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Abstract— This paper presents a framework for online 

highway travel time prediction using traffic measurements that 
are likely to be available from Vehicle Infrastructure Integration 
(VII) systems, in which vehicle and infrastructure devices 
communicate to improve mobility and safety. In the proposed 
intelligent VII system, two artificial intelligence (AI) paradigms, 
namely Artificial Neural Networks (ANN) and Support Vector 
Regression (SVR), are used to determine future travel time based 
on such information as current travel time, VII-enabled vehicles’ 
flow and density. The development and performance evaluation 
of the VII-ANN and VII-SVR frameworks, in both of the traffic 
and communications domains, were conducted, using an 
integrated simulation platform, for a highway network in 
Greenville, South Carolina. Specifically, the simulation platform 
allows for implementing traffic surveillance and management 
methods in the traffic simulator PARAMICS, and for evaluating 
different communication protocols and network parameters in 
the communication network simulator, ns-2. The study’s findings 
reveal that the designed communications system was capable of 
supporting the travel time prediction functionality. They also 
demonstrate that the travel time prediction accuracy of the VII-
AI framework was superior to a baseline instantaneous travel 
time prediction algorithm, with the VII-SVR model slightly 
outperforming the VII-ANN model. Moreover, the VII-AI 
framework was shown to be capable of performing reasonably 
well during non-recurrent congestion scenarios, which 
traditionally have challenged traffic sensor-based highway travel 
time prediction methods. 
 

Index Terms— Artificial intelligence (AI), Traffic Simulation, 
Travel time prediction, Vehicle Infrastructure integration (VII) 
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I. INTRODUCTION 
N the last few years, there has been an increased interest in 
real-time traffic condition prediction as an approach to 
positively influencing travelers’ departure time and route 

choice. Travel time, which is easy to understand, has become 
the most common traffic condition provided to travelers [1, 2]. 
However, online travel time prediction is not a classic time 
series problem [ 3 ] due to the delay in the availability of 
previous data quantities (i.e. a vehicle needs to complete its 
trip before its travel time can be estimated and made available 
for future predictions). Current practice typically uses either 
the historical mean travel time or current travel time (as 
estimated from inductive loop detector and/or traditional 
Automatic Vehicle Identification (AVI) systems that depend 
on fixed-location readers for example) as the basis for the 
predicted travel time in the near future [4]. These methods, 
however, do not work satisfactorily during congestion. 
Moreover, the majority of existing travel-time prediction 
methods, with the exception of AVI systems, uses densely-
placed traffic sensors such as traffic cameras and loop 
detectors to estimate travel time [4].  These sensors are 
typically placed at a spacing ranging from every half mile to a 
quarter of a mile. With these methods, travel time is predicted 
indirectly based upon traffic sensor measurements, such as 
volume, density and speed, which may introduce additional 
errors into the travel time prediction. Added to that, existing 
travel time prediction models do not perform well under the 
impact of unexpected incidents [1].  

The emerging concept of “Vehicle Infrastructure Integration 
(VII)”, in which vehicles and infrastructure equipments will 
communicate with one another [5], provides an opportunity to 
directly collect the travel time and other traffic data in a real-
time fashion. As envisioned in VII systems, equipping 
vehicles and roadside infrastructures with wireless 
communication interfaces will make it possible to constantly 
sample the travel time, flow, and density of VII-enabled 
vehicles. Such substantial improvement in the availability and 
quality of traffic information would in turn improve the 
performance and capability of travel time prediction systems. 
For example, it can be expected that VII travel time prediction 
systems would be capable of accurately predicting travel time, 
even during non-recurrent congestion scenarios. 
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Previous research has primarily focused on the potential of 
using VII to benefit highway and intersection collision 
avoidance. Given the feasibility of using automatic vehicle 
identification (AVI) and probe vehicle techniques for travel 
time prediction, this paper proposes to use VII for real-time 
travel time prediction. Additionally, in order to take full 
advantage of the wealth of data likely to be provided by VII, 
intelligent algorithms are used to aid in processing the myriad 
of data generated through the system. Specifically, this 
research applied two Artificial Intelligence (AI) paradigms, 
artificial neural networks (ANN) and support vector regression 
(SVR), for a VII based real-time freeway travel time 
prediction framework. Following the development of the 
proposed VII-ANN and VII-SVR framework, this study 
evaluated the travel time prediction functionality and 
performance, in both the traffic and communication domains, 
of the framework in a simulation environment. Since 
communication effectiveness plays a key role in determining 
the overall performance of the VII system, the authors used a 
simulation platform that integrates traffic and communication 
simulators to facilitate the study [ 6]. Detailed and realistic 
simulation of both traffic and communication interaction can 
assist researchers in testing various functional architecture 
designs, implementation algorithms, and parameter 
configurations, eliminating the need for collecting field data 
after the implementation of a particular system. The use of 
simulation provides an alternative, as a more affordable 
evaluation method, to the costly and complex field 
experiments. 

The remaining parts of this paper are organized as follows. 
Section II reviews the state-of-the-knowledge regarding online 
travel time prediction methods, computational intelligence, 
integrated traffic and communication simulators, and VII. 
Section III describes the research method and the development 
of the proposed VII-ANN and VII-SVR framework for online 
highway travel time prediction.  Section IV presents the 
results from a case study designed to evaluate the performance 
of the proposed framework in a simulation environment. The 
paper concludes in Section V with a discussion of the 
important findings, possible limitations of this study, and 
future research suggestions.  

 

II. LITERATURE REVIEW 

A. Online Travel Time Prediction 
Depending on the prediction period horizon, the real-time 

travel time prediction can be categorized into two types: pre-
travel and en-route prediction [2]. Pre-travel prediction usually 
has a prediction horizon of 30-60 minutes.  En-route 
prediction, on the other hand, has a much shorter time horizon 
(e.g., 0-5 minutes).  This paper focuses on the online travel 
time prediction for en-route travel. 

