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Thermodynamic limits of the local field corrections in a spin-polarized electron system

D. C. Marinescu and I. Tifrea
Department of Physics, Clemson University, Clemson South Carolina 29634

~Received 19 September 2001; published 12 February 2002!

In a spin-polarized electron gas, the effect of the exchange~x! and correlation~c! interactions can be

incorporated into the dynamic response functions through spin-dependent local-field correctionsGs
x,c(v,qW ).

We obtain the zero-frequency and long-wavelength limits ofGs
x,c(v,qW ) by analyzing the connection between

the macroscopic response function and the thermodynamic parameters of the system.

DOI: 10.1103/PhysRevB.65.113201 PACS number~s!: 72.25.2b, 71.10.2w

The introduction of frequency- and wave-vector-
dependent local-field corrections is motivated by the neces-
sity of obtaining a more realistic picture of the effective
electron-electron interaction. Generally, the local field cor-

rectionsGx,c(qW ,v) describe the deviation from the average
electron density considered in the random-phase approxima-
tion ~RPA! induced by the short-range Coulomb interaction
through exchange~x! and correlations (c). Their knowledge
is very important in estimating system parameters that are
influenced by the interaction, such as response functions and
effective mass, and obtaining better and better approxima-
tions has been a continuous effort in condensed-matter
theory.1

An important view of this old problem appears in the
context of spin-dependent interaction in itinerant magnetic
systems with a high degree of spin polarization. This descrip-
tion is appropriate for dilute magnetic semiconductor sys-
tems, where high values of the effective electron gyromag-
netic factor g* facilitate a large Zeeman splitting and
consequently, a large magnetic polarization even at low val-
ues of an external magnetic field. The possibility of using
these materials for spin-dependent applications hinges on the
ability to distinguish between the spin states, a goal that can
be achieved by understanding the difference in the electron-
electron interaction among electrons of different spins.

A basic model for such a system is a spin-polarized elec-
tron gas~SPEG! under the effect of a static magnetic field
that lifts the spin degeneracy and induces an equilibrium
polarization. In this situation, it is expected that local-field
corrections are functions of the spin degree of freedom as the
short-range Coulomb interaction is spin dependent. In the
present work, the system of interest is a SPEG of densityn
versus a positive background to assure charge neutrality, po-
larized by a dc magnetic fieldBẑ that creates a spin imbal-
ancez5(n↑2n↓)/n. z is considered a continuous function
of B, and can take any value between21 and 1. Conclusions
based on the simple model outlined above—an electron gas
in the presence of a static, external magnetic field—can also
be important for a situation in which the polarization is a
results of a self-consistent magnetic field, given that the
many-body interaction will be the same, independent of the
nature of the magnetic field.

The inclusion of spin-dependent local-field corrections in
the effective potential experienced by an electron of spinsW
in the presence of an electromagnetic field—an electric po-

tential w(qW ,v) and a magnetic inductionbW (qW ,v)—can be
obtained by generalizing the classical work of Kukkonen and
Overhauser.2 This approach simply showcases the different
interaction undergone by the up- and down-spins in the mag-
netic system on account of the Pauli exclusion principle. Fol-
lowing Ref. 3 we write the self-consistent, one-particle, ef-
fective interaction potential in the presence of the external
field:

Vs52ew~qW ,v!1g* sW •bW ~qW ,v!1v~qW !

3H @12Gs
1~qW ,v!#Dn~qW ,v!

1
1

g*
sW •DmW ~qW ,v!Gs

2~qW ,v!J . ~1!

Here Dn(qW ,v) and DmW (qW ,v) are the electron density and
magnetic fluctuations.Gs

1 represents the sum of the interac-
tions experienced by an electron of spins. These are com-
posed of exchange with spinss and of correlations with both

s ands̄. Gs
2 is the difference between same-spin interaction

~correlations and exchange with other spinss!, and opposite-

spin interaction~correlations withs̄!. Same-spin correlations
are usually neglected on account of the Pauli principle that
diminishes the concentration of same-spin electrons around a
given spin.v(q) is the Fourier transform of the Coulomb
interaction, equal to 2pe2/q in two dimensions and to
4pe2/q2 in three dimensions.

