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Electron-Dephasing Time in a Two-Dimensional Spin-Polarized System
with Rashba Spin-Orbit Interaction

D. C. Marinescu
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA

(Received 12 June 2006; published 26 October 2006)

We calculate the dephasing time ���B� of an electron in a two-dimensional system with a Rashba spin-
orbit interaction, spin-polarized by an arbitrarily large magnetic field parallel to the layer. ���B� is
estimated from the logarithmic corrections to the conductivity within a perturbative approach that assumes
weak, isotropic disorder scattering. For any value of the magnetic field, the dephasing rate changes with
respect to its unpolarized-state value by a universal function whose parameter is 2EZ=ESOI (EZ is the
Zeeman energy, while ESOI is the spin-orbit interaction), confirming the experimental report published in
Phys. Rev. Lett. 94, 186805 (2005). In the high-field limit, when 2EZ � ESOI, the dephasing rate saturates
and reaches asymptotically to a value equal to half the spin-relaxation rate.

DOI: 10.1103/PhysRevLett.97.176802 PACS numbers: 73.23.�b, 71.70.Ej

In two-dimensional electron gases (2DEG) with spin-
orbit interaction (SOI), the skew-scattering of the electron
spin leaves a trademark fingerprint on the quantum correc-
tions to the conductivity in the form of a positive contri-
bution, the antilocalization term. This results from the SOI
mediated coupling of trajectories of electrons with oppo-
site momenta and opposite spins, a configuration aptly
named a singlet Cooperon, in the impurity-averaged diffu-
sion equation [1]. The phase difference in the interfering
paths of the two electrons is measured by the dephasing
time ��.

A magnetic field of intensity B applied parallel to the 2D
layer diminishes the spin-scattering effect of SOI by align-
ing the spins parallel to its direction. In this situation,
���B� is expected to depend on two relevant parameters:
the Zeeman splitting, proportional with the effective gyro-
magnetic factor �, EZ � 2�B and the spin-orbit energy,
expressed in terms of the spin-relaxation time �s�0� [2],
ESOI � @=�s�0�.

A theory of this effect, developed at low magnetic fields
by considering the Zeeman interaction as a perturbation on
the electron diffusion equation [1], finds that, for a SOI
with linear (Rashba [3] ) momentum coupling, ���B� is
proportional to �EZ=ESOI�

2 [4]. This behavior has been
confirmed by several separate experiments [5,6].

The linear �EZ=ESOI�
2 dependence of ���B� inferred

from the low field estimates has been challenged recently
by data obtained by Meijer et al. [7] for intense magnetic
fields. When EZ=ESOI � 1 the dephasing time saturates,
becomes independent of such system parameters as the
electron density, Rashba splitting, or the elastic scattering
time, and is represented by a universal function of
�EZ=ESOI�

2.
Intrigued by these experimental findings, we calculate

the dephasing time and study its variation with EZ from a
general theory of the localization effects in a spin-
polarized 2DEG with Rashba spin-orbit coupling. The first

important result of this Letter is that within the weak,
isotropic scattering approximation, ���B� is, indeed, a
universal function of �2EZ=ESOI�

2. This dependence, rather
than the �EZ=ESOI�

2 parametrization discussed in the ex-
periment, might be explained by the argument that the
additional dephasing introduced by the longitudinal mag-
netic field in the trajectories of the opposite spin electrons
that form the singlet Cooperon is such that it preserves the
relative orientation of the two spins, making 2EZ (corre-
sponding to two spin flips) the appropriate energy scale.
The second important result is that in the high-field limit,
the calculated relative change of the dephasing rate in
respect to its unpolarized value tends asymptotically to
1=2�s�0�. Of course, at low fields we recover the dephasing
rate obtained in Ref. [4].

The object of this study is a 2DEG, spin-polarized by a
magnetic field parallel to the layer, ~B � Bẑ. The magnetic
field determines an imbalance between the number of spins
parallel to the field, n", and those opposite to the field, n#.
The degree of spin polarization, � � �n" � n#�=�n" � n#�,
varies continuously from �1 to 1 as a function of B and is
considered a parameter of the problem. The direction of the
magnetic field, in the plane of the gas, corresponds to the
quantization axis of the electron spin, ẑ (x̂ is in the plane,
while ŷ is perpendicular on the plane). The noninteracting
electron energies, in the absence of the spin-orbit interac-
tion, reflect the Zeeman splitting and are written, for an
electron of momentum ~p, spin �, and effective mass m
(considered to be spin independent), as � ~p;� � p2=2m�
��B, where � � 1 for a spin parallel to the field and � �
�1 for the opposite.

In the presence of the Rashba spin-orbit coupling, the
single-electron Hamiltonian is

 HSOI �
~p2

2m
�

~�
@
~� � � ~p� ŷ� � � ~� � ~B; (1)
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with ~� the coupling constant of the Rashba interaction, and
~� the Pauli spin operator.

