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Carbon Fiber Characteristics 
 

 Excellent Strength and Stiffness = high performance 
 Light-weight = fuel-efficient 
 Outstanding Electrical and thermal conductivity 
 Fire-retardant 

 
 Not Cost-Competitive  
 Current precursors are not bio-based and fibers are not 

produced by environmentally-friendly processes  
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PAN 
precursors 
  

PAN 
precursor 
fibers 

wet or melt 
spinning 
 stabilized 

fibers 

Oxidative 
stabilization 

200-300°C 
1-24 h 

Carbonization 
800-1700°C 
inert atmosphere 

Carbon 
fibers 

Production of Carbon Fibers: Background 

Carbon does not melt ! 
 
Therefore, carbon fibers must be produced from 
a solution or melt processible precursor, and the 
precursor fibers must be carbonized 
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Carbon Fiber Precursors 

• Polyacrylonitrile (PAN) 
• Mesophase pitch 
• Rayon 
• Lignin (current research) 
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PAN Precursors 

The precursor for PAN-based carbon 
fibers is actually a copolymer. 

Evolution of HCN and other toxic gases 
during stabilization and carbonization 

Buckley & Edie, 1986 
Fitzer & Manocha, 1998 
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Precursors: Mesophase Pitch and Rayon 

 
 

Kundu, ..Ogale, CARBON 2008 

Not for structural 
applications 

Buckley & Edie, 1986 
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 Softwood Lignin Hardwood Lignin 
E. Alder, Wood Science & Technology, 11, 169 (1977) 
H. H. Nimz, Angew. Chem. Int. Ed., 13, 313 (1974) 

Chemical Structure of Lignin 
OH

OH
HH

p-coumaryl alcohol 

OH

OH
OCH3H3CO

synapyl alcohol 

OH

OH
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coniferyl alcohol 

Presenter
Presentation Notes
Lignin is a crosslinked macromolecule relatively hydrophobic and aromatic in nature.
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Lignin 

Source:  
wood, grass, wheat straw, etc 
 
 
Separation process:  
kraft, soda, organosolv pulping, etc 
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Literature Review 
• Different lignin precursor, NaOH solution for dry-spinning / 

melt spinning. 1969, Otani  
• Steam exploded hardwood lignin followed by hydrogenation 

and several extraction steps,  melt-spinning. 1991, K. Sudo et 
al 

• Organosolv (acetic acid) hardwood lignin based carbon fiber, 
melt-spinning 1993, Y. Uraki et al; 1995, S. Kubo et al 

• Organosolv (acetic acid) softwood lignin, melt-spinning, 1998, 
S. Kubo et al 

• Hardwood kraft lignin, melt spinning. 2002, J. F. Kadla et al 
• Acetylated softwood kraft lignin, melt-spinning. 2008, R. C. 

Eckert 
• Softwood kraft lignin using hardwood kraft lignin as plasticizer, 

melt-spinning. Baker, F. S. EERE, U.S. Dept of Energy 
Project ID # lm_03_baker 
 
 
 
 



 C  A  E  F  F    

Precusor Type Diameter 
(µm) 

Elongation 
(%) 

Modulus 
(GPa) 

Tensile 
strength (MPa) 

Reference 

Steam Exploded 
hardwood  7.6 ± 2.7 1.63 ± 0.19 40.7 ± 6.3  660± 230  K. Sudo et al, 

1992 
Organosolv 
Hardwood   14-35 0.64-1.12 2.17-39.1 13.3-355 Y. Uraki et al,  

1995  
Organosolv 
Softwood 84 ± 15 0.74 ± 0.14 3.59 ± 0.43  26.4 ± 3.1  S. Kubo et al,  

1998 
Kraft  
Hardwood 46 ± 8 1.12 ± 0.22 40 ± 11 422 ± 80 J. F. Kadla et 

al, 2002 
Kraft 
Softwood, acetylated 5-100 N/A N/A N/A Robert C., 

2008 

Hardwook 2.03 82.7 1070 D. A. Baker, 
2013 

Rayon based carbon 
fiber 5-25 100 100-1000 

Buckley & 
Edie; Fitzer& 
Manocha 

PAN based carbon 
fiber 5-15 2 100-500 3000-7000 

Buckley & 
Edie; Fitzer& 
Manocha 

Mesophase pitch 
based  carbon fiber 5-15 0.6 200-800 1000-3000 

Buckley & 
Edie; Fitzer& 
Manocha 

Mechanical properties of lignin based CF 
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Specific objectives: 
 
