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    ABSTRACT.  Simulating the hydrology of a 

watershed system is a challenging task due to biases in 

input data and measurements, and mismatches in spatial 

and temporal scales between model representation and 

the physical system.  Modeling difficulty increases for 

watershed systems with low-storage shallow soils, a large 

number of riparian floodplain alluvials, and non-uniform 

rainfall distributions.  A simulation study was performed 

to assess feedback effects associated with uncertainty 

propagation in the Soil and Water Assessment Tool 

(SWAT) using the Generalized Likelihood Uncertainty 

Estimation (GLUE) and Particle Swarm Optimization 

(PSO) algorithms at the Waccamaw River watershed, a 

low-gradient forested wetland Coastal Plain watershed in 

the SE region. 

 

    Optimization of both algorithms indicated the 

evapotranspiration rate typically exceeded the 

combination of shallow aquifer, surface flow, and lateral 

flow contributions during dry periods.  It was also shown 

that shallow aquifer contribution to the total water yield 

during wet spells may raise the shallow water table and 

increase the risk of groundwater flooding due to rapid 

water table responses during storm events. 

 

INTRODUCTION  

 

    Uncertainty framework is a mathematical and 

computational tool used to improve understanding of the 

dynamics of hydrologic processes at the watershed scale 

with the goal to more accurately model the rainfall-runoff 

characteristics and system behavior. Uncertainties and 

associated errors are related to inconsistency among 

independent measurements of the hydrologic quantities 

as well as bias and error in the prediction process. The 

goal of this research wass to examine the robustness of 

different uncertainty algorithms in streamflow prediction 

at a heterogeneous watershed. 

 

    Although uncertainty quantification of complex 

watersheds is becoming increasingly important, it is 

extremely difficult to offer a coherent terminology and a 

significant procedure. More importantly, uncertainty 

estimation is a very difficult task, if not impossible, when 

there is variability in the forcing data, such as the 

hydroclimatic parameters of the southeastern landscapes. 

 

    A number of uncertainty analysis methods have been 

developed and successfully implemented in the 

hydrological forecasting, and they are voluminous both 

in the context of observations and projections (see 

Makowski et al., 2002; Wagener et al., 2003; Samadi et 

al., 2014; among others). Readers of uncertainty 

literature should be warned that there are inconsistent and 

varying methods to evaluate uncertainty in hydrological 

predictions (e.g. Wagener et al., 2003; Vrugt et al., 

2008). Because estimates of flow rates are affected by 

uncertainties in data, modeling approaches, parameters, 

stochastic ambiguity, and geo-processing tools, 

uncertainty analysis of such models is difficult due to a 

large number of parameters and/or it is computationally 

too expensive. In this study, the soil and water 

assessment tool (SWAT) simulated the rainfall-runoff 

process in a complex hydrological system while PSO and 

GLUE algorithms were used to estimate accurate and 

efficient predictive uncertainty.  

 

METHODS 

 

Study Area 

 

    The Waccamaw River watershed (hydrologic unit code 

03040206) is on the lower coastal plain in eastern North 

and South Carolina (Figure 1). The watershed has little 

topographic gradient (99% is < 5% slope), wide 

floodplains, complex ground water characteristics due to 

poorly drained soils, a shallow water table, and extensive 

wetlands (Amatya and Jha, 2011). Elevation ranges from 

6m – 46 m above mean sea level. Climate in the 
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watershed is humid subtropical with hot summers and 

cool winters. Precipitation in the basin occurs almost 

exclusively as rainfall, with an annual average of 1300 

mm. Streamflow data from two US Geological Survey 

(USGS) gaging stations, at Freeland (34°05'42N, 

78°32'54W; discontinued May 8, 2013) and Longs 

(33°54'45N, 78°42'55W), were used as subwatershed 

outlets (Figure 1). Daily precipitation, minimum and 

maximum temperature, wind speed, and solar radiation 

were obtained from climate stations at Loris, Whiteville, 

and Longwood, all located in North Carolina.  

