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Tunneling between dissimilar quantum wells:
A probe of the energy-dependent quasiparticle lifetime
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Tunneling between two narrow quantum wells with different effective masses is proposed as a probe of the

quasiparticle inelastic lifetime at finite excitation energy. Conservation of energy and ofkW , the momentum
parallel to the interface, allows the tunneling conductance to be large only if the crossing of the two energy

bands@E1(kW )5E2(kW )1eV# at an applied voltageV occurs between the two Fermi levels. The abruptness of
the change in tunneling current as this crossing passes through one of the Fermi levels can be used to
investigate the lifetimes of the quasiparticle states involved. Results based on the random phase approximation
are used as an illustration.

DOI: 10.1103/PhysRevB.65.045325 PACS number~s!: 73.40.Gk, 73.63.Hs, 72.20.Jv

I. INTRODUCTION

Measurements of the tunneling current that appears be-
tween two identical quantum wells under biasV allowed
Murphy et al.1 to determine directly the electron inelastic
lifetime from the width of the peaks in the differential con-
ductanced I/d V. In the system employed in the experiment
~two identical high-mobility GaAs/AlxGa12xAs quantum
wells! the energy and momentum conserving interwell tun-
neling occurs only when the edges of the minibands in the
two wells cross, i.e., when the externally applied electric
potential is zero. In this situation the electronic states avail-
able for tunneling are those in the vicinity of the Fermi sur-
face, whose broadening under the effect of the Coulomb
scattering determines the width of the conductance peak.

In this paper we explore the possibility of tunneling be-
tween two quantum wells of different effective electron
massesm1* and m2* . A suitable heterostructure for experi-
mental analysis of this proposal involves two high-mobility
quantum wells between which tunneling occurs with conser-
vation of electron momentum and energy. This property has
been verified with great accuracy in the case of
GaAs/AlxGa12xAs heterostructures by measuring the tunnel-
ing conductance in magnetic fields parallel to the two-
dimensional~2D! layers.2 The same system serves as prime
candidate for the following investigation.

When m1* Þm2* , the tunneling current is nonzero for an
entire range of values of the applied voltageV corresponding
to a superposition of occupied states in the first well and
empty states in the second well that have the same energy
and momentum. The tunneling conductance peaks will occur
wheneV is equal to a fraction of the Fermi energy, as deter-
mined by the ratio of the two masses,a5m1* /m2* . Because
the states involved in the tunneling can be quite far from the
Fermi energy, the broadening of the conductance peaks will

serve as a test of any theory of electron relaxation at higher
energies, where in addition to decay into electron-hole exci-
tations, it is expected that the decay into plasma modes gives
an important contribution.

The electronic inelastic lifetimetQE has been the subject
of numerous theoretical papers.3–12 It is well established that
within the random phase approximation, the decay into
particle-hole excitations generates a relaxation rate propor-
tional to D2ln D when kBT!D!m and to T2ln T when D
!kBT!m. HereD is the excitation energy above the Fermi
level, whilekBT is the thermal energy. The exact proportion-
ality coefficient at finite temperatures, first estimated in Ref.
10, was a recent subject of debate11,12 when the tunneling
experiments1 revealed a numerical discrepancy with the
original calculation.

Following the general method outlined in Ref. 10 we es-
timate the broadening of the tunneling conductance peaks at
finite temperatures, by considering both the decay into
electron-hole excitations and the decay into plasma modes.
These estimates will be useful by comparing them with the
data obtained in the possible experiment previously de-
scribed.

II. TUNNELING CONDUCTANCE

The system under investigation consists of two narrow
quantum wells separated by a distanced. In each well, the
energy spectrum of the two-dimensional electron gas
~2DEG! is described in parabolic band approximation by
Ei(kW )5\2k2/2mi* 1Ei0, with i 51,2, the layer index, and
Ei0 the bottom of the conduction subband in each of the
wells. The occupation number of each electronic state corre-
sponds to the Fermi statistics,n(E)5$11e[E2m]/kBT%21,
wherem is the chemical potential.

The tunneling processes between two electronic states,
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kW ,E1(kW ) in the first well, andpW ,E2(pW ) in the second well,
subject to an electric potential differenceV, gives rise to an
electric currentI expressed in terms of the tunneling prob-
ability uTkWpW u2 and the spectral density of states in each layer,
A( i )@E,Ei(kW )#, as13

I 52e(
kW ,pW

uTkWpW u2E
2`

`

dEA(1)@E,E1~kW !#

3A(2)@E1eV,E2~pW !#@n~E!2n~E1eV!#. ~1!