To calculate the dephasing time, we generalize the well-
known theory of localization [8] for a spin-polarized sys-
tem. By considering the spin polarization as a preexisting
condition of the problem, rather than a perturbation in
comparison with SOI, as in Ref. [4], we allow an uncon-
strained relationship between EZ and ESOI to occur. The
logarithmic corrections to the conductivity are generated
by the poles of a quantum diffusion equation, or, in an
equivalent representation [9], by the eigenvalues of the
Cooperon equation. The propagator (or Cooperon) repre-
sents the convolution in the momentum space of two
single-particle Green functions, averaged over the impurity
configuration. To construct the propagator, we start by first
obtaining an expression for the single-electron Green func-
tion in a spin-polarized electron system with Rashba
interaction.

In the absence of SOI, the single-particle Green function
in the 2DEG is represented by a diagonal 2� 2 matrix in
spin space:

 GR;A� ~p;!� �
GR;A
" � ~p;!� 0

0 GR;A
# � ~p; !�

 !
; (2)

where GR;A
� � ~p;!� � �!� @

�1� ~p� 	
i

2�0
��1 are the spin-

dependent retarded (R) (with �) and advanced (A) (with
�) components. The impurity scattering is assumed to be
isotropic, characterized by a rate �0 � 2�N0u2, with N0 �
m=2�@2 the single spin density of states at the Fermi
surface, and u2 the mean-square impurity potential, con-
sidered spin independent.

The nonaveraged propagator, P0� ~q;�� defined by

 P0� ~q;�� �
Z
d!

X
~p

GR� ~p;!�GA�� ~p� ~q; !���; (3)

involves two Green functions associated with two different
spin-1=2 particles. Its matrix representation occurs in the
S1 
 S2 space, where the Pauli spin operators and the
identity that act as a basis are, respectively, fÎ1; �̂x;y;zg
and fÎ2; 	̂x;y;zg. In this description, P0� ~q;�� becomes:

 P0� ~q;�� �
X
�

�
P0
�;�� ~q;��

Î1 � ��̂z
2



Î2 � �	̂z

2

� P0
�;��� ~q;��

Î1 � ��̂z
2



Î2 � �	̂z

2

�
: (4)

The coefficients P0
�;�0 � ~q;�� are calculated from Eq. (3)

for the corresponding pairs of spins in the perturbative
approach of the weak scattering approximation, by consid-
ering 1=�0 � much larger than all the other frequencies
involved:

 P0
�� � 2�N0�0�1� i��0 �D�q2�0�; (5)

 P0
�;�� � 2�N0�0�1� i��� 2��B=@��0 �D�q2�0�:

(6)

D� � D0�1� ��� are the spin-dependent diffusion coef-
ficients, which in the case of the unpolarized gas become
equal to the diffusion coefficient in 2D, D0 � v2

F�0=2,
where vF is the Fermi energy.

The introduction of SOI changes substantially this pic-
ture because the spin direction is no longer parallel to the
applied magnetic field, but rather undergoes a process of
randomization induced by the coupling to the orbital mo-
tion. A single-electron Green function that incorporates
both interactions can be obtained by using the exact eigen-
functions and the corresponding eigenvalues of HSOI.
Because of the spin mixing, however, this algorithm is
laden with serious mathematical difficulties, especially
where the impurity average is concerned.

In a different approach, adopted here, we exploit the
linear coupling of the electron momentum to the spin in the
Rashba term. This coupling allows the introduction of a
spin-dependent vector potential m~�� ~�� ŷ�=@ that is being
used as a generator of a non-Abelian unitary transforma-
tion in the spin space to produce the Green’s function of the
spin-polarized electrons in the presence of the spin-orbit
interaction. Such an approximation has been discussed
before in connection with a magnetic vector potential [8],
with the Aharonov-Casher effect [10], and with SOI in
parallel quantum dots [11]. Consequently, we define

 G R;A
~p;!� ~r; ~r

0� � e�i�� ~��ŷ���~rGR;A�p;!� (7)

as the single-particle Green function in the presence of
SOI, with � � ~�m=@ a reduced Rashba coupling constant.
On account of SOI, the new Green function G is not
diagonal. Accordingly, the nonaveraged propagator
P 0� ~q;��, defined by Eq. (3), becomes a 16 term sum in
the vector space S1 
 S2, that reflects the skew-scattering
of the electron spins.

