Clemson University TigerPrints

Chemical and Biomolecular Graduate Research Symposium

Research and Innovation Month

Spring 2014

Carbon fibers derived from sustainable precursors

Meng Zhang Clemson University

Jing Jin Clemson University

Amod A. Ogale *Clemson University*

Follow this and additional works at: https://tigerprints.clemson.edu/chembio_grs

Recommended Citation

Zhang, Meng; Jin, Jing; and Ogale, Amod A., "Carbon fibers derived from sustainable precursors" (2014). *Chemical and Biomolecular Graduate Research Symposium*. 1. https://tigerprints.clemson.edu/chembio_grs/1

This Presentation is brought to you for free and open access by the Research and Innovation Month at TigerPrints. It has been accepted for inclusion in Chemical and Biomolecular Graduate Research Symposium by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Carbon fibers derived from sustainable precursors

Meng Zhang Jing Jin Dr. Amod A. Ogale

Chemical and Biomolecular Engineering, Center for Advanced Engineering Fibers and Films (CAEFF)

Clemson University

AEFF

Outline

- Literature Review: carbon fiber precursors PAN, mesophase pitch, rayon, and lignin
- Motivation and Objectives
- Experimental
 - Melt spinning with ECN organosolv lignin
 - Solution spinning with acetylated Indulin AT

AEFF

- Results and Discussion
- Conclusions
- Future Work

Carbon Fiber Characteristics

- ✓ Excellent Strength and Stiffness = high performance
- Light-weight = fuel-efficient
- Outstanding Electrical and thermal conductivity
- ✓ Fire-retardant
 - Not Cost-Competitive
 - Current precursors are not bio-based and fibers are not produced by environmentally-friendly processes

EFF

Production of Carbon Fibers: Background

A E F F

Carbon Fiber Precursors

- Polyacrylonitrile (PAN)
- Mesophase pitch
- Rayon
- Lignin (current research)

PAN Precursors

Precursors: Mesophase Pitch and Rayon

Kundu, .. Ogale, CARBON 2008

Buckley & Edie, 1986

Not for structural applications

AEFF

Chemical Structure of Lignin

Softwood Lignin

Hardwood Lignin

E. Alder, Wood Science & Technology, 11, 169 (1977) H. H. Nimz, Angew. Chem. Int. Ed., 13, 313 (1974)

Secare F

Lignin

Source: wood, grass, wheat straw, etc

Separation process: kraft, soda, organosolv pulping, etc

Literature Review

- Different lignin precursor, NaOH solution for dry-spinning / melt spinning. 1969, Otani
- Steam exploded hardwood lignin followed by hydrogenation and several extraction steps, melt-spinning. 1991, K. Sudo *et al*
- Organosolv (acetic acid) hardwood lignin based carbon fiber, melt-spinning 1993, Y. Uraki *et al*; 1995, S. Kubo *et al*
- Organosolv (acetic acid) softwood lignin, melt-spinning, 1998,
 S. Kubo *et al*
- Hardwood kraft lignin, melt spinning. 2002, J. F. Kadla et al
- Acetylated softwood kraft lignin, melt-spinning. 2008, R. C. Eckert
- Softwood kraft lignin using hardwood kraft lignin as plasticizer, melt-spinning. Baker, F. S. EERE, U.S. Dept of Energy Project ID # Im_03_baker

AEFF

Mechanical properties of lignin based CF

Precusor Type	Diameter (µm)	Elongation (%)	Modulus (GPa)	Tensile strength (MPa)	Reference
Steam Exploded hardwood	7.6 ± 2.7	1.63 ± 0.19	40.7 ± 6.3	660± 230	K. Sudo <i>et al</i> , 1992
Organosolv Hardwood	14-35	0.64-1.12	2.17-39.1	13.3-355	Y. Uraki <i>et al</i> , 1995
Organosolv Softwood	84 ± 15	0.74 ± 0.14	3.59 ± 0.43	26.4 ± 3.1	S. Kubo <i>et al</i> , 1998
Kraft Hardwood	46 ± 8	1.12 ± 0.22	40 ± 11	422 ± 80	J. F. Kadla <i>et</i> <i>al,</i> 2002
Kraft Softwood, acetylated	5-100	N/A	N/A	N/A	Robert C., 2008
Hardwook		2.03	82.7	1070	D. A. Baker, 2013
Rayon based carbon fiber	5-25		100	100-1000	Buckley & Edie; Fitzer& Manocha
PAN based carbon fiber	5-15	2	100-500	3000-7000	Buckley & Edie; Fitzer& Manocha
Mesophase pitch based carbon fiber	5-15	0.6	200-800	1000-3000	Buckley & Edie; Fitzer& Manocha
	. N				ГГ

Goal: Lignin-based carbon fibers with higher performance properties

Specific objectives:

Chemical modification of separated lignin

Preparation of lignin based carbon fiber Spinning Thermostabilization Carbonization Microstructure and Properties Tensile Nanotexture and Graphitic Crystallinity

Experimental

Materials

- ECN lignin (Organosolv lignin, Energy Research Centre of the Netherlands)
- SKL Softwood Kraft lignin (Indulin AT, MeadWestvaco, Charleston, SC)