In Eq. ~1! both spin orientations are accounted for by the
factor of 2 that multiplies the sum over states. In the absence
of any phonon scattering, the momentum of the initial and
final tunneling states is conserved and the tunneling matrix
element can be written asuTkWpW u5TdkWpW . (dkWpW is the Kro-
necker symbol.! In the following considerations we will as-
sume that the quasiparticle energies involved are still small
enough, such that the tunneling matrix elementTkp can be
considered a constant independent of energy.

For wells with equal electron effective masses, the energy
and momentum conserving tunneling is realized only ateV
5uE202E10u, since application of a finite electric potential
will shift the energy subbands in one well relative to the
other. In the bilayer system we consider, the ratio of the two
effective masses isa5m1* /m2* >1. In equilibrium, the
chemical potential is constant throughout the sample as
shown in Fig. 1~a! for the case in whichE105E20 ~which we
will assume for the sake of simplicity throughout the rest of
this work!.

Following this discussion, in Eq.~1!, E2(k)5aE1(k),
and the tunneling current integral is rewritten:

I 52eN1N2T2E
2`

`

dE1E
2`

`

dEA(1)@E,E1#

3A(2)@E1eV,aE1#@n~E!2n~E1eV!#. ~2!

The spectral functionA(E,kW ) is related to the imaginary part
of the retarded Green function,A(E,kW )522ImGret(E,kW ).
Near the quasiparticle peak, the spectral function can be ap-
proximated by a Lorentzian,

A~E,kW !5
1

2p

G@E~kW !2m,kW #

@E2E~kW !1m#21
$G@E~kW !2m,kW #%2

4

, ~3!

where G@E(kW )2m,kW #[22ImS ret@E(kW )2m,kW # is a slowly
varying function of energy. This behavior allows one to con-
sider it constant inside the tunneling current integral. In the
case of a noninteracting, disorder-free, 2DEG,G@E(kW )
2m,kW #→0 andA(E,kW )52d@E2E(kW )1m#.

The tunneling current turns on abruptly when the applied
voltage suffices to raise the energy of the heavy electrons
(m1* ), such that there are occupied states located exactly at
the Fermi surface of the light layer (m5\2kF2

2 /2m2* ), as de-
scribed in Fig. 1~b!. The conservation of momentum and
energy leads to\2kF2

2 /2m2* 5\2kF2
2 /2m1* 1eV and the corre-

sponding value ofeV5(12a21)m. At values of eV for
which the intersection of the two parabolas lies between the
two Fermi levels, the current remains approximately con-
stant. For these states,\2k2/2m2* 5\2k2/2m1* 1eV. The elec-
trons that tunnel from occupied states in layer 1 into empty
states in layer 2, acquire an excitation energy with respect to

FIG. 1. ~a! The one-electron energy in the
parabolic approximation in the two wells of elec-
tron effective massesm1* and m2* , m1* .m2* .
The same Fermi energy and the same energy ori-
gin is assumed in both wells.~b! The tunneling
current is abruptly turned on atkF2, when the
energy of the heavy electrons (m1* ) becomes
equal to the Fermi energyEF2 in the ‘‘light’’
layer. ~c! The energy and momentum conserving
tunneling occurs for values of the applied electric
voltage in the interval@(12a21)m,(a21)m#.
The upper value corresponds to the two parabolas
crossing at the Fermi momentum of the heavy
electrons atk5kF1. ~d! For larger values of the
applied voltage, there are no states with the same
energy and momentum and the tunneling current
is zero.
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the Fermi level, De5\2k2/2m2* 2m5aeV/(a21)2m,
while the holes left behind have an excitation energy ofDh

5\2k2/2m1* 2m5eV/(a21). The current is turned off
when the crossing point corresponds to the Fermi momentum
of the heavy electron layer (m5\2kF1

2 /2m1* ) as in Fig. 1~c!.
Then, the voltage satisfies\2kF1

2 /2m2* 5\2kF1
2 /2m1* 1eV,

with eV5(a21)m. WheneV becomes larger than this criti-
cal value as shown in Fig. 1~d!, the tunneling current van-
ishes.

In the simplest approximation—that of a noninteracting
2DEG—by inserting the correspondingd function dispersion
in Eq. ~1!, the tunneling current is obtained:

I 5
2eN1N2T2

a21 FnS eV

a21D2nS aeV

a21D G , ~4!

where N1 and N2 are the corresponding two-dimensional
densities of states at the Fermi surface,Ni5mi* /p\2. The
limit a→1 of Eq. ~4! reproduces the result of the tunneling
current in identical quantum wells; i.e., tunneling occurs only
at eV50.11 For finite a, the tunneling will occur for all
values of the electric potentialV for which the difference
between the Fermi functions is nonzero. At very low tem-
peratures, when the Fermi distribution can be approximated
by a step function, this interval is@(12a21)m,(a21)m#.
When the electron-electron interaction is considered the
width of the transition broadens, the broadening being deter-
mined by the finite electron relaxation time. The correspond-
ing differential tunneling conductanceG5dI/dV is, from
Eq. ~4!,

G5
2e2N1N2T2

a21
$d@eV2~12a21!m#2d@eV2~a21!m#%.