Performing the statistical average over the impurity
configuration requires the propagator P � ~q;�� to satisfy:

 P � ~q;�� � u2 � u2P 0�q;��P � ~q;��: (8)

An elegant solution to Eq. (8) is obtained in a basis of the
S1 
 S2 vector space in which the kernel P 0� ~q;�� assumes
a diagonal form. The vectors �i� ~r� of this basis are found
by solving

 

Z
d ~r0P 0� ~r; ~r0��i� ~r0� � �i�i�~r�; (9)

for the corresponding eigenvalues �i. In this representa-
tion, P 0� ~r; ~r0� �

P
i�i� ~q;���i� ~r��i � ~r

0� leading to an im-
mediate solution to Eq. (8):

 P � ~r; ~r0� �
X
i

u2

1� u2�i� ~q;��
�i�~r��i � ~r

0�: (10)

The logarithmic corrections to the conductivity are then
given by the poles of P � ~q;��, estimated in the limit of
small ~q: lim ~q!0�1� u

2�i� [8]. The problem is centered,
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therefore, on solving the eigenfunction-eigenvalue equa-
tion of the nonaveraged propagator.

Equation (9) is linearized by expanding P0
��0 and �i�

~r0�
up to second order around ~r [8]. The final result involves
the Fourier transforms of the propagators in the absence of
SOI, P0

��0 , defined in Eq. (6), and their derivatives with

respect to q. Simultaneously, the eigenfunction �i�
~r0� is

replaced by �i�~r
0� � �i� ~r� � r�i�~r��~r�

1
2r

2�i� ~r��
��~r�2. �i� ~r� is a spinor in S1 
 S2 whose general form is
a linear combination of eigenvectors of Szi, in S1 
 S2,
j
>i for spin-up and j�>i for spin-down (i � 1, 2):
��~r� � e~q� ~r�aj
 >1 j
 >2 �bj
 >1 j�>2 �cj�>1

j
 >2 �dj�>1 j�>2�, where a, b, c, d are numerical
coefficients. With this test solution, the characteristic equa-
tion for the eigenvalues of the propagator is obtained to be

 

����������������
Z1" qz qz ��
qz Z0" �� qz
qz �� Z0# qz
�� qz qz Z1#

����������������
� 0; (11)

where the diagonal coefficients that incorporate the eigen-
values � are Z1� � �1� i��0 �D��0�q2 � 4�qx �
6�2� ���=2�D��0 and Z0� � �1� i���
2��B=@��0 �D��0�q

2 � 2�2� ���=2�D��0. qx and qz
are the corresponding components of ~q.

The straightforward evaluation of the determinant leads
to a quartic equation in � (imbedded in Zi�):
 

�Z0"Z0# � �2��Z1"Z1# � �2� � q2
z�Z1" � Z1# � 2��

� �Z0" � Z0# � 2��: (12)

Even though, in principle, this equation can be solved for
any values of q, for the problem at hand suffices to obtain
its solutions for q � 0. It is also instructive to investigate
the solutions of this equation in the absence of the mag-

netic field. In the relevant limit ~q! 0, we obtain Z1	 �
	� and Z0	 � 	�, which generate the following values
for the logarithmic corrections to the conductivity:

 lim
q!0

1� u2�i

�0
�

8>>><>>>:
�i�� 8�2D0

�i�� 4�2D0

�i�� 4�2D0

�i�

: (13)

By using the definitions of the diffusion coefficient and of
the reduced Rashba interaction, we identify 4D0�

2 �

2 ~�2k2
F�0 (kF is the Fermi momentum) as the Dyakonov

spin-relaxation rate, 1=�s�0� [2]. This is associated with the
SOI induced rate of change of the in-plane spin compo-
nents: dSi=dt � �Si=�ii; �i � x; z�, where �ii � �s�0�.
The rate of change of the perpendicular spin component,
dSy=dt, is described by �yy � ��0�=2. The imaginary fre-
quency is replaced by the dephasing rate, ��1

� �0�. With
these substitutions, we readily regain the traditional form
of the conductivity poles expressed in terms of the spin-
relaxation times as derived in Ref. [1]. One can also show
that the eigenfunction ��r� associated with the eigenvalue
��1
� �0� corresponds to the pairing of two electrons of

opposite spins and momenta, i.e., the singlet Cooperon,
and generates the antilocalization correction [1].

Inspired by this analysis, we rewrite Eq. (12) in terms of
a new set of unknowns, ui;� � Zi;� � �, such that

 

�
u1"u1#

u1" � u1#
� �

��
u0"u0#

u0" � u0#
� �

�
� q2

z : (14)

In this form, the limit q! 0 can be taken and the resulting
two uncoupled quadratic equations can be solved indepen-
dently. With �1� � 2�N0�0�1� i��0 � 4�2D��0� and
�0� � 2�N0�1� i��� 2��B=@��0 � 2�2D0�0�, the so-
lutions are:

 �i;	 �
1
2��i" ��i# � 2�2�D" �D#��0 	

���������������������������������������������������������������������������������������������������
���i" ��i#� � 2�2�2

0�D" �D#��
2 � 16�4�4

0D"D#
q

�: (15)

A quick inspection shows that 1� u2�1;	j ~q�0=�0 and 1� u2�0;�j ~q�0=�0 correspond to the first three lines of Eq. (13).
Their dependence on the magnetic field is producing a negligible effect on the logarithmic corrections to the conductivity
compared with the unpolarized case.