Existing short-term online travel time prediction methods 
include: (a) simulation based methods (e.g. DYNAMIT [7], 
DYNASMART [8]); (b) statistical analysis of historical and 
real-time data (e.g. instantaneous travel time algorithm [9], 
linear model [10], pattern matching [11]), and (c) AI-based 
techniques. Simulation-based travel time prediction methods 

are generally regarded as accurate and robust, provided that 
the traffic environment in which they are deployed is similar 
to that for which they were calibrated. However, the 
requirements of dynamic Origin-Destination estimation make 
them computational resource intensive, and complicated to 
implement and operate. The statistical methods, on the other 
hand, are relatively simple and easy to implement. They, 
however, don’t work well for congested conditions due to 
their insufficient consideration of the highly stochastic and 
complex nature of the traffic network. 

Previous studies have reported promising results from the 
applications of AI in travel time prediction. Among the 
different AI paradigms used for travel time prediction, feed 
forward neural networks appear to be the most popular (e.g. 
[12, 13]).  Other ANN topologies have also been used. Van 
Lint [1], for example, used state-space neural network (SSNN) 
model to explicitly consider the prediction of travel time in 
each section to derive the future travel time of the entire 
network.  

While the AI methods for travel time prediction are fairly 
accurate and computationally efficient, their developments are 
usually labor intensive and tailored for a specific application 
[1]. Specifically, the conventional ANN method suffers from 
the highly nonlinear and non-monotonic function for the real-
time travel time prediction problem. Due to this reason, the 
issues of slow convergence and local optimization can occur 
when applying feed forward neural network to traffic sensor 
based travel time predication model [ 14 ]. Two types of 
treatments have been proposed to overcome this problem: (a) 
pre-classification [13]; and (b) pre-mapping (e.g., [14]) of the 
input data.  More recently, Wu et al. [15] proposed to use SVR, 
a relatively new AI paradigm, for short term travel time 
prediction. Though their inputs included the realized travel 
time data that would not be available for a real-time 
application, their work demonstrated that SVR is a promising 
tool for travel time prediction. Researchers have reported that 
SVR requires less computational resources, and has greater 
prediction potential and learning ability compared to other 
paradigms [15, 16, 17]. 

B. Support Vector Regression (SVR) 
SVR is a member of the Support Vector Machine (SVM) 

paradigm family, which is based on Statistical Learning 
Theory (SLT) and the principal of Structural Risk 
Minimization (SRM) [ 18 , 19]. SVM algorithms include a 
suite of supervised machine learning algorithms that are 
applicable to classification (e.g. two-class Support Vector 
Classification (SVC), multi-class SVC) as well as regression 
problems (e.g. SVR). They use kernel functions to map the 
input data into a high dimensional feature space where linear 
classification becomes feasible. Since the kernel mapping is 
implicit, which depends only on the inner or dot product of the 
input data vectors, it is possible to map the data into high 
dimensions and still keep the computational cost low. The 
SVM model depends on a subset of the training samples, 
known as support vectors, which are used to determine the 
hyper-plane for classification or regression. Other examples of 
SVM applications to transportation problems include its use 
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for traffic speed and traffic flow predictions, and incident 
detection in the context of ITS applications [15, 17]. 

C. Integrated Traffic and Communications Simulator 
With recent interest in VII, significant effort has been 

devoted to developing an integrated simulation platform 
connecting traffic and communications simulators. Earlier 
work on integrated traffic and communications simulations 
focused on creating simplified models of communication 
characteristics [ 20 , 21 ]. This approach had apparent 
advantages for fast validation of different traffic operational 
concepts without too much concern about the details of 
communication efficiency and reliability.  However, it often 
led to inevitable omissions of fine-grain random effects in the 
network communications process. On the other hand, several 
studies have adopted a simplified vehicular movement model 
(e.g., random way point model) to feed geographic and kinetic 
data of nodes for detailed communication network modeling 
[ 22, 23]. While randomized node movement and message 
generation models are commonly used by the mobile ad hoc 
network research community in validating networking 
protocols for generic applications, they are inadequate for real-
time validation of specific vehicular traffic operations. More 
recently, simulators integrating microscopic traffic and 
detailed network protocol modes were developed for vehicle-
to-vehicle communication [ 24, 25].  The authors of these 
papers made a convincing case that an integrated traffic and 
network simulator revealed important findings that were not 
otherwise observed. Such simulators either integrate mature 
simulators from each domain [26, 27] or completely compose 
both functions to meet study-specific requirements [28, 29]. 
However, none of these previous studies appears to have 
addressed communications involving fixed field equipments. 
Furthermore, no explicit-traffic-explicit-communication 
simulator that integrated state-of-the-art traffic and 
communication simulation software has been reported. Among 
the prevalent modern simulators used for communication 
studies are Network Simulator version 2 (ns-2) [ 30 ], 
Glomosim [31], Jsim [32], Qualnet [33], and OPNET [34], 
with ns-2 providing the most comprehensive open source 
support of communication protocols. In the traffic simulation 
domain, PARAMICS is a microscopic traffic simulation 
program that features a flexible Application Programming 
Interface (API) for customized interface with other programs. 
In the current study, ns-2 and PARAMICS are adopted to 
build a simulation platform for detailed communications and 
traffic modeling, which is necessary for modeling a VII based 
real time travel time prediction system. 

D. Vehicle Infrastructure Integration (VII) 
Since 2003, FHWA has sponsored a variety of efforts that 

led to the development of the national Vehicle Infrastructure 
Integration (VII) architecture and its functional requirements 
[35]. Recently, the USDOT has conducted a research program 
called Mobility Applications for Vehicle Infrastructure 
Integration initiative [ 36 ].  In that program, researchers 
studied the potential for transmitting information between 
infrastructure and vehicles to enhance safety and mobility. 