In a linear approximation, the density fluctuations in each
spin population are proportional to the corresponding effec-
tive potential,Dns5PssVs , where the proportionality co-
efficients are appropriately defined polarization functions,
given below. The total density fluctuation isDn5Dn↑
1Dn↓ . A set of three equations, one for each direction, is
needed to describe the magnetization. The longitudinal com-
ponent, parallel to theẑ axis, is generated byDmz5
2g* (Dn↑2Dn↓). The transverse-induced magnetization
arises from spin-flip processes determined byb65bx
6 iby , the components of the ac magnetic field coupled to
s75sx7sy , and respectively the Pauli lowering and rais-
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ing spin operators. To cover all possible cases, we define the
generalized polarization functions

Pss8~qW ,v!5
1

Ld (
k

nkW2qW /2,s2nkW1qW /2,s8

\v2~ekW1qW /2,s82ekW2qW /2,s!
. ~2!

ek,s5(\2k2/2m* )1sgn(s)g* B is the single-electron en-
ergy in the static magnetic field, andnk,s is the single-
electron occupation function, the usual Fermi distribution as-
sociated with energyek,s . V5Ld, with d52 and 3, is the
‘‘volume’’ of the system. Here, sgn(s) is equal to11 for up
spin electrons and to21 for down spins.

The knowledge ofGs(qW ,v), and especially its depen-
dence onz, is very important in estimating the three different
electron-electron interactions present in the system: up-up,
up-down, and down-down. As in the unpolarized case, the
exact v and qW dependences are very elusive, but attempts
have been made to calculate the asymptotic values of the
local factors at short wavelengths (q→`) and large frequen-
cies (v→`) in both two4 and three dimensions.5

The object of this paper is to analyze the asymptotic val-
ues ofGs(qW ,v) at the opposite end of the spectrum, at zero
frequency and long wavelengths. In this limit, the response
functions represent the response of the system to a static field
which varies slowly in space, and can be connected with the
thermodynamic parameters of the system, that are second-
order derivatives of the total free energy in respect to the
particle density and magnetization. It is important to note
that this case corresponds tov being set to zero before let-
ting q vanish. For an unpolarized electron system, the limit-
ing procedure outlined above generates a connection be-
tween the static, long-wavelength, charge susceptibility and
the compressibility known as ‘‘the compressibility sum
rule.’’6 Our work will provide a generalization of this sum
rule to include the case of off-diagonal magnetoelectric ef-
fects. From the appropriate sum rules we will derive the
corresponding expressions of the local factors. We compare
these results with the recent work of Ref. 4.

On account of the equilibrium magnetization, in the pres-
ence of an electromagnetic perturbation, a SPEG exhibits
coupled particle and longitudinal spin-density fluctuations
triggered byw andbz :

Dn5xee~2ew!1xembz , ~3!

Dmz5xme~2ew!1xmmbz . ~4!

The spin-flip fluctuations induced byb65bx6 iby give rise
to

Dm65x6b6. ~5!

In Eqs.~3!, ~4!, and~5!, the v andqW dependence of all the
quantities involved is understood. All six response functions
x can be derived by making use of Eq.~1! self-consistenly.
Here we will quote only the main results that follow the
detailed calculation presented in Refs. 3 and 5:

xee5
1

D
@P↑↑1P↓↓12P↑↑P↓↓v~qW !~GL,↑

2 1GL,↓
2 !#, ~6!

xem5
g*

D
@P↑↑2P↓↓12v~qW !P↑↑P↓↓~GL,↓

2 2GL,↑
2 !#,

~7!

xme52
g*

D
@P↑↑2P↓↓12v~qW !P↑↑P↓↓~G↓

12G↑
1!#,

~8!

xmm52
~g* !2

D
@P↑↑1P↓↓22v~qW !P↑↑P↓↓~22G↓

1

2G↑
1!#, ~9!

where

2D5@122v~qW !P↑↑~12G↑
1!#@112v~qW !P↓↓GL,↓

2 #

1@122v~qW !P↓↓~12G↓
1!#@112v~qW !P↑↑GL,↓

2 #.

~10!

The corresponding transverse susceptibilities are:

x152
2~g* !2P↓↑

112v~qW !P↓↑GT,↑
2

, ~11!

x252
2~g* !2P↑↓

112v~qW !P↑↓GT,↓
2

. ~12!

