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PHYSICAL REVIEW B, VOLUME 65, 045325

Tunneling between dissimilar quantum wells:
A probe of the energy-dependent quasiparticle lifetime
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J. J. Quinn
Department of Physics, University of Tennessee, Knoxville, Tennessee 37996

Gabriele F. Giuliani
Department of Physics, Purdue University, West Lafayette, Indiana 47907
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Tunneling between two narrow quantum wells with different effective masses is proposed as a probe of the
quasiparticle inelastic lifetime at finite excitation energy. Conservation of energy akdtbeé momentum
parallel to the interface, allows the tunneling conductance to be large only if the crossing of the two energy
bands[El(IZ)= E2(IZ)+eV] at an applied voltag¥ occurs between the two Fermi levels. The abruptness of
the change in tunneling current as this crossing passes through one of the Fermi levels can be used to
investigate the lifetimes of the quasiparticle states involved. Results based on the random phase approximation
are used as an illustration.

DOI: 10.1103/PhysRevB.65.045325 PACS nuniber73.40.Gk, 73.63.Hs, 72.20.Jv

[. INTRODUCTION serve as a test of any theory of electron relaxation at higher
energies, where in addition to decay into electron-hole exci-

Measurements of the tunneling current that appears bdations, it is expected that the decay into plasma modes gives
tween two identical quantum wells under bi¥sallowed an important contribution.
Murphy et al! to determine directly the electron inelastic ~ The electronic inelastic lifetimeqe has been the subject
lifetime from the width of the peaks in the differential con- Of Numerous theoretical papets:?It is well established that
ductanced 1/d V. In the system employed in the experiment Within the random phase approximation, the decay into
(two identical high-mobility GaAs/AGa,_,As quantum particle-hole excitations generates a relaxation rate propor-

H 2 < < 2
wells) the energy and momentum conserving interwell tun-ional © A%In A whenkgT<A<pu and toT7InT when A

neling occurs only when the edges of the minibands in th(kaT<'“' HereA is the excitation energy above the Fermi

two wells cross, i.e., when the externally applied electric evel, whilekgT is the thermal energy. The exact proportion-

potential is zero. In this situation the electronic states avaiI-allty coefficient at finite temperaiures, first estimated in Ref.

. . - : 10, was a recent subject of debat¥ when the tunneling
able for tunneling are those in the vicinity of the Fermi SUr- Seriments revealed a numerical discrepancy with the
face, whose broadening under the effect of the Coulomb P pancy

. . ; original calculation.
scattering determines the width of the conductance peak. . . :
In this paper we explore the possibility of tunneling be- Following the general method outlined in Ref. 10 we es-

tween two quantum wells of different effective electron timate the broadening of the tL_Jnne_Img conductance peal_<s at
m * andm* . A suitable heterostructure for experi- finite temperatures, by considering both the decay into

assesm; andmy . A sultable NEETostructure Tor expen- oo qron-nole excitations and the decay into plasma modes.
mental analysis of this proposal involves two high-mobility

X ) . These estimates will be useful by comparing them with the
guantum wells between which tunneling occurs with conser y parnng

. . C i in th ibl i iousl -
vation of electron momentum and energy. This property haggrti%e%btamed i the possible experiment previously de

been verified with great accuracy in the case of
GaAs/ALGa _,As heterostructures by measuring the tunnel-

ing conductance in magnetic fields parallel to the two- Il. TUNNELING CONDUCTANCE
dimensional(2D) layers® The same system serves as prime
candidate for the following investigation. The system under investigation consists of two narrow

Whenm} #m} , the tunneling current is nonzero for an quantum wells separated by a distantdn each well, the
entire range of values of the applied voltageorresponding €nergy spectrum of the two-dimensional electron gas
to a superposition of occupied states in the first well and2DEG) is described in parabolic band approximation by
empty states in the second well that have the same ener@(ﬁ)=h2k2/2mi* +E;p, with i=1,2, the layer index, and
and momentum. The tunneling conductance peaks will occuE;, the bottom of the conduction subband in each of the
wheneV is equal to a fraction of the Fermi energy, as deter-wells. The occupation number of each electronic state corre-
mined by the ratio of the two masses=mj/m} . Because sponds to the Fermi statistics(E)={1+elE-#l/keT\ 1
the states involved in the tunneling can be quite far from thavhereu is the chemical potential.

