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Abstract

The last two decades have offered a dramatic rise in the use of digital technologies such as wireless

sensor networks that require small isolated power supplies. Energy harvesting, a method to gather energy

from ambient sources including sunlight, vibrations, heat, etc., has provided some success in powering

these systems. One of the unexplored areas of energy harvesting is the use of atmospheric temperature

variations to obtain usable energy. This paper investigates an innovative device to extract energy from

atmospheric variations using ethyl chloride filled mechanical bellows. The apparatus consists of a bellows

filled with ethyl chloride working against a spring in a closed and controlled environment. The bellows

expand/contract depending upon the ambient temperature and the energy harvested is calculated as a

function of the bellows’ length. The experiments showed that 6 J of energy may be harvested for a 23◦C

change in temperature. The numerical results closely correlated to the experimental data with a deviation

of 1%. In regions with high diurnal temperature variation, such an apparatus may yield approximately

250µW depending on the ambient temperature range.

Keywords— Energy harvesting, Mechatronics, Thermodynamics, Kinetics, Experimental testing

Nomenclature List

a Area of a single thermoelectric couple (m2)

A Area (m2), Riedel equation constant

B Riedel equation constant

C Riedel equation constant

c Specific heat
(
J

kgK

)
, Damping constant

(
Ns
m

)
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D Diameter (m), Riedel equation constant

E Riedel equation constant

e Euler’s number

F Force (N )

h Heat transfer coefficient
(
W
m2K

)
I Current (A)

K Thermal conductivity
(
W
mK

)
k Spring constant

(
N
m

)
L Length of thermoelectric couple (m)

m Mass of the middle plate (kg)

N Number of couples per module

n Number of moles, Number of terms

P Pressure inside bellows (bar)

PE Potential energy (J)

q Heat flux
(
W
m2

)
q̇ Heat transfer rate (W )

R Resistance (Ω), Universal Gas Constant
(

J
K.mol

)
S Combined Seebeck coefficient

(
V
K

)
T Temperature (K)

t Time (s)

V Volume (m3), Voltage (V )

x Displacement of bellows (m)

Γ Proportionality constant
(
N
mK

)
∆T Temperature difference (◦C)

Λ Compression of bellows & spring at 20◦C (m)

λ Length of the bellows (m)

ρ Density
(
kg
m3

)
Subscripts

ar Air inside the bellows

n n-type semiconductor

p p-type semiconductor

rs Restoring force

sb bellows’ spring
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se External spring

t Total

0 Free length of the bellows, Atmosphere

1 Cold side of thermoelectric

2 Hot side of thermoelectric

3 Outer heat sink

4 Inner heat sink

5 Air enclosed in the acrylic tube

6 Metal frame

7 Bellows

8 Acrylic tube

9 Ethyl chloride

1 Introduction

The field of electronics and wireless communication has witnessed many innovative trends over the

decades. The size and power consumption of wireless devices has consistently reduced and the life span

has seen regular growth. An ongoing challenge is to make power sources that match the life span and size

of these devices, some of which need to be self-sufficient for their entire operating period as they may be

located in remote or inaccessible regions. These constraints make the use of conventional power sources

somewhat impractical. Traditionally, batteries, which are non-regenerative power sources, have been used to

power such devices but they require frequent replacement and suffer from weight constraints. New gener-

ation micro-batteries increase the power density of the devices so that they can store enough energy to last

complete life cycles. Other non-regenerative power sources such as micro-turbines and micro-heat engines,

have also been used that may store chemical energy in the form of fuel which is slowly consumed over the

system’s lifetime. Even though the power densities of such devices have considerably improved, the energy

available is always small and limited [1].

To overcome the disadvantage of having limited energy available, several regenerative power supplies

have been developed. These power supplies “feed off” the environment capturing sufficient energy to oper-

ate the attached device. This method of utilizing ambient energy is called “energy scavenging” or “energy

harvesting.” Table 1 shows a comparison of different sources of energy and the amount of power that can

be harvested using current technology. Cook-Chennault et al [1], Edgar [2], and Chalasani and Conrad [3]

have discussed in detail the state of energy harvesting from different sources and their corresponding energy

densities. Most energy harvesters can be classified into three categories based on the form of energy they
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capture.