 

SWAT Model 

 

    The Soil and Water Assessment Tool (SWAT) is a 

watershed modeling program developed by the USDA–

Agricultural Research Service to simulate hydrology and 

water quality at various scales (Arnold et al., 1998). It 

was developed to predict the impact of land management 

practices on water, sediment, and agricultural chemical 

yields in large complex watersheds with varying soils, 

land use, and management conditions (Neitsch et al., 

2001). SWAT 2009 was used for this research. The 

SWAT system is embedded within a geographic 

information system (GIS) that can integrate various 

spatial environmental data including soil, land cover, 

climate, and topographic features. SWAT subdivided the 

Waccamaw River watershed into 28 sub watersheds and 

2020 Hydrologic Response Units (HRUs) connected by a 

stream network.  

 

 

 
 

Figure 1 Location map of the study area. The delineated 

Waccamaw River watershed was 311,685 ha. 

 

 

 

Generalized Likelihood Uncertainty Estimation (GLUE): 

 

    This technique is based on the estimation of the 

weights or probabilities associated with different 

parameter sets, based on the use of a subjective 

likelihood measure to derive a posterior probability 

function, which is subsequently used to derive the 

predictive probability of the output variables (Abbaspour, 

2013). GLUE (proposed by Beven and Binley (1992)) 

randomly samples a large number of parameter sets from 

the prior distribution and each set is classified as either 

“behavioral” or “non-behavioral” through a comparison 

of the “likelihood measure” with the given threshold 

value. GLUE is a formal Bayesian algorithm. 

 

PSO Particle Swarm Optimization (PSO): 

 

    Particle swarm optimization (PSO) is a population-

based stochastic optimization technique proposed by 

Eberhart and Kennedy (1995). It shares many similarities 

with evolutionary computation techniques such as 

Genetic Algorithms (GA). Each particle is updated by 

following two "best" values (Abbaspour, 2013). The first 

one is the best solution (fitness); another "best" value that 

is tracked by the particle swarm optimizer is the best 

value, obtained so far by any particle in the population 

(Eberhart and Kennedy, 1995).  

 

RESULTS 

 

    In this research, 19 flow parameters were identified as 

important ones to be ranked based on their sensitivity (P-

factor (the percentage of observations covered by the 

95PPU) and t-state (a measure of sensitivity, larger in 

absolute values are more sensitive)). PSO sensitivity 

analysis indicated that Manning's "n" value for the main 

channel is the most sensitive parameter.  

 

    The calibration period was conducted in 1994-1998 

across the dry to wet interval by considering 1992-1993 

as a warmup period. In this project, both the performance 

values and 95PPU (95% predictive uncertainty) bounds 

of the GLUE (Figure 2 and Figure 3) and PSO (Figure 4 

and Figure 5) methods were extremely small, and the 

corresponding parameter ranges were very narrow which 

led to a very narrow 95PPU while bracketing most of 

measured and modeled flows, respectively. The best 

parameter values were updated in both models and 

SWAT was optimized using final values and the water 

budgets were performed (only PSO result is presented 

here). The results were categorized as good to very good 

according using the Moriasi et al., (2007) qualitative rank 

by presenting NSE (Nash and Sutcliffe, 1970) values of 

0.77-0.80 in both uncertainty algorithms. 
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Figure 2. GLUE calibrated flow at the Freeland station. 

 

 
Figure 3. GLUE calibrated flow at the Longs station. 

 

 
Figure 4. PSO calibrated flow at the Freeland station. 

 

 
Figure 5. PSO calibrated flow at the Longs station. 

 

Water budget analysis in 1994 as dry year indicated that 

ground water contribution was large through the entire 

period and it was the major contributor in June. Wet year 

(1996) water balance also indicated that during wet spells 

(winter and early spring) groundwater contribution 

increases and that may increase the risk of temporary 

groundwater flooding due to rapid water table responses 

during storm events. In addition, SWAT optimization 

results indicated more than 70% of flow was lost through 

active evapotranspiration during the entire calibration 

interval. The contributions of ground water flow was 

high during dry period while lateral flow was equal to 

1% in both dry and wet years. Figures 6 and 7 exhibit 

PSO water balance quantifications during wet and dry 

years respectively. 

 

Overall two different algorithms results revealed a good 

ability of a physically based SWAT rainfall-runoff model 

to simulate streamflow and water balance components in 

a southeastern landscape.  

 

 

 
Figure 6. PSO monthly water component values in 1996 

(wet year). 

 

 

 
Figure 7. PSO monthly water component values in 1994 

(dry year). 
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