Fermi energy, the broadening of the conductance peaks will The tunneling processes between two electronic states,

0163-1829/2002/68)/04532%9)/$20.00 65 045325-1 ©2002 The American Physical Society
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T

= (1-1/o)p

FIG. 1. (8 The one-electron energy in the
parabolic approximation in the two wells of elec-
tron effective massesn} and mj, mj>mj .

The same Fermi energy and the same energy ori-
gin is assumed in both wellgb) The tunneling
current is abruptly turned on &,, when the
b) Kep energy of the heavy electronsn{) becomes
equal to the Fermi energfg, in the “light”
layer. (c) The energy and momentum conserving
tunneling occurs for values of the applied electric
\’ / voltage in the interval (1—a Y u,(a—1)u].
ev>(a-1)u E The upper value corresponds to the two parabolas
crossing at the Fermi momentum of the heavy
electrons ak=kg,. (d) For larger values of the
applied voltage, there are no states with the same
energy and momentum and the tunneling current
is zero.

T

d)

k,E;(K) in the first well, andp,E,(p) in the second well,
subject to an electric potential differenbk gives rise to an
electric currentl expressed in terms of the tunneling prob-
ability |Tg5 2 and the spectral density of states in each layer, X APIE+eV,aE{][n(E)—n(E+eV)]. (2

AO[E,E;(K)], as®

| =2eN1N2T2f dElf dEAYE,E,]

The spectral functiod\(E, k) is related to the imaginary part

- A of the retarded Green functiod\(E, k)= —2ImG,e(E,K).
dEAME,E (K)] Near the quasiparticle peak, the spectral function can be ap-
o proximated by a Lorentzian,

=262, |Ti;/2
kp

X AP[E+eV,Ex(p)I[N(E)—n(E+eV)]. () TLE(K) - p.k]

1
In Eqg. (1) both spin orientations are accounted for by the A(E. k)= 27 ©

f ! oo ATTE(R) —p KT
actor of 2 that multiplies the sum over states. In the absence [E-E(k)+ u]°+ 7

of any phonon scattering, the momentum of the initial and

final tunneling state; is conserved and the t_unneling matri{?vherel“[E(lZ)—M,IZ]E—2Im2ret[E(IZ)—,u,lZ] is a slowly
element can be written aI§g5|:T6R§. (5@3 is the Kro- varying function of energy. This behavior allows one to con-
necker symbol. In the following considerations we will as- ﬁlder it constant inside the tunneling current integral. In the

sume that the quasiparticle energies involved are still sma ¢ disorder-f SDEGIE(K
enough, such that the tunneling matrix elem&pg can be @€ o' @ noninteracting, disorder-free, LE(K)

considered a constant independent of energy. — 1,k]—0 andA(E k)= — S E—E(K) + u].

For wells with equal electron effective masses, the energy The tunneling current turns on abruptly when the applied
and momentum conserving tunneling is realized onlgdt Voltage suffices to raise the energy of the heavy electrons
=|E,o—Eyq, since application of a finite electric potential (M7), such that there are occupied states located exactly at
will shift the energy subbands in one well relative to thethe Fermi surface of the light layeju& ﬁ2k22/2m2) as de-
other. In the bilayer system we consider, the ratio of the twescribed in Fig. 1b). The conservation of momentum and
effective masses ise=mj/m3;=1. In equilibrium, the energy leads tdi °kZ,/2m3 = £.2k2,/2m? +eV and the corre-
chemical potential is constant throughout the sample asponding value oeV=(1—a 1)u. At values ofeV for
shown in Fig. 1a) for the case in whicli,g= E,, (which we  which the intersection of the two parabolas lies between the
will assume for the sake of simplicity throughout the rest oftwo Fermi levels, the current remains approximately con-

this work. stant. For these statgs2k?/2m} =#2k?/2m} +eV. The elec-
Following this discussion, in Eq(l), E,(k)=aE (k), trons that tunnel from occupied states in layer 1 into empty
and the tunneling current integral is rewritten: states in layer 2, acquire an excitation energy with respect to