Solar Energy: Solar energy harvesters use photovoltaic cells to convert energy from ambient light to electric

voltage. These are widely used for outdoor applications in places that receive ample sunlight all year

round [4].

Vibrations and Kinetic Energy: These harvesters gather energy from mechanical vibrations and transduce

it to an output voltage using a piezoelectric, electromagnetic or electrostatic converter. These harvesters

are widely used at locations that have a source of mechanical excitation such as a vibrating machine or

vibration-inducing airflow [1].

Thermal Energy: Thermal energy harvesters are generally classified in two categories. The first type utilizes

Peltier effect to generate a voltage output from a temperature gradient, whereas the second type utilizes

thermodynamic expansion or phase change for generating useful energy from a heat source. The energy

harvester being discussed in this paper falls under the second category [2].

The focus of this research was to explore thermal energy harvesting through thermodynamic expansion of

a substance in a closed system, using temperature changes in the atmosphere. If a substance is hermetically

sealed in a bellows or a piston cylinder arrangement, the temperature change could be used to obtain useful

work from the expansion. The expansion is most prominent when the substance changes phase. Therefore,

ethyl chloride, with its normal boiling point of 287K was ideal for such an application as the average diurnal

temperature variation would be sufficient to vaporize and condense it.

The principle of utilizing atmospheric temperature and pressure variations was first used by Cornelis

Drebble in the early 17th century and later more extensively by Jean-Léon Reutter when he designed the

Atmos clock [5] [6]. The Atmos clock was the first device to use ethyl chloride as the working substance to

power the escapement and discretize the passage of time [7] [8]. These clocks are highly efficient devices with

a 1◦C change in temperature sufficient for two days of operation [2] [9].

The experiment discussed in this paper, illustrated in Figure 1, uses a hermetically sealed brass bellows

to contain ethyl chloride. As the ethyl chloride was heated/cooled by the temperature change, the length of

the bellows simultaneously increased/decreased. To restrict the total expansion of the bellows and to have

a quantifiable measure of output energy, an external spring was used. As the ethyl chloride cooled with the

drop in ambient temperature, the bellows shrank to its original length because of the decrease in its internal

pressure. The work done by the bellows’ extension and contraction could now be easily measured using the

spring’s stiffness and contraction.

The brass bellows was attached to the base plate of a metal frame. The top and bottom plates were fixed

to each other using four rods and the middle plate was mounted on linear bearings and could slide as the
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Figure 1: Energy harvesting system with accompanying sensors and actuators for bench top experiment with-
out the acrylic enclosure

bellows expanded or contracted. To provide a force against the bellows’ extension, a coiled spring was placed

between the top and middle plates of the frame. A position sensor was located on the top plate to measure

the displacement of a magnet attached to the top of the bellows.

The experiment was performed on a bench top in a controlled environment laboratory and the tempera-

ture variation for the system was simulated using thermoelectric modules which made the alternate heating

and cooling convenient and controllable. The system can be switched between heating and cooling by chang-

ing the polarity of the applied voltage. The heat or cold from the thermoelectric modules was supplied into

the system with the help of multiple heat sinks and fans. The entire system was enclosed in an acrylic tube

with the thermoelectric modules attached at an end plate. The acrylic tube allowed the model to be treated

as a closed system with negligible mass transfer. On the basis of this configuration, the main system elements

include thermoelectric modules, heat sinks, air inside the tube, bellows with ethyl chloride and metal frame

with spring.

2 Mathematical Model

The lumped parameter mathematical model describes the process of energy harvesting using the experi-

mental configuration which has been depicted in Figure 2. Heat was added to or removed from the system by

the thermoelectric modules with heat sinks. Three fans offered forced convective heat transfer which eventu-

ally resulted in changing the magnitude of potential energy stored in the mechanical spring. The complete

process was divided into four subsystems and each one was analyzed individually with attention focused on

the coupling factors. To simplify the system analysis, six fundamental assumptions were imposed:
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Table 1: Approximate power that may be harvested from different sources; †For areas with high diurnal
temperature variation [1] - [3] [10] [11] [12].