Several states including California [37] and Michigan [38] 
have also tested various methods for implementing these types 
of programs [39].   

For traffic operations applications, VII California [ 40 ] 
demonstrated the efficacy of using VII for online traffic 
condition assessment. In that demonstration, individual 
vehicles were used as probe vehicles to send their location, 
speed, direction, and time stamp to a centralized processing 
center for traffic surveillance and traveler information 
dissemination. Crabtree and Stamatiadis [41] and Tanikella et 
al. [42] illustrated that the travel time data generated from VII 
can reliably estimate traffic conditions and identify incidents. 
Moreover, many other studies investigated the potential of VII 
for road and weather condition assessment [ 43]. However, 
none of these studies appear to have used VII for online travel 
time prediction.  

The current study proposes to take advantage of direct 
traffic measurements available from individual VII-enabled 
vehicles and state-of-the-art AI algorithm (specifically ANN 
or SVR) for real-time highway travel time prediction. In this 
study, the proposed VII-ANN and VII-SVR frameworks were 
then evaluated in a detailed microscopic simulation 
environment and their performances were compared against a 
baseline travel time prediction algorithm.  

 

III. METHODOLOGY 
This section discusses the assumptions made and the steps 

taken to develop and evaluate the proposed VII-ANN and VII-
SVR framework for online travel time prediction, using a 
highway network in Greenville, South Carolina.  

A. Basic Assumptions and Proposed Framework 
In the selected test network, roadside units (RSUs) with 

microprocessor and wireless interfaces were assumed to be 
located at every interchange along the highway. Traffic data 
collected by the RSUs from VII-enabled vehicles were to be 
aggregated at a controller where AI (ANN or SVR) algorithms 
would be running to relate the current traffic condition to the 
travel time of vehicles departing the start point during the next 
time step. The authors assumed that each VII-enabled vehicle 
could communicate with RSUs on approach. The VII system 
was designed to use information such as time stamp and 
vehicle location from the individual VII-enabled vehicle to 
identify such macroscopic traffic measurements as traffic 
density, flow and segment travel time for the VII-enabled 
vehicles.  

For predicting travel times, six variables were initially 
selected as candidate predictors of the travel time for the time 
step under consideration (i.e. the target travel time in Table 1). 
These were: (1) the measured travel time for the whole 
highway segment under consideration during the previous 
time step; (2) the measured junction-to-junction (J2J) travel 
time (measured from VII-enabled vehicles that completed one 
junction to another during the previous time step); (3) the 
density of the VII-enabled vehicles, calculated as the total 
number of VII-enabled vehicles remaining within the segment 
divided by the segment length ; (4) the entry flow of the VII-
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enabled vehicles into the segment during the previous time 
step; (5) the exit flow of the VII-enabled from the segment 
during the previous time step; and (6) the change in the VII-
enabled density. The J2J travel time was measured first for 
each VII-enabled vehicle as the difference between the times 
when it was on the highway and communicated with the RSU 
at two consecutive interchanges, and then averaged for each 
J2J segment and summed up for the entire highway segment 
under consideration.  

A correlation analysis was then performed to identify a 
subset of the six candidate predictors which had the highest 
correlation with the dependent variable (i.e. the target or 
predicted travel time for the next time step). As shown in 
Table 1, the “VII Vehicle Density” was found to have the 
highest correlation with the target travel time.  This is not 
surprising given the generalized definition of traffic density as 
the total time spent by all vehicles in the roadway section 
(with length l) during an observation interval t divided by l*t 
[ 44 ]. Besides “VII Vehicle Density”, “Measured Whole 
Segment Travel Time” and “Measured J2J Travel Time” 
appear to be highly correlated to each other, and to the “Target 
Travel Time”.  However, the J2J travel time had a higher 
correlation to the target travel time compared to the travel time 
measured over the whole segment.  Besides, the J2J travel 
time has the additonal advantage of not only increasing the 
number of travel time data points that can be collected, but of  
reducing the prediction horizon in the sense that the input 
travel time is realized closer to the target travel time as well. 
Additionally, using J2J travel time is less susceptible to the 
impact of non-continuous highway trips (i.e. trips that stop in 
the middle of the trip for some reason) to some extent. In 
addition to travel times, the “VII Vehicle Exit Flow” had a 
relatively higher correlation factor compared to the entry flow 
or density change.  Given this, the authors decided to use the 
following three input variables as predictors: (a) the current 
junction-to-junction travel time; (b) the VII-enabled vehicles’ 
density; and (c) the VII-enabled vehicles’ exit flow.   All input 
variables for current time step were measured during the 
previous time step. 

B. The Integrated Simulator 
As mentioned above, this study used an integration of the 

traffic simulator PARAMICS and the network simulator ns-2 
to develop and evaluate the VII-ANN and VII-SVR 
frameworks for travel time prediction. PARAMICS is a time-
step, behavior-based microscopic traffic simulation software 
[45]. In PARAMICS, many different Driver Vehicle Units 
(DVUs), including VII-enabled vehicles in this research, 
interact in the simulation model to represent the traffic 
conditions realistically. A unique feature of the PARAMICS 
model that made it quite appropriate for this study is its 
Application Programming Interface (API).  API is a 
PARAMICS add-on module, which allows users to modify 
many features of the underlying PARAMICS models, as well 
as connect PARAMICS’s internal modeling core with external 
customization and software [45].The ns-2 simulator on the 
other hand, is an open-source software with an open-source 
architecture which allows great freedom in incorporating 

newly developed protocol components and interfacing with 
other software [32]. Both the PARAMICS API and ns-2 
model are C-based programmable and have open architecture, 
making it convenient to synchronize and transfer data (i.e., 
communicate between these two software packages).  