045325-2
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the Fermi level, A,=#/%k?2m} —u=aeV/(a—1)—pu, The integral afteE,, the convolution of the two Lorentzians,

while the holes left behind have an excitation energ\Agf  generates a new Lorentzian functiomI{; + ) (2m) Y

=#2k%/2m* — u=eVi(a—1). The current is turned off {[(a—1)E—pu—eV]?+(al'J+T35)/2} whose insertion in

when the crossing point corresponds to the Fermi momenturiig. (2) leads to

of the heavy electron Iayenu(=ﬁ2k§1/2m’l*) as in Fig. 1c).

Then, the voltage satisfie?k2,/2m% =#2kZ,/2m? +eV, I eNlNszfoo c al'y+T,

with eV=(a—1)u. WheneV becomes larger than this criti- '=

cal value(as sh)c;L\L/vn in Fig.(d), the tunne?ing current van- - [(a=DE-p—eVP+(al1+T3)/2

ishes. X[Nn(E)—n(E+eV)]. 7)
In the simplest approximation—that of a noninteracting

2DEG—Dby inserting the correspondidgfunction dispersion  With the change of variable under the integra\,
in Eq. (1), the tunneling current is obtained: =(a—1)E—eV, we obtain

ks

2eN;N,T?[ [ eV aeV eNyN,T? (= al'1+T,
| = n —n{——]|, 4 = a1y 95 2, 2
a—1 a—1 a—1 ma—1) )« X2+ (al2+T3)/2
. . . x+eV X+ aeV
where N; and N, are the corresponding two-dimensional 1) 1 (8)
o — o —

densities of states at the Fermi surfabe=m/7%2. The
limit a_.’l. of Eq.(4) reproduces t.h_e result Of. the tunneling The conductanc&s=dl/dV is obtained by differentiating
current in identical quantum wells; i.e., tunneling occurs onlyWith respect tov in Eq. (8)
at eV=0.1! For finite a, the tunneling will occur for all P q- (),

values of the electric potential for which the difference

between the Fermi functions is nonzero. At very low tem- _ €°NyN,T? al'y+17

peratures, when the Fermi distribution can be approximated G= (@a=1) |[eV—(1—a YHu]?+(al2+T2)/2
by a step function, this interval ig1—a YHu,(a—1)u].
When the electron-electron interaction is considered the al'1+7T, }
width of the transition broadens, the broadening being deter- - > T o [
mined by the finite electron relaxation time. The correspond- [eV=(a=Du]™+(al'1+17)/2

ing differential tunneling conductanc&=dl/dV is, from . . L .
Ec?. (4) 9 where it was considered that the derivative of the Fermi

function behaves like & function. The widths of the two
PN NLT? conductance peaks are determined {z@(al"zﬁl“zz). We
€"N1 N3 _ note that, sincd'; andI', are weak functions of energy, their
=1 {olev-(1-a Hul-deV-(a=Dul.  \aues in Eq.(9)1are thzose corresponding to the egx)éitation
(5 energies at each of the two peaks, respectively. In each layer,
the relationship ofl" to the quasielectron and quasihole in-
&Iastic lifetimesrqe and 7oy is

(€)

G

The differential conductance peaks occur at those values
the applied voltage where the tunneling current turns on and . R
off. Of course, whenvr=1, the only peak is centered around F[E(k)—,u,,k]th(Sé-FﬁTé&', (10
V=0. Equation(5) indicates that the first conductance peak,
ateV=pu(1-a 1), corresponds to electrons tunneling from wheren[ E(K)] 7o ={1—n[E(K) ]} 7o}
layer 1 to layer 2 at\,=0 and to holes tunneling from layer  Since the width of the conductance peaks can be deter-
2 to layer 1 atA,=—u(1—a" 1). The second conductance mined experimentally, by comparison, one can verify the ac-
peak occurs aeV=(a—1)u and corresponds to the-12  curacy of the theoretical estimates of the various relaxation
tunneling of the electrons at.=u(a—1) and with the 2  times as well as the validity of E¢10).
—1 tunneling of holes aA,,=0.