Chemical modification of separated lignin  
  
Preparation of lignin based carbon fiber 
 Spinning 
 Thermostabilization 
 Carbonization 
Microstructure and Properties 
 Tensile 
 Nanotexture and Graphitic Crystallinity 
  
 
 
 
 
 

Goal:  
Lignin-based carbon fibers with higher performance properties 
 

Presenter
Presentation Notes
SKL has only 13% fusible fraction. This fraction can not be spun due to very low MW.
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Materials  
 
• ECN lignin (Organosolv lignin, Energy Research Centre of the 
Netherlands) 
 
• SKL Softwood Kraft lignin (Indulin AT, MeadWestvaco, Charleston, SC)  
     
 

 

Experimental 

Presenter
Presentation Notes
SKL has only 13% fusible fraction. This fraction can not be spun due to very low MW.
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Melt spinning of ECN organosolv lignin 
•Source: Poplar wood lignin from ethanol/H2O pulping 
•Softening point: 155ºC 
•Decomposition temperature: ~280ºC from TGA result in N2 purge 

0

0.5

1

1.5

2

2.5

3

3.5

0

50

100

150

200

250

0 10 20 30 40 50 60

Sh
ea

r r
at

e 
(1

/s
) 

Vi
sc

os
ity

 (P
a·

s)
 

Time (min) 

Viscosity

Shear rate

Transient shear viscosity of ECN lignin (@ 160ºC)   



 C  A  E  F  F    

Melt spinning of ECN lignin  

•Instron Capillary Rheometer 
•Temperature: 160ºC 
•Winding rate: 190 m/min 
•Capillary diameter: 254 µm 
•Fiber diameter: 29±1 µm 
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Thermostabilization of ECN fibers  

It takes more than 10 days to 
stabilize to prevent fibers from 
being tacky 
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ECN carbon fibers had a smooth surface and circular cross section  

Diameter (µm) Elongation (%) Modulus(GPa) Tensile strength (MPa) 

14±1 1.4±0.4 34±4 450±130 

Mechanical properties of ECN carbon fibers 
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Indulin AT Lignin 

• Indulin AT (Softwood Kraft lignin, MeadWestvaco, 
Charleston, SC)  
 

• No Softening Point, charring occurred due to   
 high molecular weight fraction and dehydration  
reaction 
     
 

 

Presenter
Presentation Notes
SKL has only 13% fusible fraction. This fraction can not be spun due to very low MW.
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Previous modification of Indulin AT-Acetylation with high 
extent of substitution on -OH group and fractionation 
 

• 1 g lignin + 15 ml acetic anhydride, 85oC, 2 hour 

• Acetylated Indulin AT (Ace-SKL) had a softening 
point between 156 and 167°C 

Presenter
Presentation Notes
SKL has only 13% fusible fraction. This fraction can not be spun due to very low MW.
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Overload due to 
dehydration!!! 
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(a) Ace_SKL

(b) 75% Acetic acid extracted Ace_SKL

•Ace-SKL had a softening point, but unstable melt viscosity. 
 

•Ace-SKL was extracted with 75% acetic acid aqueous solution. Resulted 
material (75%AA-Ace-SKL) had a softening point of 136-145°C. 
 

•75% acetic acid extracted Ace-SKL had relatively stable melt viscosity. 

