
Figure 5. DSS simulation and streaming graphics controls. Predicted hydrograph 

based on alternative rainfall and groundwater use scenarios (green dashed curve) are 

visualized with the historical hydrograph (blue curve). Black curve indicates the difference 

between scenario and historical hydrographs. 

Introduction 

In 2005, groundwater withdrawals averaging 762  million 

gallons per day (MGD) constituted 95 percent of the total 

amount of water withdrawn in the 5-county region 

surrounding the city of Orlando in central Florida (Figure 

1). Groundwater recharge from rainfall into the well-

drained karst terrain is the largest component of the water 

balance for the region’s Floridan aquifer system 

(Sepúlveda and others, 2012). Consequently, variations in 

both rainfall and groundwater use can affect water levels 

and flows in aquifers, lakes, and springs. Several 

deterministic models have been developed to quantify 

cause-effect relationships and to help regulators and 

other stakeholders manage these regional resources. 

However, the models have been found to have difficulty 

simulating the complex interactions between the weather 

and the surface and subsurface environments in a karst 

terrain.  

 The goal of this project was to develop a decision 

support system (DSS) based on data mining results to 

complement the deterministic models. A DSS is a 

powerful, easy-to-use package that combines data, 

analytical results, predictive models, and supporting 

graphics that allows resource managers and stakeholders 

to evaluate alternative management strategies (Roehl and 

others, 2006).  

Figure 4. DSS rainfall set point controls. Rainfall data are modulated as either a 

percentage of historical values or using a constant bias. As shown in the map at right, the 

sites were grouped based on k-means clustering of 1,440-day moving window averages.  
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Technical Approach  

Artificial neural networks (ANNs) are a 

multivariate, nonlinear curve fitting method from 

the field of Artificial Intelligence that is commonly 

used for industrial process modeling and control 

(Jensen, 1994). Because of delays in availability 

of groundwater use data, the data mining initially 

focused on determining the extent to which 

rainfall, air temperature, and potential 

evapotranspiration could explain daily variability 

in the hydrographs from 1942 through 2008. As a 

first step, an empirical, multi-layer perceptron 

ANN model was developed for each hydrograph. 

For inputs to the ANNs, the climate time series 

were decomposed into decorrelated spectral 

ranges that had window sizes from 30 days to 

six years to represent the dynamics of the 

spectral time periods.  

Description of the Data 

Substantial historical hydrologic and climate data were available for data mining (Figure 1). Less complete 

groundwater use data was also available. They comprised:  

• daily hydrographs for 23 wells (20 Floridan aquifer system, 3 surficial aquifer system), 22 lakes, and 6 springs;  

• daily rainfall, air temperature, and estimated potential evapotranspiration from 18 National Oceanic and Atmospheric 

Administration (NOAA) sites; and 

• monthly actual and estimated groundwater use representing utility pumping, phosphate mining, agriculture, citrus 

farming, golf course irrigation, and drainage well recharge.  

The completeness (fewer missing data) and quality (more measured and less estimated data) of the data varied 

significantly. In general the NOAA meteorological data were the most complete and have the highest quality, followed 

by the well, lake, spring, and groundwater use data.  

 The ANN for each site was systematically trained by using sensitivity analyses to cull less predictive inputs. 

This ‘training-sensitivity’ process revealed that rainfall-derived inputs were the best climatic predictors. Temperature 

and potential evapotranspiration inputs were removed, resulting in 51 rainfall-only ANNs. For most sites, the data 

was bifurcated into training and testing data sets, the latter to provide independent statistics about model accuracy. 

This was not possible for some sites because their measurement population was too small. 

 The groundwater use impacts were subsequently modeled using inputs derived from aggregated data that 

summed all different types of groundwater use for each month. This approach was necessary because most of the 

groundwater use data were estimates whose temporal patterns varied little spatially, a problem for empirical 

modeling that relies on variability to be effective. The aggregation was also justified by the generally high hydraulic 

conductivity of the Floridan aquifer system that disperses localized impacts, and the one-month time step that 

dampens transient variability.  

 The groundwater use data were processed into spectral ranges similarly to the rainfalls. The 51 groundwater 

use ANNs simulate the monthly-averaged prediction errors (residuals) of the rainfall ANNs. The residuals represent 

the portion of the variability in the hydrographs that is not explained by rainfall ANNs. For all but a few sites, testing 

data were not used because of low measurement populations resulting from changing the time step from daily to 

monthly. Figure 2 shows that the outputs of each site's ANN pair are summed to compute a final prediction.  