In the zero-frequency, long-wavelength limit the local-
field behavior can be related to the static response functions
of the system, as discussed in Refs. 7 and 8. By following the
same argument, we obtain immediately that, for the up-spin,
the transverse local-field factor is:

GT,↑
2 52

~g* !2

v~q! S 1

x1
2

1

x0
1D , ~13!

while, for the down-spin, GT,↓
2 (z)5GT,↑

2 (2z). x̃0
25

22(g* )2P↓↑ is the transverse magnetic susceptibility in the
RPA.

In the longitudinal case, care needs to be exercised since
the charge and magnetic response are coupled, i.e. both the
electric potential and theẑ component of the ac magnetic
field simultaneously induce density and spin variations. Let
us first consider the situation in which only the electric po-
tential is applied. Equation~4! indicates that the density fluc-
tuation expected as a result of the scalar field is accompanied
by a change in the magnetization of the system,Dmz . This is
easy to understand when one considers the effect of the per-
turbation on the local electron energies and implicitly on the
electron occupation number. Since in equilibrium the system
is described by a spin imbalance, the induced changes are
different for up- and down-spins, resulting in a nonzero mag-
netization.

In the thermodynamic limit the aim is to connect the re-
sponse functions with second-order derivatives of the free
energy of the system. However, these derivatives are calcu-
lated when only one parameter of the system varies, while
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the others are kept constant. In the problem at hand, the
correct way to relate the scalar field with the density fluctua-
tion in the thermodynamic limit is by keeping the magneti-
zation constant. This is possible when, in Eq.~4! Dmz50,
with the implication that in a SPEG, a magnetic fieldbz5
2(xme/xmm)(2ew) is induced by the scalar potential. Of
course, this value needs to be introduced into Eq.~3!, leading
to:

Dn5S xee2
xemxme

xmm
D ~2ew!. ~14!

The density fluctuation@Eq. ~14!#, gives rise to an additional
pressure distributionDP, such that the corresponding pres-
sure force¹P balances the average external force per unit
volume, 2n¹(2ew). At zero frequency, the long-
wavelength limit of Eq.~14! is then connected to the macro-
scopic compressibility of the electron system,K. Based on
this argument we write

lim
q→0

S xee2
xemxme

xmm
D52nS ]P

]n D 21

, ~15!

with (]P/]n)215nK. We stress here that in all the quanti-
ties above,v is first set to zero, and thenq is allowed to
approach zero. By introducing appropriate expressions for
the susceptibilities from Eqs.~6!–~9!, and performing the
required elementary algebra, we obtain that

G↑
11G↓

152
2

nv~q! F S ]P

]n D2S ]P

]n D
0
G . ~16!

(]P/]n)0
215nK0 is obtained from Eq.~14! in the RPA,

when allG’s are set equal to zero. The pressure of a SPEG is
simply P52(]E/]V), whereE is the total energy of the
system.

The electric potential can also be related to the induced
magnetization, when the density fluctuation is kept constant.
From Eq.~3!, the density fluctuation is zero under the appli-
cation of an electric potential, when a longitudinal magnetic
field bz52(xem/xee)(2ew) is induced. By considering Eq.
~4!, we obtain the induced magnetization generated byw in
the absence of any charge fluctuations:

Dmz5S xme2
xeexmm

xem
D ~2ew!. ~17!

The longitudinal magnetization, which arises only from dif-
ferent density fluctuations for opposite spins, modifies the
pressure distribution in the system. Since the resulting pres-
sure force has to balance the external force averaged per unit
volume, 2n¹(2ew), the static, long-wavelength limit of
Eq. ~17! is

lim
q→0

S xme2
xeexmm

xem
D52nS ]P

]mz
D 21

. ~18!

Again, by using Eqs.~6!–~9! we obtain,

G↑
22G↓

25
2g*

v~q! F S ]P

]mz
D2S ]P

]mz
D

0
G . ~19!

Similar arguments can be made when only the longitudinal
component of the magnetic field is applied,bz . To obtain the
thermodynamic limit of the magnetic susceptibility, we re-
quire that no density fluctuations are allowed. This implies,
from Eq. ~3!, that an electric potential is induced, (2ew)5
2(xem/xee)bz that produces an additional magnetic fluctua-
tion as in Eq.~4!. The static limit of the total magnetization
is the magnetic susceptibility of the system,x5(]mz /]bz):

lim
q→0

S xmm2
xemxme

xee
D5S ]mz

]bz
D . ~20!