When a finite spectral dispersion, E8), is considered in

Eq. (2) the expression of the tunneling current becomes lll. FINITE ELECTRONIC LIFETIME

As one of the most important problems in condensed mat-
) ter theory, the electron inelastic lifetime has been studied in
| = eN;No T f“ dE f“ dE both two- and three-dimensional systems for many y&drs.
om2 Jow Y)_a For the problem at hand we will analyze the decay processes
of an excited quasielectron that has tunneled from layer 1
y I'I's[n(E)—n(E+eV)] into layer 2. The general formalism adopted here is based on
_ 2., 12 _ 2. 1r2n the Fermi golden rule, which leads to a probability of decay
[(E=Bytw)"+ T/AR[EFeV=alytul +T5/4) as a result of the intra- and interlayer interactions with an-
(6)  other quasiparticle equal to

045325-3



MARINESCU, QUINN, AND GIULIANI PHYSICAL REVIEW B 65 045325

1 om 2 By making use of the fluctuation dissipation theotewr
oK) h - 2 i1 (NG o) by direct computation, the sum oviemnda’ in Eq. (11) can
2QE p.g.0’j=1 be calculated in terms of the imaginary part of the electron
% |V (.0 |26 Ex(K+ ) gi::llsng)olarization,)(o(q,a)).14 Therefore, one can writej (
+Ej(p—d)—E;(p)~Ea(p)], (11)

Nng 5 1_n9_9 ’ E - _E —ﬁa)
where [V;;(p,q)| is the matrix element of the dynamically E o (1= M-q.0) ALE; (P )~ Ei(P) J
screened electron-electron interaction. Its expression can be 0, >
easily inferred from general electrostatic considerations. _ Almx™(q,w) (17)
When a test charge is embedded in layer 2, the screened 775(1_9—fw/ksT)'
potential experienced by an electron in the same layer in the
random phase approximatiéRPA) reflects self-consistently WhereSis the total surface area of the gas. Hée= E(K
the effect of the charge and that of the concomitant induced-g) — E(K)=E(p) — E(p+q), on account of conservation

electron density fluctuations in both layers: of energy.
Upon the insertion of Eq(17) into Eq.(11) and integra-
Voo=v(q)[p+Any+FAN], (12 tion over all the available transition energik®, the relax-
where v(q)=2me?/q is the Fourier tranform of the intra- 210N rate becomes
layer Coulomb interaction. The interlayer interaction is 1 -
smaller by a form factoF(q)=e 99 The same test charge 2 d(ﬁw)|sz|2
determines a screened electron potential in layer 1 equal to TZQE(k) %S q.j=1
Vor=v(q)[F(p+An,)+An,]. (13 1 n[Ex(K)— o]

; - - ~hwlkgT .mX?(ﬁ,w)
The induced fluctuations are proportional to the screened 1-e B

electron potentials through polarization functions of the 2D - .
electron gasy®.* ThereforeAn; = x°V;; . Substituting these X o{ho—[Ea(k)—Ea(k+a)]}. (18

into Egs.(12) and(13) leads to a system of equations 5,  We introducee,(q,w) as the dielectric function of the elec-

andV; that can be solved with the following results: trons in layer 2, given by
[1-v(a)(1-F)x3] XJuF?
Voo=v(q)p , (14 ex(q,w)=1—v xS — (19
P 2 1-x01-F?)
F and write
V21—U(Q)P5- (15 ,
D is the determinant of the system, given by Z V21|2|mX2 (q,w)= vlmez(q o) (20
D=1-vx5-vxi+vixix3(1-F?). (16

The summation oveﬁ in Eq. (18) can be transformed
In the absence of any electronic spin effects, in the RPA, into an integral in the wusual fashion, =
andV,, are also equal to the effective electron-electron in-——S(27) ~ 2foqdqf(z)”d ¢q- The result of the angular mte-
teractions in the corresponding layers. gration is

h29% h2gk

ms (2D

=

=

*
2m;

2 - o hZ . >
fo dgqd{fo—[Ex(K) —Ex(K+0)]}= \/( a ) _

h2q? 2’ for
m;

*
2m;

0, otherwise.