Decision Support System (DSS) 

A DSS was developed in Microsoft ExcelTM. It integrates the 102 rainfall and usage ANNs 

with the historical database, and provides user controls (Figure 4) and streaming 

graphics to allow users to run simulations having alternative rainfall and groundwater use 

scenarios (Figure 5). The DSS executes at a monthly time step from 1965 through 2008. 

Conclusions 

For nearly all sites, groundwater use was found to explain much less of the observed 

variability in hydrographs than climatic forcing, although relative groundwater use impacts 

are greater during droughts. These results may be affected by the relatively poor 

completeness and quality of the groundwater use data. Nevertheless, results indicate that 

consideration of both climate variability and groundwater use in predictions of future 

hydrologic system behavior would benefit the sustainable management of the resource. 

The ANN models were embedded in a DSS that will be distributed to resource managers 

and other stakeholders.  
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Results and Discussion 

Daily Rainfall ANNs - Accuracy statistics (based on testing data when available) for the rainfall ANNs indicate the average coefficient 

of determination (R2) is highest for the wells, followed by the lakes and then the springs (Table 1). The average percent error is lowest 

for the wells and higher for lakes and springs. Lines fitted to the rainfall ANN residuals by least-squares with respect to time (green 

lines in Figure 3) denote their long-term trends and suggest long-term changes in water use, land use, and other factors. The long-

term decreasing trend of Well A is accurately predicted using rainfall ANNs because rainfall in the western portion of the study area 

was observed to decline. The ANN poorly replicates the long-term trend and more extreme high frequency variability of Well B, which 

may be caused by pumping and shallow water-table dynamics, respectively. 

#With 

#Sites Test Data Max Min Avg Max Min Avg

Wells 23 23 0.91 0.56 0.82 13.6 4.8 7.1

Springs 6 2 0.78 0.49 0.63 10.7 6.4 9.1

Lakes 22 14 0.89 0.46 0.72 13.1 7.5 9.5

R2 %Err

Table 1. Statistics for rainfall ANNs. %Error = 

100 * root mean square error/historical range. 

Table 2. Statistics for usage ANNs (Training R2), 

and summed rainfall and usage ANNs (Sum R2). 

#Sites Max Min Avg Max Min Avg

Wells 23 0.31 0.00 0.08 0.91 0.67 0.85

Springs 6 0.56 0.04 0.27 0.74 0.37 0.56

Lakes 22 0.35 0.00 0.12 0.90 0.32 0.72

ANN Sum R2Training R2

 The longer-term up and down trending at Lake A is accurately predicted using rainfall ANNs. At Lake B, the minimum water 

levels around day 22,000 are not predicted, and possibly indicate a period of high pumping during a sustained drought. 

Monthly Groundwater Use ANNs - Limited improvement in prediction accuracy was gained by incorporation of groundwater use. 

The R2 values for summed rainfall and usage ANNs (Table 2) are similar to those for rainfall ANNs (Table 1), but for monthly time 

steps. The average R2 values for the groundwater use ANNs generally are low (Table 2), possibly because: the usage impacts are low 

most of the time at most sites, actual usages are not accurately represented in the largely estimated data, and(or) the variability in the 

rainfall ANN residuals manifest forcing that is not represented in the usage data or the ANNs. However, R2 values tended to be higher 

for the springs, suggesting larger usage impacts. Limited measurement population precluded using testing data for usage ANNs.  

 All six springs are clustered at the northern center of the study area (Figure 1). The springs were sporadically measured for most of the study period, but more frequent 

measurements were made in the last decade. Spring discharge “flat-lining,” or consecutive days of identical flows, is possibly due to procedures used to estimate daily data from direct 

measurements and were removed. The elevated flows around day 11,000 at Spring A are seen at other sites having data for this period and are not predicted by the ANNs. Spring B's high 

frequency variability during the last decade is not accurately predicted possibly due to more localized rainfall events not observed in any of the 18 NOAA rainfall gages. 
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Figure 2. ANN model schematic for each site. WL refers to 

the water levels of the wells and lakes. Q refers to the flow 

rates of the springs. 

Monthly averaging of measured,           predicted, and residual WL & Q 

Figure 3 (above). Measured and predicted hydrographs with residuals for example 

wells, springs, and lakes based on daily rainfall ANNs. The well and lake examples 

are those having the highest and lowest R2. The spring examples are those having the 

highest and second lowest R2. Site locations shown in Figure 1. 
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Figure 1. Study area showing locations of wells, 

springs, lakes, and NOAA climatic monitoring. 
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