Melt spinning of ECN organosolv lignin

•Source: Poplar wood lignin from ethanol/ H_2O pulping

- •Softening point: 155°C
- •Decomposition temperature: ~280°C from TGA result in N₂ purge

EFF

Transient shear viscosity of ECN lignin (@ 160°C)

Melt spinning of ECN lignin

Instron Capillary Rheometer
Temperature: 160°C
Winding rate: 190 m/min
Capillary diameter: 254 μm
Fiber diameter: 29±1 μm

Thermostabilization of ECN fibers

It takes more than 10 days to stabilize to prevent fibers from being tacky

ECN carbon fibers had a smooth surface and circular cross section

Mechanical properties of ECN carbon fibers

Diameter (µm)	Elongation (%)	Modulus(GPa)	Tensile strength (MPa)
14±1	1.4 ± 0.4	34±4	450±130

CAEFF

Indulin AT Lignin

- Indulin AT (Softwood Kraft lignin, MeadWestvaco, Charleston, SC)
- No Softening Point, charring occurred due to high molecular weight fraction and dehydration reaction

Previous modification of Indulin AT-Acetylation with high extent of substitution on -OH group and fractionation

- 1 g lignin + 15 ml acetic anhydride, 85°C, 2 hour
- Acetylated Indulin AT (Ace-SKL) had a softening point between 156 and 167°C

AEFF

•Ace-SKL had a softening point, but unstable melt viscosity.

•Ace-SKL was extracted with 75% acetic acid aqueous solution. Resulted material (75%AA-Ace-SKL) had a softening point of 136-145°C.

•75% acetic acid extracted Ace-SKL had relatively stable melt viscosity.

- 75%AA-Ace-SKL was melt spun into fibers
- 75%AA-Ace-SKL fibers became tacky during oxidative stabilization

Tacky Ace-SKL fibers

CAEFF

Ace-SKL fibers obtained from high extent of acetylation (15 ml AA/g SKL) could not be stabilized due to the presence of a significant extent of substitution of hydroxyl groups by thermally stable acetyl groups

Alternative way:

- Ace-SKL lower extent of -OH group substitution, which is favorable for thermostabilization
- Solution spinning instead of melt spinning

- Spectra normalized with peaks at 856 cm⁻¹ (C-H bending on benzene rings).
- The hydroxyl peak decreased as the amount of acetic anhydride per gram of SKL increased.

EFF

• Higher content of hydroxyl group is favorable for thermostabilization.

Solution spinning with Ace-SKL

- Ace-SKL acetone solution concentrated
- Take up speed: 50 m/min
- Spinneret diameter: 75-150 μm
- Fiber diameter: $27\pm3 \ \mu m$

Solution spinning with Ace-SKL

2.1 g Ace-SKL / ml acetone, 45-45°C spinning

2.1 g/ml acetone room temperature spinning

Thermostabilization of Ace-SKL fibers under tension

Stabilization with constant load

As-spun fiber was glued on both ends with hook and hanging in the oxidation oven with weight loaded.

Fibers can be stabilized and extended up to 800% of original length during stabilization.

Carbonization of stabilized Ace-SKL fibers

Carbonization and Graphitization furnaces: 1000-2700°C

Carbonization under tension

1000°C carbonized

- Crenulated CF have 35% larger surface area as compared with equivalent circular fibers
- This could lead to higher fiber-matrix interfacial bond strength, and ultimately better realizability of carbon fiber properties in the composites

Mechanical properties of Ace-SKL carbon fibers

Percent Of extension during carbonization (%)

	Diameter (µm)	Strength (MPa)	Apparent Modulus (GPa)	Apparent strain to failure (%)
Ace-SKL CF (processed without tension)	22.5 ± 0.4	510 ± 50	30 ± 2	1.7 ± 0.1
Ace-SKL CF (processed with tension)	5.9 ± 0.2	1050 ± 70	35 ± 3	3.0 ± 0.2

EFF

A

Ace-SKL CF X-ray Diffraction Spectrum

2θ (degrees)

CAEFF

Azimuthal angle (degrees)

Conclusions

- A softwood kraft lignin was modified by controlled acetylation and the precursor (Ace-SKL) was solution-spun into fibers, which is capable of thermal-oxidation.
- Mechanical properties of Ace-SKL carbon fibers (CF) can be enhanced by tension. The tensile properties reported here is among the best for lignin-based CF.
- Crenulation on Ace-SKL CF surface lead to larger surface area and potential higher fiber-matrix interfacial strength.

Next steps...

- Rheology of spinning solution is being studied
- Relationship between fiber cross-section shape and mechanical properties will be studied

AEFF

UV/thermostabilization to increase stabilization speed

Acknowledgment

ARL-SERDP Grant WPSON-10-03 / W911NF-10-2-0024

ARL/UD/Drexel/Clemson team members including Dr. Marlon Morales and Dr. Young-pyo Jeon

ECN, Netherlands for providing lignin

Crenulated surface are desirable for enhancing fiber-matrix interfacial area

CAEFF