The consecutive steps exposed in E49)—(21) lead to the following general equation for the relaxation time of an excited
quasielectroiQE) in layer 2:

1
Im

1 2 e 11—N[Ex(K) % J,
e? d(ﬁw)fq ” {1-n[Ex(k)— o]} €2(0,0)

TZQE(k)_ wh Amin 1- eihw/kBT \/ ﬁzqk 2
m3

045325-4
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with the constraint of Eq(21) which limits the range of

1 f 1
and f w integrals. Equation(22) is quite general, applying Im - =-— ® )
equally well for two and three dimensions, for all possible e(d,0) ], 2e%Ke, q \?
decay processes. The particulars for each case are generated 1- oK
F2

by Im[ L/e5(q, w)].
Upon the insertion of Eq$26) and(27) into Eq.(22), the
IV. DECAY PROCESSES integral afterg can be performed with the same result in both

. . . . . , cases, leading to
The imaginary part of the dielectric function acquires spe-

cific values depending on the type of process involved. In the 1 2mi (> 4u
RPA, I 1/e,(q, ivi = f dhw(a)ln—)
m 1/e,(q, )] can be divided as (3] g (how) o
1 1 1 "
Im| —— ]=Im _ +1m|—= ] . X{l—n[E(k)—hw]} 29
EZ(Qaw) 62(q1w) e-h ez(qaw) p| 1_e—ﬁw/kBT

(23)
When the excitation energy measured with respect to the
Fermi surface A =#2k?/2m3 — u, is introduced in Eq(28)

and the change of variablg=% w/kgT, is performed, the
At finite but low temperatures, such thatkgT< u, the relaxation rate becomes

electron-hole decay occurs for small valuegi@indw. For a

A. Electron-hole decay

given w, the wave vector spans an interval limited by the du Y IkgT
solutions of Eq.(21): 7 1 (k T)wa yin kaTy eVe
N R A T
q.=kl 1= 1—m . (24) (29

At finite temperatures, the excitation energynvolved in

Excitation of electron-hole pairs takes place in both Iayers,[he electron-hole decay process is much smaller thah

as reflected by Ifil/e;(q, ©)]: much lower than the Fermi energy. The most important con-
tribution to the integral comes from points near the origin,
1 |1-xJv(1-F?)? where the (e~ Y) becomes almost zero. Within logarith-
Im - - 2 mic accuracy, in the vicinity off=0, only y In|4u/ksT| can
€2(0,0) D]
224" Jen be retained inside the integral with the result
F? i 1(kgT\2 [kgT
X[ Imyd+ ——————Imxd|. o :__<L) |n<i)
|1_X10(1_F ) ,LLTZQE(A) oh T\ Adu

(29

- y eyeA/kBT
« f (30

Since the probability of excitation of electron-hole pairs —o y(ey+eA/kt)(ey_1)'
in layer 1 is diminished by a factd¥2(q), the main contri-
bution comes from electron-hole excitations in the same The integral overy can be integrated exactly with the
layer in which the excited quasiparticle exists. A quick in- resulf®

spection of the integral ovey in Eq. (22) indicates that for

the same layer des-excitation processes, an increased weight % 1 (kgT 2| kgT\ 72+ (A/kgT)?
carry those that occur for values gfand w that cancel the ey L T L T B S
square root. Following Fig. 2, we conclude that the regions #7age(A) o T A #7 1+em™e (31)

of the (g,w) plane involved are those at the limit of the

electron-hole continuum, associated with small frequencAt the Fermi surface, wheA=0, 7,o¢ becomes
and small wave vectog~1 (forward scatteringand large

wave vectorq~ 2kg, (backscattering In the first instance, fi 2 kBT)
(a/2ke,) < (M3 hw/gke,), and the imaginary part of the di- 1 To0e(0) ")
electric function, Eq(19), can be approximated

7 (32

. W(kBT
M

e-h

In the limit A<kgT, Eq.(32) generates a finite width of the

1 ho ( ms w 2 conductivity peak equal to
Im = =— - ) . (206
e2(q.0) |, 2e%Ke, hake2 2h 7 (keT\2 (kgT
er-hZ#I—ME — | Inf—/, (33
In the opposite limit, whemy/2kg,~ 1, the imaginary part of 2QEleh K K
the dielectric function becomes a result also obtained in Ref. 11.