In this study, PARAMICS was used to realistically model 
the traffic flow of the selected test network.  Its API was also 
used to continuously collect traffic measurements, and to 
synchronize command control and data exchange with ns-2.  
On the other hand, the real-time vehicle-to-vehicle and 
vehicle-to-infrastructure communications including 
addressing, routing, and scheduling solutions were modeled in 
the ns-2 environment.  Specifically, each fixed node in ns-2 
corresponds to a VII device (i.e., RSU and controller) and 
performs different functions such as data collection, exchange, 
process and dissemination. Each vehicle in PARAMICS is 
represented as a mobile node in ns-2. An ID is assigned to 
each vehicle when it enters the network, this ID uniquely 
identify this vehicle and track its movement throughout its life 
cycle in the network. Once the vehicle exits the highway 
network, its ID is recycled to save the run time memory. 
PARAMICS and ns-2 perform synchronized locked-step 
executions to model simultaneously the vehicular traffic 
dynamics and network communications. 

Figure 1 shows the execution flow chart that implemented 
the described integrated simulator scheme. A synchronization 
file was used to act as a switcher to control the sequential 
running of PARAMICS and ns-2. During the integrated 
simulation, both PARAMICS and ns-2 intermittently check 
the synchronization file to determine whether its counterpart 
has finished its simulation period. At the beginning of each 
synchronized period, PARAMICS runs first for one period 
(e.g., 30 seconds) to update the control file with the mobile 
nodes (vehicles) movement and messages sending command 
in TCL language that ns-2 can interpret. Then, ns-2 load and 
push those events from the control file updated by 
PARAMICS into its scheduler for execution. Given its role 
(i.e., RSU and controller), the simulated fixed node in ns-2 
collects real time data (i.e. the RSU role), and applies the 
ANN, SVR or other model for estimating future travel time 
(i.e. the controller role). If the communicated information 
involves impacts on traffic dynamics (e.g., display traffic 
information on variable message sign (VMS) to impact 
drivers’ behavior), ns-2 will log the specific command into the 
control file, so that PARAMICS can interpret it and execute it 
in the next synchronized period. This process continues until 
the end of the integrated simulation. 

1) Communications Simulation: The communication 
networking simulation software ns-2 (version 2.29) simulates 
various protocols, in each hierarchical layer of the internet 
architecture, at packet-level, among nodes for a specified 
network topology.  The simulated layers for this study are 
summarized in Table 2. Network protocols were developed 
and/or modified with individual source files in C++ to allow 
for simulating the AI VII travel time prediction system. The 
corresponding changes in OTCL library and header file were 
also made. As can be seen in Table 2,  user-defined 
applications, such as the AI travel time prediction algorithms 
in the controllers, were inserted at the application layer with a 
function of C++ source codes. UDP-based (UDP stands for 
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User Datagram Protocol) transport protocol with modified 
message header and corresponding interpretation scheme was 
developed to support VII data networking and VII travel time 
prediction applications. In the network layer, the developed 
hierarchical message routing scheme at each fixed node was 
implemented as a new routing agent class with several 
member functions. Finally, the ns-2 embedded IEEE 802.11p 
protocols were adopted for the MAC (i.e., Media Access 
Control) and Physical layer. To start the communication 
networking simulation, network topology, nodes parameter 
configuration, simulation initialization and tracking were 
specified in OTCL language.  

As stated in Table 2, the default IEEE 802.11 
implementation available in ns-2 (version 2.29) was adopted 
to articulate IEEE 802.11p MAC and Physical layer. Table 3 
presents the standardized MAC and Physical layer parameters 
included in the ns-2 simulation environment. The only major 
difference between the simulated and the actual IEEE 802.11p 
protocol is that the data rate of 54 Mbps, specified by the 
IEEE 802.11 a/b/g protocol, was used instead of a data rate 
between 3-27 Mbps, specified by the IEEE 802.11p protocol. 

2) Traffic Simulation: With PARAMICS, network building 
began with the collection of field data including geometric, 
traffic control, and traffic volume data.  The network was then 
calibrated through comparison between the simulated volume 
output and the field traffic counts data.  The calibration 
process also compared site-collected queue lengths and travel 
times to those produced by the simulation model.  After many 
iterations and adjustments to the road network and driver 
behavior parameters, the simulation model was considered to 
accurately reflect the observed travel times within one percent 
and no significant difference was observed between the 
observed and simulated queue lengths at the bottleneck 
segment. This approach followed similar methodology 
adopted by other researchers in calibrating and validating 
microscopic traffic simulation models [46, 47].  

With the simulation model developed, the next step was to 
generate the training and testing cases for the VII-ANN and 
VII-SVR travel time prediction model. The development and 
calibration of these two AI algorithm required a set of training 
cases with the aforementioned three input variables (namely 
current J2J travel time, VII-enabled vehicles flow and 
density), and the target output (i.e. the simulation-generated 
travel time for vehicles departing the start point during the 
next time step).  To do this in PARAMICS, the VII-enabled 
vehicles were assigned a special vehicle type, with varying 
percentages relative to the entire traffic population depending 
on the penetration rate of the VII-enabled vehicles considered. 
An API program was then developed to log a series of cases or 
vectors (xi, yi), where yi is the target travel time and xi is the 
input vector that has three afore mentioned member variables. 
For this study, two minutes were used as the time interval to 
log xi’s as inputs for ANN and SVR prediction algorithm. 

