune system in midge permis-
siveness or refractoriness for pathogens. Such studies
will be aimed at revealing novel transmission-blocking
and disease intervention strategies.
In this study, we did not explore the other arthropod

immune and defense response components including
the DUOX and JNK pathways, components of which
have been found in our transcriptome but have not yet
been completely characterized. These pathways as well
as other defense systems such as iron sequestration, mel-
anization and cellular responses will be an important

focus of future studies aimed at fully characterizing the
immune repertoire of this important vector species.

Additional files

Additional file 1: Primer sequences used for qRT-PCR analyses of
antimicrobial peptide gene expression in female C. sonorensis
alimentary canal.

Additional file 2: Antimicrobial peptide (AMP) expression analysis
using REST-MCS©. Midges were fed blood or sucrose and processed as
described in the text for qRTPCR of AMP gene expression, with three
biological replicates (shown). A pairwise fixed allocation randomization test
was performed using REST-MCS® to analyze AMP gene expression.
P-values are for comparison to the calibrator state (teneral, unfed whole
female midges) using the reference gene EF1b. Statistically significant
P-values are shown in yellow. Red and blue represent upregulation and
downregulation of target genes, respectively and grey indicates that threshold
cycle was not crossed within 40 cycles (thus, no detectable expression).
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