045325-5
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T T If
e-h continuum &Jj AP

OoP

min

q_ Yo q 0 2 4 g 6 8 10

FIG. 2. The (-q) plane of the bilayer system. Electron pairs £ 4. The group velocity of the acoustic plasma modes of the
can be excited in the electron-hole continuum common to both 'aybilayer system is calculated numerically for valuesngf/ms = a

ers or only in the electron-hole continuum of layer 2. The Opticalranging from 1.0 to 2.0 as a function &fd, the product of the
(OP) and acousticalAP) plasmon branches are represented OUtSidel'homas-Fermi wave vector in the first layde, & 2e?m* /%2) and
the electron-hole continuum. The available decay states are Iimiteﬂl1e interlayer distance.

by the solid angle integration iq space, described by the solid

thick line. . .
ciciine When the distance between layers is small and the form

factorF becomes larger, the interlayer interaction couples the
For an arbitrary excitation energy, one should use the replasmon modes in the two layers. The result is the existence
sult of the numerical evaluation of EQ9) in Eq. (10) o of two orthogonal plasma oscillations that correspond to the
determind’. Figure 3 showsg/e., for A=0, obtained both  |inear superposition of the in-phase and out-of-phase density
by direct numerical integration and by logarithmic approxi- fluctuations'®'°The salient features of this phenomenon can
mation, and forA =0.5¢ andA = u. be extracted by investigating the zeros of the dielectric func-
tion of the bilayer system, Eq19). The condition Re,=0,

B. Decay into plasma modes along with Imy; ,=0, leads to the following equation:

The plasma modes are obtained at frequencies which can- 1—U(XO+XO)+02XOXO(1— F2)=0. (34)
cel the real part of the dielectric function, E(L9), when 1Az 142
simultaneously its imaginary part is also zero. When the disy, the smallg limit, it is expected that the frequency of the
tance between the wells is large, each layer exhibits '”depe'%‘ymmetric mode satisfies, >qu . In this case, in Eq34)
dent plasma OSC|||2at|0nS wr2lose *srﬂall wave vector limit iSthe asymptotic expressions of the polarization functions can
approximated bywy,;=2mn;e“q/m; .>" The contribution of e ysed:y,0 = w?/w?. This mode, often called an optical
the single-layer plasmon decay is identical to that studied in)asmon (OP) hgs a dispersion law similar to a single-

the case of a single 2DEG and the results obtained in Ref. 14, ..o layerw . =\ q, and represents the excitation fre-

are expected to apply here. quency of the in-phase density fluctuations in the two layers.

The constanty, is readily obtained to be
0.3 T T

T
o 2 2 2
0.25 o 1 2mn.ec 2mn,e  4mn.e
o o 7+ = + = ’ (35)
02 | P . * * *
- : o A=054 m; mz m;
~c e "
s o015 | 7 e ] : ; ;
[ .° P Ac00 where the same Fermi level was considered in the two wells.
o ithmi =0.
0.1 P o/:’/r W :g;llximzion;;g;% ]
0.05 F 2 = Feat | 1. Decay into acoustic plasmons
s . : .
0 S et The out-of-phase density mode is an acoustic plasmon
0 005 01 015 02 025 03 035 (AP), w_=cpq. Following Ref. 19, we determine numeri-
T cally the group velocity for different values af, as shown

F in Fig. 4. The undamped propagation of the AP mode outside

FIG. 3. The relaxation rate for the electron-hole pair decay isOf the electron-hole continuum is realized whenis larger
presented as a function of temperatureAst0, A=0.5x and  thanvg,=max@g;,vg,) as indicated by analysis of the-q
A=p. For A=0, we show by comparison the results of the exactplane, Fig. 2. Experimentally, this situation can always be
numerical integration and the result of the logarithmic approxima-achieved when the distance between the layers is made larger
tion. than a critical valué®
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The contribution of the plasmon modes to the relaxation
processes is strongly limited by three factors. First, AP
modes exist outside the electron-hole continuum when

2l #ipq

m3

hq
2m}

<

o(q)+ (37

hke,q A2 At T=0 K a third condition is imposed by the maximum
TJFE' (360 excitation energy available); hence,w(q)<A. Satisfying