C. Developing the ANN Model 
Given that the target travel time is roughly monotonic with 

the input variables (e.g. previous travel time, density and 
flow), and given that the dimension of the input vector is only 
three, the authors adopted the conventional and widely used 

Multi Layer Feed-forward (MLF) neural network with back 
propagation (BP) learning, for developing the VII-ANN model 
for online travel time prediction. The MLF neural network in 
this study consists of one input layer, two hidden layers, and 
one output layer. The sigmoid functions were used as the 
transfer functions for the hidden layers and a linear function 
was used for the output layer. The NeuroSolutions® [ 48] 
software was used to determine the number of neurons in the 
hidden layers, resulting in 10 neurons for the first hidden layer 
and 5 neurons for the second hidden layer. The training ended 
either after the number of training epochs exceeded 10,000 or 
when the cross validation error started to increase. A learning 
rate equal to 0.01 was used. 

D. Developing the SVR Model 
For this study, the ε -SVR was adopted. Given a training 

data set of (xi, yi), i = 1, …, l where xi ∈ R3 (representing the 
input vector with three real numbers) and yi ∈ R is the target 
output, the objective of the training by applying ε -SVR is to 
find the prediction function that optimizes the minimum 
distance between the regression hyper-plane for any sample of 
the training data. This can be achieved by solving (1) [49, 50]: 
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where w , b , ξ , *ξ are the coefficient, constant, and error 
term for the SVR prediction function; ε  is a parameter in ε -
SVR representing the marginal error of regression; ø is the 
transformation function, which mapped the training vectors xi 
into a higher dimensional space, enabling the SVR to find a 
hyper-plane for linear regression with the maximal margin in 
this higher dimensional space. The support vectors are those 
(xi, yi) whose error terms ξ / *ξ  are not 0. After the training 
process has identified the support vectors and all the mapping 
function coefficients and constants, the prediction function for 
a new input can be expressed as: 
 

bxwy T += )(φ                             (2) 
 

Furthermore, the kernel function K(xi,xj)= ø(xi)Tø(xj), 
determines the form of the transformation function ø. In this 
study, radial basis functions (RBF) were used as the kernel 
functions for its generally good performance in many 
scenarios [51]. 

 
)||||exp(),( 2

jiji xxxxK −−= γ  , 0>γ             (3) 
 
Here, γ  is the kernel parameter. 

As noted by [49, 52], scaling is important for the success of 
AI paradigms such as ANN and SVR.  Before training, all the 
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data were linearly scaled to a range of [0, 1] using a common 
range file, which was saved and re-used later during the 
prediction phase. Moreover, to maximize the utility of the 
training data while searching for the SVR optimal parameters 
set, the authors randomly divided the training dataset into five 
groups.  Each time, four groups of data were used to train a 
SVR model with a possible combination of parameters, then 
the trained model was validated on the remaining group to 
estimate the prediction accuracy in terms of mean squared 
error (MSE).  This process was repeated five times with the 
same parameter combination for different training and 
validating groups, to obtain an average value for the cross-
validation prediction accuracy rate. After the optimized 
parameter combination was identified, the evaluation was 
performed by applying the trained and validated ANN and 
SVR model on the testing dataset, which was not used in the 
training and validation process. The SVR algorithm for the 
travel time prediction, as described above, was implemented 
using PARAMICS API, utilizing various functions from 
LIBSVM [50], a software library for SVM. 

E. Evaluation of the VII-ANN and VII-SVR Model 
The authors tested different penetration rates to evaluate the 

effectiveness of the proposed travel time prediction 
framework. The measures of performance for the VII-AI 
framework included a frequency plot that gave the percentage 
of prediction cases falling within a specific range of the 
relative error between the predicted and the simulated travel 
time. In addition, four other measures were used to assess the 
prediction accuracy, namely the: a) root mean of squared error 
proportional (RMSEP); b) mean relative error (MRE); c) mean 
absolute relative error (MARE); and d) standard deviation of 
relative error (SRE). These four measures are defined in (4) 
through (7), where ti is the target value of the travel time; yi is 
the predicted value; ei is the prediction error and is equal to yi - 
ti; rei is the relative error equal to ei / ti; and N is the number of 
experiments. 
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In order to provide a baseline algorithm for comparison 

with the developed intelligent algorithms, a popular and easy-
to-implement real-time travel time prediction algorithm, called 
the instantaneous algorithm [1, 15], was coded and compared 
with the proposed VII-ANN and VII-SVR model. The 
comparison was performed on the same network and under the 

same traffic conditions. The instantaneous travel time 
prediction model assumes that the travel time does not change 
for a short period. Therefore, it only uses the available travel 
time collected within the immediate previous time step to 
predict the travel of vehicles that will start within the 
immediate following time step. Since the VII system is able to 
collect the travel time directly, the averaged travel time of the 
VII-enabled vehicles arriving at the end point during each time 
interval will be considered as the predicted travel time of the 
vehicles departing the start point during the next time interval 
for the instantaneous algorithm. 

F. Application to Case Study Network 
The I-85 corridor in Greenville, South Carolina, was 

selected as the study site for case design. The network, as can 
be seen from Figure 2, consists of approximately 11 miles of 
freeway and 6 interchanges.  This section of I-85 is part of the 
corridor connecting Atlanta, Georgia, and Charlotte, North 
Carolina.  It services the traffic from and to the Greenville 
metropolitan area with a population of over 600,000 people, 
according to the 2006 census estimate.  Both long-distance 
traffic (which accounts for about 30 percent of the total traffic 
volume) and local traffic (which accounts for the remaining 70 
percent) have significant impact on the freeway network.  
While this freeway section is further supported by I-385 
(which intersects with I-85 at exit 51) and I-185 (which 
intersect with I-85 at exit 42), there are no major arterials 
parallel to I-85 that have the potential to accommodate traffic 
diversion during congestion. 