Energy Source Characteristics Harvested Power

Solar
Outdoor Uncontrollable, Predictable 15

(
mW
cm2

)
Indoor Uncontrollable, Predictable 100

(
µW
cm2

)

Vibration

Piezoelectric Method Uncontrollable, Unpredictable 500
(
µW
cm2

)
Electromagnetic Method Uncontrollable, Unpredictable 4

(
µW
cm2

)
Electrostatic Method Uncontrollable, Unpredictable 3.8

(
µW
cm2

)

Thermoelectric
5◦C Gradient Uncontrollable, Predictable 100

(
µW
cm2

)
30◦C Gradient Uncontrollable, Predictable 3.5

(
mW
cm2

)

Air Flow
Outdoor

(
Speed ≈ 8

(
m
s

))
Uncontrollable, Predictable 3.5

(
mW
cm2

)
Indoor

(
Speed ≤ 1

(
m
s

))
Controllable 3.5

(
µW
cm2

)
Ambient Radio
Frequency

Transmitter Nearby (≈ 30cm) Controllable 3.5
(
mW
cm2

)
Transmitter Faraway Uncontrollable, Unpredictable < 1

(
µW
cm2

)
Electromagnetic
Wave

Electric Field = 1
(
V
m

)
Uncontrollable, Unpredictable 0.26

(
µW
cm2

)
Acoustic Noise = 100(dB) Uncontrollable, Unpredictable 960

(
nW
cm2

)
Atmospheric
Variation

Temperature Change ∆T = 23◦C Uncontrollable, Predictable 6(J) , 15
(
µW
cm2

)
†

A1: The temperature of all the system components is time variant but spatially invariant, i.e., a lumped

capacitance heat transfer model is used.

A2: The net mass transfer between the acrylic tube and the surrounding atmosphere was assumed to be zero,

i.e., no air leaks

A3: The net mass transfer of ethyl chloride between the bellows to the acrylic tube was assumed to be zero,

i.e., no gas leakage.

A4: The frictional effects are minimal and are lumped with the viscous damping.
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A5: The external and bellows springs are assumed to be linear for whole range of prescribed motion; any

non-linearities are ignored.

A6: Only convective heat transfer is considered, as the radiative part is small and the conductive part is

limited to heat sinks, which are assumed to have the same temperature as the thermoelectric modules.

As the rate of temperature change within the system is slow, the acrylic tube and bellows are sealed, and the

fans circulate the air inside it, these assumptions are deemed acceptable.

2.1 Thermoelectric Devices

Thermoelectric modules supply heat or cooling to the system through Peltier effect. A thermoelectric

couple is composed of a p and an n-type semiconductor. When current is passed through it, one junction is

heated while the other is cooled, depending on the direction of the current. A thermoelectric module typically

consists of N couples. The heat generated and absorbed at the two ends is a result of three effects. First, the

Peltier effect is responsible for producing the temperature gradient. Second, Joule’s Law causes the couple to

heat up as current passes through it. And finally, heat is conducted from the hot junction to the cold junction

due to the temperature gradient between the two.

During the heating phase, the equations governing the rate of heat absorbed at the outer (cold) side, q̇13,

and the rate of heat generated at the inner (hot) side, q̇24, of the module are the result of the interaction

between these phenomenon so that

q̇13 = 2N
(
SIT1 −

1
2
I2R

L
a
−K1

a
L

(T1 − T2)
)

(1)

q̇24 = 2N
(
SIT2 +

1
2
I2R

L
a
−K2

a
L

(T1 − T2)
)

(2)

During the cooling phase, the sign for the second term is reversed making the outer side, the hot side and the

inner side, the cold side. The current in the thermoelectric module can be expressed as

I =
1
R

(V −NS (T2 − T1)) (3)

The combined Seebeck Coefficient constant, S, may be given by

S = |Sn|+ |Sp| (4)

where Sn and Sp are the individual Seebeck Coefficients of the n and p-type semiconductors forming the

thermoelectric couple. The variables q̇13 and q̇24, based on the polarity of the applied voltage, alternately
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Figure 2: Energy flow in the experimental system
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heat and cool the system, thus simulating temperature variations in the atmosphere.