2 2 Egs.(36) and(37) simultaneously at finite temperatures lim-
Here, the right-hand side corresponds to [mka,q/my its the integration afteq in Eq. (22) to a finite interval
+hg2m} ;fike,q/m% +£g2/2m% . Second, the solid angle [0,0maxl, @s seen in Fig. 2. Hergy,y is determined from a
integration ing space imposes, for the layer in which the simple analysis to be dependent on the energy of the excited

w(q)<

excited quasiparticle residékyer 2 in our problem quasiparticle A =#k?/2m} — u:
( Cp 2
0, for A<ul|—| —1],
UF2
={ 2k (\/A+1 Cp) for [(Cp)2—1}<A<4 Cp(cp—l) (39)
Amax F2 M vEa)' o UF2 MUFZ UF2 '
c C, [ C
2k (—p—l), for A>4 —"(—p— )
\ F2 Ur2 MUFZ Up2

The threshold for decay into AP modes is defined by a critiwherek,=2e?m% /42 is the Thomas-Fermi screening wave-
cal momentum value,;=m3c,/% and a corresponding length in the second layer. The relaxation time integral fol-
critical excitation energy lows from Eq.(22):

Aar=pl(Cplorn)*~1]. (39) )

Umax
- N 2
In the problem at hand, the maximum excitation energy for T20e(A) 1= (ve2/cp) fo dq
the quasielectron tunneling in layer 2 .=u(a—1).

Therefore, for the AP mode excitation to be possilie, {1-n[E(K)—%c,q]}
>A.,, leading to X P

"%

*
ap My

1—e" hcpq/kBT

a>(Cp/v,:2)2. (40)
At the same time, the maximum quasihole enefgy= n(1 X & .
—a~ 1) suffices to excite AP modes in layer 1 if 2 hq 2
—(A+p)—| cpt
1 c, \2 m3 2mj3
2>"+ta —p) . (42)
o (=) (44)

Since cp/vg,>1, this equation does not have solutions. A change of variable inside the integralxe- g/ke, leads to
Therefore, the AP modes will be excited only in layer 2 by

the QE decay. Within the RPA, at plasma frequency, the
imaginary part of the inverse dielectric function can be ap-

Amax/Kr2
:2\/(Cp/U|:2) _1f0 d x

proximated by wT2Qe(A) | op
1 - L ALNER) —2(cyop2)x]}
Im| — =—r— 0 w—w, (q)). (42 _ a—2u(cy lup)xlkgT
(Go) § IRee(q.w) +(q l-e p/vE2)x/kg
Jw X
X 2 (45)
For acoustic plasmons it can be shown that V(1+A/p) = (Cplvep+X)
JRee K 1 Analytic results can be obtained at very low temperatures
= 22 > (43) whenkgT<A=<yu and the Fermi factors under the integral
do  fgPc, V1—(vEa/Cp) are equal to 1. By using for the upper limit of the integral
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FIG. 5. The decay rate of an excited QE into acoustic plasmons T
as a function of the excitation energy is calculated det2 atT F
=0.2T¢. for a sample with electronic density,= 1.6x 10" cm*i, FIG. 6. The temperature dependence of the rate of decay into
interlayer distanced=200 A, and effective electron mass; acoustic plasmons is plotted fdr= 4. Here a=2.0 andc, /v,
=0.1m,. =1.25.
afterq the correspogding values given in H8) we obtain  ,5jue of the quasiparticle momentupg, for which Eq.(37)
for A e{ul(cp/vrz)"—1]; 4u(cp/vez)(Cplve— 1)} is satisfied, exactly as in the case of a single-2D-electron
5 8 A > layer analyzed in Refs. 10 and 17. Hewg, and g*, the
_S % —+l—<i) corresponding momentum transfer, are found by imposing
uTQe(A) [ \p AVE2| Y VF2 that the OP curvew,=+y,q and Q(q)=#pg/m}

—#q?/2m5 admit a common tangent in thes(q) plane.
(46)  This condition leads to* = (k,k2,)® andp,=3q*/2, con-
ducing to a critical excitation energy