Thermodynamically,bz5@]F/](Ldmz)#, since it is the con-
jugate variable of the volumic magnetization.

The density fluctuation associated with the longitudinal
component of the magnetic field, obtained when the mag-
netic fluctuation is forced to be zero, is connected in the
thermodynamic limit with (]bz /]n):

lim
q→0

S xem2
xeexmm

xme
D5S ]bz

]n D 21

. ~21!

Upon considering Eqs.~6!–~9! in Eqs. ~20! and ~21!, the
following relations for the local field corrections,Gs

2 , are
obtained:

G↑
21G↓

252
~g* !2

v~q! F S ]bz

]mz
D2S ]bz

]mz
D

0
G , ~22!

G↑
12G↓

15
2g*

v~q! F S ]bz

]n D2S ]bz

]n D
0
G . ~23!

One can immediately write down the thermodynamic limit of
the local-field corrections from Eqs.~16! and ~23! and Eqs.
~22! and ~19!, respectively. The results are

Gs
1~q→0,0!52

1

v~q! H 1

n F S ]P

]n D2S ]P

]n D
0
G

2sgn~s!g* F S ]bz

]n D2S ]bz

]n D
0
G J . ~24!

Gs
2~q→0,0!52

g*

v~q! H g* F S ]bz

]mz
D2S ]bz

]mz
D

0
G

2sgn~s!
1

n F S ]P

]mz
D2S ]P

]mz
D

0
G J . ~25!

These results can be particularized for two or three dimen-
sions by calculating the appropriate thermodynamic coeffi-
cients. In all cases, the dependence onz is implicit in the
thermodynamic coefficients, while that onq is the same as in
the case of an unpolarized gas of the same dimensionality.
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The thermodynamic limit of the local fields in a SPEG
was recently analyzed in Ref. 4, with different results. To
obtain the response functions of the system, the authors em-
ployed an equation-of-motion technique originally developed
by Caccamoet al.9 A careful examination of the latter refer-
ence leads one to believe that, in deriving the equations sat-
isfied by the charge and spin fluctuations, the finite-
frequency, short-wavelength limit of the polarization
functions,Pss(qW ,v)5nsq2/m* v2, was used, and the final
results were given in this approximation. The above limit of
the polarization function results from a power expansion, and
is valid only whenv@qvF (vF is the Fermi velocity!. Ob-
viously, in this form one cannot take the limitv→0 for the
static case. Using the same equations as a starting point in
deriving the asymptotic expressions of the local-field correc-
tions in the zero-frequency, long-wavelength limit is inappro-
priate. This, we think, is the origin of the discrepancy be-
tween the present results and those obtained in Ref. 4.

The general expressions for the local-field corrections,
@Eqs.~24! and~25!#, can be used to obtain analytical results
in both two and three dimensions. To determine the thermo-
dynamic parameters involved, we need only consider the to-
tal interaction energy of the system, since the kinetic-energy
derivatives will simply cancel the RPA estimate of the same
quantities. Including the exchange and correlation contribu-
tions alone, we write

E5V(
s

ns@2akFs1wcs~kFs ,kFs̄!#, ~26!

where

kFs52ApFGS d

2
11DnsG1/d

is the Fermi wave vector for spin populations, andwcs is
the spin-dependent correlation energy per particle considered
function of both kFs and kFs̄ . a is a constant equal to
3e2/4p three dimensions, and to 4e2/3p in two dimensions.
By taking the appropriate derivatives of Eq.~26!, we arrive
at

Gs
1~q→0,0!5

a~d11!

2v~q!nd2 (
s8

kFs8F11
n

2ns8

3sgn~s8!sgn~s!G ~12s!, ~27!

Gs
2~q→0,0!5

a~d11!

2v~q!nd2 (
s8

8kFs8sgn~s8!sgn~s!

3F11
n

2ns8

sgn~s8!sgn~s!G ~12s8!.

~28!

Here s and s8 stand for contributions from the correlation
energy, that involve first and second-order derivatives of
wcs(kFs ,kFs̄) in with respect tokFs andkFs̄ . For an unpo-
larized electron systemwcs(kFs) is obtained numerically,
but we are not aware of similar calculations being done for a
SPEG.
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