2.2 Heat Transfer Dynamics

The thermal response of the components contained inside the acrylic tube will be mathematically de-

scribed. Both sides of the thermoelectric modules were attached to heat sinks which in turn had electric fans

blowing air across them to improve the heat transfer. The heat or cool entered the system via the heat sinks

and air flowed across them to warm/cool the entire air volume inside the acrylic enclosure. To simplify the

analysis, the heat transfer can be divided into seven interactions as shown in Figure 2. Each of these interac-

tions can be expressed by a set of differential equations that consider the net heat flow rates of each node and

consequently calculate the rate of change of temperature in that element.

The rate of temperature change calculated using the first law of thermodynamics for a given node may be

ρjVjcj
dTj
dt

= Σq̇ij −Σq̇jk ;

(i = 1,2, ...,9)

(j = 1,2, ...,9)

(k = 1,2, ...,9)

(5)

where the subscripts i, j and k represent the different system components. The terms with two subscripts

denote interactions between two components while the terms with one subscript signify properties of a single

component.

The individual heat transfer rates can be calculated using Newton’s law of cooling as

q̇ij = hijAij
(
Ti − Tj

)
; (i = 3,4, ...,9; j = 3,4, ...,9) (6)

where i and j represent the two components between which the heat transfer is taking place. In this expres-

sion Aij denotes the surface area shared between ith and jth component over which convective heat transfer

occurs. The coefficients of heat transfer, hij , can be empirically obtained observing the temperature difference

between two components when a steady heat flux is applied so that

hij =
qij
∆T

(7)

where qij is the heat flux and ∆T is the temperature difference. Alternatively, the heat transfer coefficients

can be analytically determined for the given system components.

To illustrate the expansion of equation (5), the rate of change of temperature for the inner heat sink can

be stated as

c4 ρ4 V4
dT4

dt
= q̇45 − q̇24 (8)
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where q̇24 is obtained from Equations (2). The expression for q̇45 may be stated as

q̇45 = h45A45 (T4 − T5) (9)

For this study, the system temperatures and heat transfer rates are defined as

Ti =
[
T1 T2 T3 T4 T5 T6 T7 T8 T9

]T
(10a)

q̇ij =
[
q̇13 q̇24 q̇30 q̇45 q̇56 q̇57 q̇58 q̇79 q̇80

]T
(10b)

All of the heat transfer relations for the components displayed in Figure 2 can be similarly derived using

equations (5), (6) and (7).

2.3 Thermodynamics

As the heat from thermoelectric modules reached the saturated mixture of ethyl chloride in the bellows,

the vapor pressure started changing as a function of the temperature. The total pressure in the bellows can

be estimated using Dalton’s law of partial pressures, which considers the sum of the partial pressure of air

and the partial pressure of ethyl chloride so that

Pt = Par + P9 (11)

In this expression, Par is the partial pressure of the air and P9 is the partial pressure of the ethyl chloride. The

partial air pressure Par , can be obtained from the ideal gas law as

ParV = nRT (12)

where V is the volume, n is the number of moles, R is the universal gas constant, and T is the temperature.

Equation (12) can be simplified for the present application to the form

Par =
T
λ
Γ (13)

where λ is the extension of the bellows, T is the temperature, and Γ is a proportionality constant given by

Γ =
4nR

πD7
2 (14)
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Figure 3: Free-body diagram with applied and resulting forces acting on the middle plate

The vapor pressure of ethyl chloride may be approximated using Riedel’s equation as

P9 = e(A+ B
T +C lnT+DT E) (15)

where A,B,C,D and E are constants listed in Table 2 [13]. Although Antoine’s equation can also be used

to predict the vapor pressure of ethyl chloride, Riedel’s equation covers the entire sub-critical temperature

range, as compared to Antoine’s equation which covers a much smaller range around the boiling point [14]

[15] [16]. Ethyl chloride was chosen because its boiling point was within the range of temperature variation.