The prototype travel time prediction system considered in 
this study predicts travel time along the northbound segment 
of I-85 between Exit 40 and Exit 51. The free flow travel time 
for that segment is around 10 minutes.  During congestion, it 
could take more than 20 minutes to traverse the segment. The 
traffic scenario that this study focused on was the weekday 
PM peak period.  Simulations were started at 4:00 PM and 
allowed 20 minutes of warm up time.  After traffic was fully 
loaded onto the network (i.e. at 4:20 PM), the travel time 
prediction system started working and continued until 9:40 
PM.  Peak traffic flow generally occurred between 4:30 PM 
and 6:30 PM at the study site. 

To generate the training and testing sets, a simulation model 
with various VII penetration rates (i.e., the percentage of VII-
enabled vehicles in the total traffic population), generated the 
traffic data for a period of four weeks with recurrent 
congestion along the study segment of I-85 as shown in Figure 
2. Among all the cases, two weeks of data were randomly 
selected as the training data and the remaining two weeks 
were used for testing for both VII-ANN and VII-SVR models. 
As mentioned above, the authors collected traffic volumes, 
travel time, and queue length in the real world, and used it for 
carefully calibrating the simulation model before generating 
the training and testing data sets. The simulated traffic 
conditions (locations and severity of congestions) were also 
face validated by the experts from Greenville traffic 
management center. Figure 3 shows the travel time patterns of 
ten weekdays with five different traffic demand inputs.  These 
demand profiles were derived based upon real-world 



 7 

observations, and hence should create a reasonably realistic 
and challenging test environment for testing the accuracy and 
robustness of VII-AI travel time prediction system. Note that 
the same traffic demand inputs may result in different travel 
time patterns due to the random nature of the microscopic 
traffic simulation model. 

IV. PERFORMANCE ANALYSIS 
The following sections present the implementation details 

and evaluation results for the proposed VII-ANN and VII-
SVR frameworks.  Before evaluation, the parameters of the 
SVR algorithms were adjusted to achieve optimal performance 
as described below. 

A. Parameter Adjustments for the SVR Algorithm 
An important step in developing an SVR algorithm involves 

determining the optimal parameters for the algorithm. Figure 4 
shows the results of the grid search for the three optimal 
parameters (cost coefficient C, kernel function parameter γ  
and loss function parameter ε ).  As can be seen, the cost 
coefficient was varied between 20 and 28, the kernel function 
parameter between 2-2 and 28, and the loss function parameter 
between 20 and 210. Each contour line on this contour map 
represents a specific combination of C, γ  and ε  that 
produces the same prediction accuracy in terms of MSE. The 
contours were used to identify the parameter combination that 
yielded the highest prediction accuracy.  The grid searching 
program identified the best combination of values as C=28, 

42=γ  and 62=ε , which gave a MSE value of 2312 for 
cross-validation. 

B. Communication Performance 
As shown in Figure 5, the average number of packets 

received by the RSU per minute increased linearly as the 
percentage of VII-enabled vehicles increased. On the other 
hand, the delivery ratios remained close to 100% rate with 
little variation, regardless of the penetration rate. This 
guarantees the reliable operation of the proposed VII system. 
Additionally, the communication times were confirmed to be 
tolerable, in the order of millisecond.  

Note that this study did not simulate the channel 
performance degradation due to Doppler effects experienced 
as a result of vehicular movement on the highway at moderate 
to high speeds. The theoretical and simulation studies on this 
issue can be found in various literatures (e.g., [53], [54]). 

C. Travel Time Prediction Performance 
Figure 6 compares the predictive accuracy of the 

instantaneous, VII-ANN, and VII-SVR models.  As can be 
seen, for the instantaneous algorithm, only 42.2% of the cases 
had relative errors in the range of -5% to 5% (indicated by the 
vertical lines in the figure).  For the ANN, this number was 
higher - 59.7%, whereas it was around 63.0% for the SVR.  
Given this, the ANN and SVR appear to outperform the 
instantaneous method, with the SVR slightly outperforming 
the ANN.  This can be further seen from Table 4, where both 
the VII-ANN and VII-SVR model statistics appear to be 

superior to the instantaneous algorithm, based on the selected 
MOEs such as RMSEP and MARE. Additionally, Table 4 
indicates that there was little bias in the prediction for the SVR 
model, with the MRE value very close to 0.  At the same time, 
the instantaneous model predicted travel times which were 
overall 2.34% longer than the actual travel time. Also evident 
in Table 4 is the fact that VII-SVR appears slightly superior to 
VII-ANN in every aspect of the selected performance 
measures.  

To further appreciate the differences among the predictive 
accuracy of the different algorithms, Figure 7 and Figure 8 
track the performance of the instantaneous and SVR 
algorithms, respectively, for one specific afternoon peak 
period with recurrent congestion.  As shown in Figure 7, while 
the instantaneous predictive model worked fine during non-
congested conditions, there was a lag between the actual and 
predicted time during congestion. This is because the 
instantaneous model suffers from the assumption that travel 
times do not change over short time intervals, which is 
obviously not the case during congestion. In contrast, Figure 8 
shows that the SVR model was quite capable of accurately 
predicting travel times during both congested and non-
congested conditions. 

1) Impact of Different VII Penetration Rates: Figure 9 
shows the MARE and SRE of the travel time prediction using 
the VII-SVR model with different penetration rates. As 
expected, the increase in the number of VII-enabled vehicles 
positively affects the prediction accuracy and variation. At low 
penetration rates, the travel time and traffic volume data 
collected from VII-enabled vehicles (which are treated as a 
sample of the whole traffic population), become unreliable 
because the sample size is too small and the deviation of the 
measurement from the population is too high. As the 
penetration increases, the accuracy improves.  The positive 
effects, however, tend to diminish as the penetration rates keep 
increasing.  Penetration rates in the range of 20% to 25% of 
VII-enabled vehicles appear to be quite adequate for yielding 
accurate and reliable travel time predictions. 