_ Cp - _(Cp/UF2)2
vFZarcsm 1 —A/,u+1

and forA>4u(cy/ves)(Cplve,—1) 9/ k, |28
Aczz,u Z k_ —1|. (48)
h 8¢ A+1 (cp)2 F2
pwT2Qe(A) | \p A UR2 M UF2 In the experiment we propose, the maximum QE energy is
. fixed by the band structure alignment in the two wells at
_ \/éJrl_ ﬁ—l % (a—1)u. For the OP plasmon decay to occur, it is then
o Vg2 VEo necessary that
2c,lvga—1 c,lv 9k, \?R
5 The imaginary part of the inverse dielectric function can be
_ Cplura \/1_(20P/UF2_1) directly estimated, with the result
VA pu+1 Alp+1
47) Im - =—7mw, w—w,). (50
2

The relaxation rate of a quasielectron due to the decay int
acoustic plasmonsI'ap=%A/{Tqel 1-N(A+w)]}, at T
=0.2T¢ (Tg is the Fermi temperatuyés presented in Fig. 5
as a function ofA. Herel 5p increases witlA up to the point

%y using this value of Inl/e,] in Eq. (22), in the vicinity of
the critical excitation energy, for a quasiparticle of momen-
tum k, the relaxation time can be approximated by

where the energy of the acoustic_ plasmon is equal to the 5 4\/§m§ ez\/T
maximum energy transfer for a given momentnof the =

quasiparticle. When this point is reached, the upper limit of 1 72e(K) oP hp 3(k+pc2)

the integral becomes constant, equal to the value imposed by .

the intersection with the electron-hole continuum drgh Xl_n[E2(k)_ﬁ“’+(q )] (51)
decreases as JA. The temperature dependence Bfp 1— e fw(q*)/kgT

whenA=u appears in Fig. 6. A similar result was obtained in Ref. 17.

2. Decay into optical plasmons

The relaxation processes involving OP’s are possible only V. DISCUSSION

when the quasiparticle excitation energyp?/2m; — u is The aim of the experiment proposed in this paper is to
larger than a critical value\,, determined by the lowest verify the correctness of the theoretical predictions for the
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quasiparticle relaxation lifetime when decay into plasmonic 1 . . . 1
modes is an important mechanism. For this purpose, appro
priately high excitation energies should be reached, as estat
lished by Egs(40) and(48). A numerical solution to Eq40)

can be obtained from Fig. 3, where we find, for example, that=-
for «=2 one can seleat,/vg,=1.25. To illustrate our re- = s
sults, we assume generic sample parameters: carrier densi

0.8 eV=(o-thp - .
o

06 [

N=1.6x 10" cm 2, interlayer distancel=200 A, and ef- 0.2

fective electron massn; =0.1m,. We note that for this 0

Sample, the values obtained for the Fermi VeCtbﬁ, 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
=27N=10 m 1, and for the Thomas-Fermi wavelength, T

k,=3.7x10° m~ 1, would requirec= 25 for the optical plas- F

mons to be excited, according to E@8). Therefore, the FIG. 7. The finite tunneling widths of the two conductivity
excitation of the optical plasmons will not be possible in thispeaks are plotted as a function of temperature for the aas2.0.
experiment. At eV=(1—a  1)u, the width\2(al2+T3) is determined by the

The width of the conductance peaks, E8), is given by  relaxation into electron-hole pairs in both layers. V= («

/Z(aF21+ I‘ZZ), wherel'; andT', are to be considered func- -, thg relaxatio.n in_to AP modes that occurs only in layer 2
tions of the excitation energy of the corresponding peak. Af"akes a finite contribution.
the first Df!flk,AfO for the electron in layer 2 and,=  (29) and (10) we plot the temperature dependence of the
—u(1—a ") for the hole in layer 1 allow only the excita- conductivity peaks in Fig. 7. Assuming that the decay into
tion of electron-hole pairs in both layers. At the second peakelectron-hole pairs is a mechanism well understood, relevant
where A;=(a—1)u and A,=0, AP modes are excited information can be extracted about the temperature depen-
along with electron-hole pairs in layer 2. Employing Egs.dence of the decay into AP modes.
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