Therefore, a small change in temperature resulted in a relatively large change in pressure when compared

to other refrigerants with much higher boiling points. The ethyl chloride, C2H5Cl, mass does not affect the

pressure in the bellows as long as its quantity is sufficient to maintain a saturated mixture of liquid and vapor

as illustrated by equation (15). For the experiment conducted, the mass of ethyl chloride was sufficient to

maintain the saturated mixture throughout the temperature variation range.

The mechanical force generated by the bellows is given by:

F7 = PtA7 (16)

where A7 is the area of the bellows top.

2.4 Mechanical Dynamics

The change in pressure inside the bellows produces a force which causes an extension or contraction of the

mechanical structure’s length. The system was modeled as a single degree of freedom damped mass spring
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system with an external force acting on it as shown in Figure 3. The system has two springs, an external

spring that opposes expansion and the bellows’ spring that works with the bellows’ inner pressure when

compressed and against it when expanded.

The equations of motion governing the system were derived using Newton’s laws as follows

m
d2x

dt2
+ c
dx
dt

+Frs = PtA7 − P0A7 (17)

Frs = (kse + ksb)x+ kseΛse − ksbΛsb (18)

where m is the effective mass being accelerated, c is the damping constant, and Λse and Λsb are the initial

compression of the external spring and bellows, respectively, at the start of the experiment.

The displacement shown is a direct indicator of the potential energy generated by the system and is given

by

P E =
1
2
ktx

2 (19)

where PE is the potential energy stored in the spring. This potential energy can be harvested by a number of

methods such as a piezoelectric transducer or an electromagnetic generator to power a wireless sensor node.

3 Experimental System

To validate the energy harvesting principle and explore the feasibility of thermodynamic mechanical mo-

tion, a bench-top experiment was fabricated and tested. In this section, the apparatus design and components

will be discussed.

3.1 Design of Apparatus

A mechanical bellows charged with an inert gas that has a phase change at room temperature was the pri-

mary component in the energy harvesting system. The supporting elements included mechanical guides for

translational motion with minimal friction, and assorted sensors and actuators to create a repeatable testing

environment with measurement data. For this study, the apparatus introduced a temperature variation that

influenced the ethyl chloride pressure contained in the closed system.

The bellows changed its length in response to change in pressure. To quantify the length change and to

maintain an equilibrium position, a stiff coil spring resisted the bellows expansion. A metal frame, consisting

of three plates and four stainless steel rods, held the apparatus in place. The two end plates were fixed to

the rods using studs and nuts. The middle plate featured four linear bearings to slide along the length of the

rods. The base plate and bellows were made of brass while the other plates were made of aluminum.

12



Figure 4: Assembled apparatus in protective acrylic enclosure with integrated sensors

A thermoelectric module was selected as the source of temperature variations as it could heat or cool the

system. For field testing, ambient temperature changes would be sufficient to power the system. For bench

top testing, cooling the system proved to be a greater challenge than heating since efficiency of thermoelectric

modules are relatively low (below 15%). To improve heat dissipation on hot side, two heat sinks and three

fans were used as shown in Figure 4. The outer heat sink (Dell W4254 8400) used heat pipes to achieve

higher heat dissipation as its primary function was to lower the hot side temperature. The copper heat pipes

connected the heat sink base to the aluminum fins. This heat sink base was attached to the thermoelectric

modules and the aluminum fins were placed between two electric axial fans. A conventional, aluminum-

finned heat sink, Alpine ARCTIC 64 Pro Rev. 2, with a built in electric fan, was used for the inner heat

exchanger. The thermoelectric modules were connected to a 16Vold 8 Amp DC power supply.

The bellows and metal frame were mounted within an acrylic enclosure to create a closed system with

negligible mass transfer. This acrylic enclosure acted as an insulator and helped in varying the temperature

within reasonable time periods. The complete system was 36 cm (14 inches) long and 20 cm (8 inches) in

diameter. The mechanical bellows and the metal frame assembly were 15 cm (6 inches) long and 3 inches

wide.