The opposite is true, however, about the effect of the magnetic field on the solution that describes the weak
antilocalization,

 lim
q!0

1� u2�0;�

�0
� �i�� 2D0�

2 � 2D0�
2

����������������������������������������������������������������������
1� 2�

�
i�B

@D0�0�2

�
�

�
�B

@D0�2�0

�
2

s
: (16)

In analogy with the unpolarized case, described by the last line of Eq. (13), a dephasing time ���B� is defined as a measure
of the antilocalization correction in the presence of a magnetic field:

 

1

���B�
�

1

���0�
� 2D0�2<e

�
1�

����������������������������������������������������������������������
1� 2�

�
i�B

@D0�0�2

�
�

�
i�B

@D0�0�2

�
2

s �
: (17)

(<e designates the real part of the expression.)
Following the notations of Ref. [2], we introduce the variation of the dephasing rate from the unpolarized case, �s��B� �

����B��
�1 � ����0��

�1 and recognize that ��B=@D0�0�
2�2 � f4�B=�@=�s�0��g

2 � �2EZ=ESOI�
2. Moreover, since on

account of the large electron density and the low effective mass the spin polarization is very small, in the following

PRL 97, 176802 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
27 OCTOBER 2006

176802-3



considerations � is set to 0. Thus, by extracting the real part
of Eq. (17) we obtain that the change of the dephasing time
induced by the longitudinal field is simply:

 �s�0��
s
��B� �

1

2

8<:1�

����������������������������������������������������
1� �2EZESOI

�2 � j1� �2EZESOI
�2j

2

s 9=;:
(18)

We compare the relative dephasing rate give by Eq. (18)
with the experimental data in Fig. 1.

The dephasing mechanism suggested by Eq. (18) can be
understood by considering that in the presence of the
longitudinal magnetic field the down-spin component of
the singlet Cooperon is forced to undergo a spin flip. This
action is counterbalanced by the spin-orbit coupling which
will redirect the spin in some other direction. For the
singlet Cooperon to continue to exist and thus contribute
to the antilocalization, the dephasing of the original down-
spin electron trajectory has to be such that, as a result of the
spin-orbit coupling, the electron spin reverts to the down
position in respect to the direction of the field. The two
consecutive spin flips imply the 2EZ energy dependence.

At weak fields, when �2EZ=ESOI�
2 � 1, from Eq. (18),

we obtain

 �s�0��
s
��B� �

�
EZ
ESOI

�
2
: (19)

This is equivalent with ��1
� �B� � �

�1
� �0� � 2�2B2=�k2

F�
2
0�,

the result of Ref. [4]. For �2EZ=ESOI�
2 ’ 1, Eq. (18) be-

comes:

 �s�0��
s
��B� �

1

2

�2EZESOI
�2

1�
���������������������
1� �2EZESOI

�2
q ; (20)

establishing the onset of the saturated behavior, that con-
tinues through the high-field limit, when the dephasing rate

is close to 1=2�s�0� as observed experimentally [7]. In this
regime, at a given intensity of the spin-orbit coupling ESOI,
there is a maximum value of the longitudinal magnetic
field determined by 2EZmax � ESOI for which the modifi-
cations induced in the direction of one of the spins in the
singlet Cooperon can be compensated by the skew-
scattering produced by SOI, such that the singlet pairing
is preserved. Increasing the intensity of the magnetic field
beyond this limit leads to the disappearance of the anti-
localization correction as the singlet Cooperon configura-
tion is not realized anymore, exactly as observed experi-
mentally [7]. The dephasing of the two trajectories remains
constant since it is established solely by the spin-orbit
coupling at a value equal to half the spin-relaxation rate
along the z direction, �2�s�0���1, 2�s�0� being the amount
of time in which the original down-spin flips and then
realigns itself with the ẑ axis. In the ideal 2D system
modeled here, no surface effects have been considered.
Consequently, this calculation does not reproduce the slow
slope of the curve registered experimentally [7].

We conclude, therefore, that a general theory of local-
ization effects in spin-polarized 2DEGs explains the satu-
rated universal dependence on �2EZ=ESOI�

2 of the electron-
dephasing time, matching the data of Meijer et al. [7].
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FIG. 1 (color online). The calculated dephasing time from
Eq. (18) is compared with the experimental data of Meijer
et al. [7] for � � 0.
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