Presenter
Presentation Notes
SKL has only 13% fusible fraction. This fraction can not be spun due to very low MW.
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• 75%AA-Ace-SKL was melt spun into fibers 

• 75%AA-Ace-SKL fibers became tacky during oxidative stabilization 

As-spun Ace-SKL fibers Tacky Ace-SKL fibers 

Thermostabilization 

Ace-SKL fibers obtained from high extent of acetylation (15 ml AA/g SKL) could not 
be stabilized due to the presence of a significant extent of substitution of hydroxyl 
groups by thermally stable acetyl groups 

Presenter
Presentation Notes
SKL has only 13% fusible fraction. This fraction can not be spun due to very low MW.
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Alternative way:  
• Ace-SKL lower extent of -OH group substitution, which is favorable for 

thermostabilization 
• Solution spinning instead of melt spinning 

 
• Spectra normalized with peaks at 856 cm-1 (C-H bending on benzene rings). 
 

• The hydroxyl peak decreased as the amount of acetic anhydride per gram of SKL increased. 
 

• Higher content of hydroxyl group is favorable for thermostabilization. 
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Presenter
Presentation Notes
SKL has only 13% fusible fraction. This fraction can not be spun due to very low MW.
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Solution spinning with Ace-SKL 
• Ace-SKL acetone solution concentrated 

• Take up speed: 50 m/min 

• Spinneret diameter: 75-150 µm 

• Fiber diameter: 27±3 µm 

 

Fiber 
spinning 

unit 
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Solution spinning with Ace-SKL 
2.1 g Ace-SKL / ml acetone, 45-45oC spinning 

2.1 g/ml acetone room temperature spinning  
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Thermostabilization of Ace-SKL fibers under tension 
Stabilization with constant load  
As-spun fiber was glued on both ends with hook and hanging in 
the oxidation oven with weight loaded.  
Fibers can be stabilized and extended up to 800% of original 
length during stabilization.  
 
 
 
 

Weight 



Carbonization and Graphitization 
furnaces: 1000-2700°C 

Carbonization of stabilized Ace-SKL fibers 

Carbonization under tension 
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1000ºC carbonized 

• Crenulated CF have 35% larger surface area as compared with 
equivalent circular fibers 

• This could lead to higher fiber-matrix interfacial bond strength, 
and ultimately better realizability of carbon fiber properties in the 
composites 
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Mechanical properties of Ace-SKL carbon fibers 

Diameter 
(µm) 

Strength 
(MPa) 

Apparent 
Modulus 
(GPa) 

Apparent strain 
to failure (%) 

Ace-SKL CF (processed 
without tension) 22.5 ± 0.4 510 ± 50 30 ± 2 1.7 ± 0.1 

Ace-SKL CF (processed 
with tension) 5.9 ± 0.2 1050 ± 70 35 ± 3 3.0 ± 0.2 
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Presentation Notes
SKL has only 13% fusible fraction. This fraction can not be spun due to very low MW.



 C  A  E  F  F    

0

20

40

60

80

100

-90 -60 -30 0 30 60 90

In
te

ns
ity

 %
 

Azimuthal angle (degrees) 

Carbonized with tension

Carbonized without tension

Presenter
Presentation Notes
SKL has only 13% fusible fraction. This fraction can not be spun due to very low MW.



 C  A  E  F  F    

Conclusions  
• A softwood kraft lignin was modified by controlled acetylation and the 

precursor (Ace-SKL) was solution-spun into fibers, which is capable of 
thermal-oxidation.  

• Mechanical properties of Ace-SKL carbon fibers (CF) can be enhanced 
by tension. The tensile properties reported here is among the best for 
lignin-based CF.  

• Crenulation on Ace-SKL CF surface lead to larger surface area and 
potential higher fiber-matrix interfacial strength. 

Next steps… 

 Rheology of spinning solution is being studied 
 Relationship between fiber cross-section shape and mechanical 

properties will be studied 
 UV/thermostabilization to increase stabilization speed 
 

Presenter
Presentation Notes
SKL has only 13% fusible fraction. This fraction can not be spun due to very low MW.
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Crenulated surface are desirable for enhancing fiber-matrix interfacial area  

2400ºC 
carbonized 
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