The experimental apparatus was operated in a closed-loop manner on the bench to demonstrate the en-

ergy harvesting for temperature variations. For rising temperatures (heating phase), the thermoelectric mod-

ule warmed the air inside the enclosure causing the bellows to expand. Once the gas inside the bellows

reached a desired temperature, a switching circuit was activated which reversed the polarity of the thermo-

electric module. The falling temperatures (cooling phase) resulted in bellows contraction. The process may

13



Table 2: Characteristics of experimental system components

Component
Name

Property Value (Units)

Bellows

A7 1.96× 10−3
(
m2

)
A45 3.61× 10−2

(
m2

)
ksb 876(N/m)

Γ 2.842× 10−5

Λsb 2.03× 10−2 (m)

External Spring
kse 2802(N/m)

Λ0 2.81× 10−2 (m)

Ethyl Chloride

A 44.67

B −4026

C −3.371

c 1.548× 103
(
J

kgK

)
D 2.273× 10−17

E 6

n 0.28

m 18(g)

R 8.314
(

J
K.mol

)
ρ 9.20× 102

(
kg
m3

)
Middle Plate

m 0.2(kg)

c 0.1
(
Ns
m

)

Thermoelectric
Module

a 1.96× 10−6
(
m2

)
A13,A24 1.6× 10−3

(
m2

)
K1,K2 20

(
W
mK

)
L 8.0× 10−4 (m)

N 199

R 1.5× 10−3 (Ω)

Sn,Sp 2.0× 10−4 (V /K)

V 16.5(V )

be repeated using the relay switch to change circuit polarity.

3.2 Sensors, Actuators and Data Acquisition

A series of sensors and actuators were integrated into the experimental system to monitor and control the

apparatus. Although this hardware would not be required for energy harvesting in the field, it offers insight

into overall performance, while providing a repeatable environment.

Pressure Sensor: An Omega PX309-050A5V (0 bar to 3.4 bar) pressure sensor monitored the ethyl chloride
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pressure inside the bellows. This served the dual purpose of acting as a point of correlation between the

numerical and experimental models and helping improve modeling the ethyl chloride pressure.

Proximity Sensor: A Micro-Epsilon MDS-45-M30-SA (0 mm to 45 mm displacement) magneto-resistive type

proximity sensor measured the bellows displacement or spring position which directly correlated to the

energy harvested.

Thermocouple: Three J type Omega SMP-AP-J-125E-6 (0 ◦C to 750 ◦C) thermocouples measured the tem-

perature of air inside the acrylic enclosure, ethyl chloride inside the bellows, and the inner heat sink.

Amplifiers were used to amplify the thermocouple voltages to reduce noise in the measurements. The

sensors were the contact thermocouples capable of measuring a temperatures from .

Fan: Three fans were used in the system. Two of these were used on the outer heat sink (Mcmaster 1939K23,

12V DC) to maximize heat dissipation. Only one fan was used on the inner side which came as a part

of the heat sink package (Alpine 64 Pro) intended to be used for cooling CPU’s.

Thermoelectric Module: One thermoelectric module (TE Technologies HP-100-1.4-0.8) was used to heat and

cool the system. The theoretical cooling possible was 172 W at a hot side temperature of 27◦C.

To acquire data from the sensors, National Instruments LabVIEW was used with a PCI 6143 board. A con-

trol loop selected between heating and cooling the system. The bellows temperature was compared against

predefined upper and lower limits and crossing these triggered the control loop to switch polarity. The up-

per and lower temperature values were set to represent realistic temperature variations in different climatic

conditions at various times of the year. This helped in gaining an understanding of the energy harvesting

potential of the apparatus at such locations.

4 Numerical & Experimental Results

The thermodynamic driven energy harvesting apparatus was tested for a variety of conditions in the

laboratory to validate the concept. Although the ambient air temperature was maintained at T = 22◦C, the

thermoelectric devices allowed the acrylic enclosure air to be heated or cooled as needed. Figure 5 shows

the variation in temperature, pressure and position as measured in the experiment. The data illustrates the

change in system values over a period of two cycles completed in 3.5 hours drawing a current of 6.5 A at 16

VDC. The ethyl chloride temperature triggered the heating/cooling loop with 33 ◦C as the maximum and