~5!

The differential conductance peaks occur at those values of
the applied voltage where the tunneling current turns on and
off. Of course, whena51, the only peak is centered around
V50. Equation~5! indicates that the first conductance peak,
at eV5m(12a21), corresponds to electrons tunneling from
layer 1 to layer 2 atDe50 and to holes tunneling from layer
2 to layer 1 atDh52m(12a21). The second conductance
peak occurs ateV5(a21)m and corresponds to the 1→2
tunneling of the electrons atDe5m(a21) and with the 2
→1 tunneling of holes atDh50.

When a finite spectral dispersion, Eq.~3!, is considered in
Eq. ~2! the expression of the tunneling current becomes

I 5
eN1N2T2

2p2 E
2`

`

d E1E
2`

`

dE

3
G1G2@n~E!2n~E1eV!#

@~E2E11m!21G1
2/4#$@E1eV2aE11m#21G2

2/4%
.

~6!

The integral afterE1, the convolution of the two Lorentzians,
generates a new Lorentzian function (aG11G2)(2p)21/
$@(a21)E2m2eV#21(aG1

21G2
2)/2% whose insertion in

Eq. ~2! leads to

I 5
eN1N2T2

p E
2`

`

dE
aG11G2

@~a21!E2m2eV#21~aG1
21G2

2!/2

3@n~E!2n~E1eV!#. ~7!

With the change of variable under the integral,x
5(a21)E2eV, we obtain

I 5
eN1N2T2

p~a21!
E

2`

`

dx
aG11G2

x21~aG1
21G2

2!/2

3FnS x1eV

a21 D2nS x1aeV

a21 D G . ~8!

The conductanceG5dI/dV is obtained by differentiating
with respect toV in Eq. ~8!,

G5
e2N1N2T2

~a21! H aG11G2

@eV2~12a21!m#21~aG1
21G2

2!/2

2
aG11G2

@eV2~a21!m#21~aG1
21G2

2!/2
J , ~9!

where it was considered that the derivative of the Fermi
function behaves like ad function. The widths of the two
conductance peaks are determined byA2(aG1

21G2
2). We

note that, sinceG1 andG2 are weak functions of energy, their
values in Eq.~9! are those corresponding to the excitation
energies at each of the two peaks, respectively. In each layer,
the relationship ofG to the quasielectron and quasihole in-
elastic lifetimestQE andtQH is

G@E~kW !2m,kW #5\tQE
211\tQH

21 , ~10!

wheren@E(kW )#tQE
215$12n@E(kW )#%tQH

21 .
Since the width of the conductance peaks can be deter-

mined experimentally, by comparison, one can verify the ac-
curacy of the theoretical estimates of the various relaxation
times as well as the validity of Eq.~10!.

III. FINITE ELECTRONIC LIFETIME

As one of the most important problems in condensed mat-
ter theory, the electron inelastic lifetime has been studied in
both two- and three-dimensional systems for many years.4–12

For the problem at hand we will analyze the decay processes
of an excited quasielectron that has tunneled from layer 1
into layer 2. The general formalism adopted here is based on
the Fermi golden rule, which leads to a probability of decay
as a result of the intra- and interlayer interactions with an-
other quasiparticle equal to
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1

t2QE~k!
5

2p

\ (
pW ,qW ,s8, j 51

2

npW ,s8, j~12npW 2qW ,s8, j !~12nkW1qW ,s,i !

3uV2 j~kW ,qW !u2d@E2~kW1qW !

1Ej~pW 2qW !2Ej~pW !2E2~pW !#, ~11!

where uVi j (pW ,qW )u is the matrix element of the dynamically
screened electron-electron interaction. Its expression can be
easily inferred from general electrostatic considerations.
When a test charger is embedded in layer 2, the screened
potential experienced by an electron in the same layer in the
random phase approximation~RPA! reflects self-consistently
the effect of the charge and that of the concomitant induced
electron density fluctuations in both layers:

V225v~q!@r1Dn21FDn1#, ~12!

where v(q)52pe2/q is the Fourier tranform of the intra-
layer Coulomb interaction. The interlayer interaction is
smaller by a form factorF(q)5e2qd. The same test charge
determines a screened electron potential in layer 1 equal to

V215v~q!@F~r1Dn2!1Dn1#. ~13!

The induced fluctuations are proportional to the screened
electron potentials through polarization functions of the 2D
electron gas,x0.14 Therefore,Dni5x i

0Vii . Substituting these
into Eqs.~12! and~13! leads to a system of equations forV22
andV21 that can be solved with the following results:

V225v~q!r
@12v~q!~12F2!x2

0#

D
, ~14!

