Numerical Model For Hydraulic Performance Of A Perforated Pipe Underdrain Surrounded By Loose Aggregate
Tanjina Afrin ${ }^{1}$, Dr. Abdul A. Khan ${ }^{2}$, Dr. Nigel B. Kaye ${ }^{2}$, and Dr. Firat Y. Testik ${ }^{2}$ 1. Graduate Student, 2. Associate Professor Of Civil Engineering

## Introduction

Urbanization significantly alters the hydrological cycle, leading to reduced infiltration, increased flooding, and reduced water quality. Proper management of storm-water rumoff is necessary to mitigate these undesired impacts. The use
of Best of Best Management Practicses (BMP) and Low Impact Development (LD) is
of Ber becoming more common day by day for this purpose and perforated pipes are one of the main components of these LIDs and BMPs. This poster presents results from a CFD model that combines both porous media flow and pipe flow.
The model was developed in ANSYS FLUENT to examine the hydraulic behavior he model was developed in ANSY FLUEN to examine the hydraulic behavior
(stage-discharge relationship) of a porous pipe shrouded in loose aggregate for use as an underdrain in storm water management. The model was validated against the experimental data of Murphy et al. (2014) and was then used to undertake a detailed parametric study of porous pipe underdrain performance.

## Methodology

A detailed 3D model has been made and solved using the ANSYS workbench and ANSYS FLUENT v 14.0 respectively. There were three cell zones in every model; pipe, aggregate and water. The aggregate zone was designated as a porous packed bed zone.


From a mesh sensitivity analysis, it was found that the optimum minimum size of the element is $1.54 \mathrm{e}-4 \mathrm{~m}$ and the maximum face size is $1.3 \mathrm{e}-2 \mathrm{~m}$. Figures below show the mesh along mid plane (a) and a close view along a cross section of the model (b) respectively.

(a)
(b)

The figure on the right shows the different boundary conditions using different colors.
The following solution methods were used in developing the model

- Pressure-velocity coupling : SIMPLE
- Momentum, turbulent kinetic energy and turbulent dissipation rate discretization: Second Order Spatial Moment discretization: Second Order Upwind Scheme
- Time : Transient


The Palmetto Cluster at Clemson University was used for all these large


When the water surface is above the top of the aggregate, water flows along the water surface and then down through the aggregate.
The aggregate flow is mostly vertical, which is consistent with prior experimental results.

The CFD model constantly over predicted the mass flow rate through predicted
the pipe.
$\checkmark$ The difference between the CFD model and experimental results model and experimental results
was on average $10.6 \%$ (upper was on averag

One possible explanation for this consistent over prediction is that the CFD model does not account for individual pieces of aggregate blocking holes in the pipe sidewall. To correct for this, the wall inlet area was reduced by multiplying it by the aggregate porosity. That is,
$A_{\text {inlet-corrected }}=\phi_{\text {aggregate }} A_{\text {inlet }}$.
$\checkmark$ This reduced the average error to just 6\% (lower figure to right).


$\checkmark$ The mass flow rate is quite small at the upstream end of the pipe with the bulk of the water entering the pipe in the final meter before the outlet.

A non-dimensional plot of $C_{D}=\frac{Q}{A \sqrt{2 g H}}$ vs. $\frac{H}{D}$ for both experimental and computational data is shown on the right.
$\checkmark$ Experimental $C_{D}$ is 0.492 from Murphy et al. (2014).
$\checkmark$ Computational $C_{D}$ is 0.53

## Parametric Study

A parametric study was undertaken to examine the impact of pipe length, total head, trench width, pipe diameter, and pipe wall inlet area on the hydraulic performance of porous pipes. In all cases the domain length was 10 m .

Results indicate that for a given
pipe and trench configuration, the pipe and trench configuration, the discharge increases with pipe length up to a critical length of typically just over 1 m . Beyond this critical length, there is no increase in the outlet flow rate with further increases in the pipe length.

$\checkmark$ There is little performance to be gained by having porous pipe drains that are longer than about 1 m

he critical length is insensitive to changes in (from top left) total head over the pipe ( $H$ ), wall inlet area (Ai), depth of aggregate (h), pipe diameter (D), and channel width (W).

$\checkmark C_{D}$ doesn't vary with $H, A i, W$, and $h$
$\checkmark$ If the pipe diameter increases, $C_{D}$ increases a bit up to a certain point and then becomes constant

## Applications

This developed model can be used for design and analysis of different LIDs and BMPs for any practical range of parameters.
The parametric study shows that for draining stormwater, using several parallel pipes instead of a single long pipe of the same diameter and total length will provide better performance.

## References

Murphy, P., Kaye, N. B., \& Khan, A. A. (2014) "Hydraulic performance of aggregate beds with perforated pipe underdrains flowing full." A.S.C.E. Journal of Irrigation \& Drainage Engineering 140(8), 04014023-1-7.