2) Predictive Accuracy during Non-recurrent Congestion: 
Many conventional sensor based prediction models face 
challenges accurately predicting travel times during incidents. 
To test the ability of the VII-SVR model to predict travel time 
during incidents, a scenario was considered where an incident 
blocking two lanes was generated at random locations and 
with random start times between 4:30 PM and 5:00 PM. For 
each test scenario, a random blockage time of an incident was 
also determined based on historical incident data at the study 
site. Compared to a scenario without incident and with the 
same traffic demand, the scenario with an incident resulted in 
extensive non-recurrent congestion. The travel time prediction 
results are shown in Figure 10, which indicates that the 
developed VII-SVR model is capable of accurately predicting 
travel times for both normal traffic (recurrent congestion) 
conditions and conditions during incidents (non-recurrent 
congestion). Moreover, Table 5 compares the performance of 
instantaneous and VII-SVR travel time prediction model for 
recurrent and non-recurrent congestion conditions. As in the 
recurrent congestion scenarios, VII-SVR was again superior to 



 8 

the instantaneous algorithm in the non-recurrent congestion 
scenarios. As expected, all three algorithms performed better 
in recurrent congestion scenarios than in non-recurrent 
congestion scenarios. However, VII-SVR performed 
reasonably well under incident condition, though it intended to 
over-estimate the travel time. The VII-ANN model also 
performed similarly. The capability of predicting travel for 
non-recurrent congestion for VII-AI framework should be 
credited to the real-time traffic data available from VII. The 
inputs to VII-AI framework are similar for recurrent and non-
recurrent congestion. Consequently, the proposed framework 
performs reasonably well for the non-recurrent condition, 
despite the lack of such training data set. 

D. Discussion 
This study was conducted in a simulation environment, 

because a field test is costly, difficult and cannot be conducted 
before a system is actually deployed. Simulation, on the other 
hand, provides a cost-effective and efficient alternative. As 
previously mentioned, the developed simulation models for 
this study were carefully calibrated and validated to 
realistically represent the real world, which should increase 
confidence in the study’s conclusions. Though this study 
demonstrates the potential of a VII-AI framework for travel 
time prediction using VII-SVR and VII-ANN as one example, 
other intelligent algorithms such as Genetic Algorithms and 
Fuzzy Logic may serve as the AI paradigm in the VII-AI 
framework with similar performance. A common 
characteristic of many AI paradigms is that the parameter 
design and calibration is critical for their performances. The 
results of this case study give a convincing case that careful 
design and calibration of the AI model can yield powerful 
travel time prediction systems. Those parameters are expected 
to be site-specific and should be optimized through a 
systematic approach to achieve good travel time performance. 
Additionally, although periodic off-line calibration and 
adjustment in response to variation in VII-enabled vehicle 
density and flow is an option, including such VII-AI system 
into a closed loop framework may be more efficient and 
would make the system capable of improving its performance 
over time. 

V. CONCLUSIONS AND RECOMMENDATIONS 

A. Conclusions 
This paper presented an online highway travel time 

prediction framework, which used VII with AI (i.e. ANN or 
SVR) algorithms. To facilitate the design and evaluation of 
such a framework, this study developed an integrated traffic 
and communication simulator using PARAMICS and ns-2. A 
case study involving a freeway network in Greenville, South 
Carolina was then conducted. From a communications 
standpoint, the performance of the evaluated ad hoc network 
for VII system is satisfactory as the delivery ratio was 
maintained at a very high level (99.95%) and varied little for 
all experimental scenarios tested in this study. The latency of 
transmitting messages between vehicles and RSUs was small 
enough to be considered negligible. From a traffic standpoint, 

the evaluation of the VII-ANN and VII-SVR model revealed 
that the VII-AI algorithms successfully predicted the travel 
time based on traffic measurements derived from the VII-
enabled vehicles.  In addition, the developed travel time 
prediction models outperformed the instantaneous algorithm, 
which was used as a base-line.  When the percentage of VII-
enabled vehicles was as low as 20%, the accuracy of the VII-
ANN and VII-SVR models, in terms of MARE, were among 
the best of the reported results in the literature. The study also 
found that, as expected, increasing the penetration rate of VII-
enabled vehicles had a positive impact on the accuracy and 
variation of the travel time prediction. However, the extra 
benefits diminish as the proportion of VII-enabled vehicles 
approached values greater than 25%.  Additionally, unlike 
other sensor based models, the proposed VII-ANN and VII-
SVR model performed quite well during non-recurrent 
congestion conditions.  

It should be noted that the integrated traffic and 
communications simulator which was developed in this 
research can be quite useful for various interdisciplinary ITS 
(e.g., VII) research studies. Traffic engineers can flexibly 
implement and test various advanced ITS technologies such as 
incident detection algorithms, distributed decision making, 
and real-time traffic management methods in PARAMICS, 
while wireless network researchers can evaluate different 
communication protocols and network parameters in ns-2. 