17 ◦C as the minimum temperature. The heating rate was much higher than the cooling rate due to the

difference in heating and cooling efficiencies of the thermoelectric module. The expansion of the bellows was

algebraically calculated from the position data which gives the position of the middle plate relative to the

fixed top plate. It can be observed in Figure 5that as the ethyl chloride temperature rose above 30 ◦C, the

bellows reached its maximum extension. This phenomenon was due to the middle plate of the metal frame
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Figure 5: Experimental data acquired from the test apparatus versus time; curves are defined as: heat sink
temperature (blue/circle), air temperature (green/asterisk) and ethyl chloride temperature (red/plus) in ◦C,
pressure inside the bellows (magenta/square) in bar and position of middle plate (cyan/triangle) in cm.

assembly coming in contact with the position sensor. Therefore, the position data for maximum extension

was ignored as it did not represent the system accurately.

The data was divided into heating, cooling and switching phases. This analysis was necessary since the

thermocouple in the ethyl chloride measured temperature values at the center of the bellows. The temper-

ature at the center was lesser, equal to or greater than the temperature towards the edges of the bellows in

heating, switching and cooling phases respectively.

The data from different experiments, performed over several days, was compared and found to be satis-

factorily repeatable. Figure 6 shows the variation of pressure versus temperature for simulated values and

measured data. The two sets of data show similar trends with an average percentage error of 1.2%. The pres-

sure increased from 1 bar to 2.1 bar as the temperature was increased from 5◦C to 33◦C. The comparison of

the simulated and measured position versus temperature data is shown in Figure 7. The position in this plot

refers to the distance between the middle and the top plates. The expansion of the bellows was calculated by

subtracting the position from the initial distance between the two plates. The “steps” observed in the mea-

sured data in Figures 5, 7 and 8 are due to the stiction between the middle plate bearings and the supporting

rods. The pressure inside the bellows increased continuously with temperature, as shown in Figure 6. The net

force acting on the middle plate also increases continuously and a step change in position occurs whenever
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Figure 6: Experimental (red/circle) and analytical (blue/squares) pressure inside the bellows versus ethyl
chloride temperature

the net force exceeds the threshold needed to overcome the stiction as displayed in Figure 7. The middle plate

moved from a distance of 4cm at 7◦C to ≈ 0cm at 29◦C.

Potential energy is stored in the external spring as the bellows expands. Figure 8 compares the simulated

and measured potential energy versus temperature. Six joules of energy are stored in the spring for a tem-

perature variation of 23◦C. The potential energy is released during the cooling phase and the spring works

to push the bellows back to its initial position.

It was observed from the heating phase data that the pressure and displacement changed 0.04 bar/◦C,

and 0.2 cm/◦C and 4 cm/bar, respectively. The displacement is linearly related to the temperature and the

potential energy is proportional to the second power of the temperature. This is due to the quadratic relation

of potential energy and displacement as shown in equation (19).

5 Conclusion and Future Work

The concept of energy harvesting from atmospheric temperature variations was proposed and experi-

mentally verified. A potential energy output of 6 Joules for a temperature difference of 23◦C was observed

which could be used in combination with a transducer to run low power electronics in remote locations.

Since the amount of energy extracted is directly related to the temperature change, regions with high diurnal

temperature variations would be ideally suited for such devices. For example, the southwest region of the

United States experiences average diurnal temperature ranges of 30 to 40 ◦C for many months in a year [12].
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Figure 7: Experimental (red/circle) and analytically simulated (blue/square) distance between the bellows
and top plate versus ethyl chloride temperature.
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Figure 8: Measured (red/circle) and calculated (blue/square) mechanical potential energy stored in the
spring versus temperature. A change of 6J for a temperature change of 23◦C was observed.

18



The thermal fluctuations are ideal for the energy harvester discussed in this paper and could produce about

250µW .

Future work involves the development of a micro generator that converts the energy stored in the spring

into usable electrical power. A small gear-train mechanism transfers the reciprocation motion of the middle

plate into unidirectional rotation of a shaft which can then wind a spiral spring. When enough energy is

stored in the spiral spring, the small generator produces electricity using the potential energy.
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