B. Recommendations 
Though the results of this research are quite encouraging, 

there are several potential limitations that warrant the attention 
of future researchers and practitioners. Foremost, one must 
keep in mind that evaluation of the proposed framework was 
conducted mainly in a simulation environment. In a real-world 
implementation, the performance of the models developed in 
this study may vary due to factors not considered in a 
computer simulation.  Secondly, the performance of the 
proposed VII framework was found to be quite sensitive to the 
penetration rate of the VII-enabled vehicles. Future research 
should include experiments that would vary the percentage of 
the VII-enabled vehicles in the traffic population from time to 
time. Additionally, further study should be conducted 
regarding the online learning ability of the VII-AI framework 
and how this could be utilized to improve its performance over 
time. Although the communication network was found not to 
be the bottleneck in this study, as VII matures, the 
communication network may be expected to become 
congested due to the increased data traffic from many different 
VII applications (e.g., crash avoidance, curvature warning, 
adverse road surface and weather condition warning, user data 
flow, commercial advertisement). Therefore, detailed analysis 
of the communication system, with appropriate consideration 
of different communication technologies that support the 
information exchange between vehicles and infrastructure 
devices in the VII system, may be required to fulfill the 
requirements of a real-world implementation. 
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Table 1. Correlation Analysis for Travel Time Prediction 

 

Target 
Travel 
Time 

Measured 
Whole 

Segment 
Travel 
Time1 

Measured 
J2J Travel 

Time2 

VII 
Vehicle 
Density 

VII 
Vehicle 
Enter 
Flow 

VII 
Vehicle 

Exit 
Flow 

VII 
Vehicle 
Density 
Change 

Target  Travel 
Time 1.00       
Measured Whole 
Segment Travel 
Time1 

0.78 1.00      

Measured J2J 
Travel Time2 0.91 0.95 1.00     
VII Vehicle 
Density 0.97 0.78 0.89 1.00    
VII Vehicle Enter 
Flow 0.39 0.05 0.18 0.49 1.00   
VII Vehicle Exit 
Flow 0.48 0.33 0.37 0.47 0.32 1.00  
VII Vehicle 
Density Change 0.00 -0.20 -0.11 0.11 0.70 -0.45 1.00 

 
Note: 1. “Measured Whole Segment Travel Time” represents the measured average travel time from VII-enabled vehicles 

that completed the entire study highway segment; 
     2. “Measured J2J Travel Time” represents the sum of the average travel time for each junction-to-junction section of 

the study highway segment. The travel times were collected from VII-enabled vehicles that completed the part of 
the trip from one junction to the next. 
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Table 2. Simulated Protocol Hierarchy Stack 

Layer Protocol Implementati
on Remark 

Application VII Customized Implement VII travel time prediction 
application 

Transport  UDP Embedded / 
Customized 

Modify UDP protocol to support VII 
application 

Network IP & VII Routing Embedded / 
Customized 

Add VII routing protocols to support 
hierarchal routing  

MAC + 
Physical IEEE 802.11 Embedded Configure for different bandwidth and 

range for wireless communication 
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Table 3.  MAC and Physical Layer Parameter Values 

Layer Parameter Value 

MAC 

Minimum Contention Window for congestion control 3 
Maximum Contention Window for congestion control 1023 
Slot Time 20 µs 
Short Inter-Frame Space 10 µs 
Retry limit for short MAC Layer frames 7 
Retry limit for long MAC Layer frames 4 
Threshold Limit between Short and Long frames 0 bits 
Header Length 48 bits 

Physical 

Transmission Range 1000 m 
Wireless Interface Sensitivity -75 dBm 
Wireless Interface Capture Threshold -65 dBm 
Transmission Power 25 dBm 
Data rate 54 Mbps 
Noise Floor (for 10 MHz bandwidth) -99 dBm 
Channel (Physical Medium)  Wireless 
Bandwidth 10 MHz 
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Table 4. Performance of VII-AI and Instantaneous Travel Time Prediction Models 

Model RMSEP MRE MARE SRE 

ANN 6.93% -0.71% 3.99% 6.80% 

SVR 6.73% 0.11% 3.86% 5.38% 

Instantaneous 15.56% 2.34% 8.40% 11.37% 
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Table 5. Performance of VII Travel Time Prediction Models for Recurrent and Non-Recurrent Congestion  

Scenario RMSEP MRE MARE SRE 

VII-SVR in Recurrent 
Congestion 6.73% 0.11% 3.86% 5.38% 

VII-SVR in Non-
Recurrent Congestion 14.94% 3.04% 8.68% 11.61% 

Instantaneous in 
Recurrent Congestion 15.56% 2.34% 8.40% 11.37% 

Instantaneous in Non-
Recurrent Congestion 24.76% 2.98% 12.52% 16.66% 
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Figure 1. Integrated simulator process execution flow chart 
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Figure 2. Test network in Greenville, South Carolina 
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Figure 3. Travel time pattern with different demand inputs 

0

500

1000

1500

2000

2500

16:00 17:00 18:00 19:00 20:00 21:00 22:00

Departure Time

Tr
av

el
 T

im
e 

(s
ec

on
ds

)
 Day 1
 Day 2
 Day 3
 Day 4
 Day 5
 Day 6
 Day 7
 Day 8
 Day 9
 Day 10



 19 

 
Figure 4. Prediction accuracy (in terms of MSE) contour of parameters combination for developed 

SVR algorithm 
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Figure 5. Number of packets received and the delivery ratio of the VII model with various penetration rates 

of VII-enabled vehicles 
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Figure 6. Categorized relative error percentage of different travel time prediction method 
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Figure 7. Travel time prediction using instantaneous prediction model 
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Figure 8. VII-SVR travel time prediction on an afternoon peak period with recurrent congestion 
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Figure 9. MARE and SRE of travel time prediction with different penetration rates 

5.00%

5.50%

6.00%

6.50%

7.00%

7.50%

8.00%

3.00%

3.50%

4.00%

4.50%

5.00%

5.50%

5% 10% 15% 20% 25% 30%

S
R

E
: S

ta
nd

ar
d 

D
ev

ia
tio

n 
of

 R
el

at
iv

e 
E

rr
or

 

M
AR

E:
 M

ea
n 

Ab
so

lu
te

 R
el

at
iv

e 
Er

ro
r 

Penetration Rate 

MARE

SRE



 25 

 

Figure 10. Travel time prediction in both normal traffic conditions and during incident
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