V215v~q!r
F

D
. ~15!

D is the determinant of the system, given by

D512vx2
02vx1

01v2x1
0x2

0~12F2!. ~16!

In the absence of any electronic spin effects, in the RPA,V22
and V21 are also equal to the effective electron-electron in-
teractions in the corresponding layers.

By making use of the fluctuation dissipation theorem15 or
by direct computation, the sum overkW ands8 in Eq. ~11! can
be calculated in terms of the imaginary part of the electron
gas polarization,x0(q,v).14 Therefore, one can write (j
51,2)

(
pW ,s8

npW ,s8~12npW 2qW ,s8!d@Ej~pW 2qW !2Ej~pW !2\v#

52
\Imx0~qW ,v!

pS~12e2\v/kBT!
, ~17!

whereS is the total surface area of the gas. Here\v5E(kW

2qW )2E(kW )5E(pW )2E(pW 1qW ), on account of conservation
of energy.

Upon the insertion of Eq.~17! into Eq. ~11! and integra-
tion over all the available transition energies\v, the relax-
ation rate becomes

1

t2QE~k!
5

21

\S (
qW , j 51

2 E
2`

`

d~\v!uV2 j u2

3
12n@E2~kW !2\v#

12e2 \v/kBT
Imx j

0~qW ,v!

3d$\v2@E2~kW !2E2~kW1qW !#%. ~18!

We introducee2(qW ,v) as the dielectric function of the elec-
trons in layer 2, given by

e2~qW ,v!512vx2
02

x1
0vF2

12x1
0~12F2!

~19!

and write

(
j 51

2

uV2 j u2Imx2
0~qW ,v!5vIm

1

e2~qW ,v!
. ~20!

The summation overqW in Eq. ~18! can be transformed
into an integral in the usual fashion, (qW

→S(2p)22*0
`qdq*0

2pd fq . The result of the angular inte-
gration is

E
0

2p

dfqd$\v2@E2~kW !2E2~kW1qW !#%55
2

AS \2qk

m2*
D 2

2S \v1
\2q2

2m2*
D 2

,
for U\v1

\2q2

2m2*
U<

\2qk

m2*
,

0, otherwise.

~21!

The consecutive steps exposed in Eqs.~19!–~21! lead to the following general equation for the relaxation time of an excited
quasielectron~QE! in layer 2:

1

t2QE~k!
52

2e2

p\
E

2`

`

d~\v!E
qmin

qmax
dq

$12n@E2~kW !2\v#%

12e2\v/kBT

Im
1

e2~qW ,v!

AS \2qk

m2*
D 2

2S \v1
\2q2

2m2*
D 2

, ~22!
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with the constraint of Eq.~21! which limits the range ofq
and \v integrals. Equation~22! is quite general, applying
equally well for two and three dimensions, for all possible
decay processes. The particulars for each case are generated
by Im@1/e2(qW ,v)#.

IV. DECAY PROCESSES

The imaginary part of the dielectric function acquires spe-
cific values depending on the type of process involved. In the
RPA, Im@1/e2(qW ,v)# can be divided as

ImF 1

e2~qW ,v!
G5ImF 1

e2~qW ,v!
G

e-h

1ImF 1

e2~qW ,v!
G

pl

.

~23!

A. Electron-hole decay

At finite but low temperatures, such thatD<kBT<m, the
electron-hole decay occurs for small values ofq andv. For a
given v, the wave vectorq spans an interval limited by the
solutions of Eq.~21!:

q65kS 16A12
\v

D1m D . ~24!

Excitation of electron-hole pairs takes place in both layers,
as reflected by Im@1/e2(qW ,v)#:

ImF 1

e2~qW ,v!
G

eh

5
u12x1

0v~12F2!u2

uDu2

3F Imx2
01

F2

u12x1
0v~12F2!u2

Imx1
0G .

~25!

Since the probability of excitation of electron-hole pairs
in layer 1 is diminished by a factorF2(q), the main contri-
bution comes from electron-hole excitations in the same
layer in which the excited quasiparticle exists. A quick in-
spection of the integral overq in Eq. ~22! indicates that for
the same layer des-excitation processes, an increased weight
carry those that occur for values ofq andv that cancel the
square root. Following Fig. 2, we conclude that the regions
of the (q,v) plane involved are those at the limit of the
electron-hole continuum, associated with small frequency
and small wave vectorq;1 ~forward scattering! and large
wave vectorq;2kF2 ~backscattering!. In the first instance,
(q/2kF2)!(m2* \v/qkF2), and the imaginary part of the di-
electric function, Eq.~19!, can be approximated by10

ImF 1

e2~qW ,v!
G

eh

52
\v

2e2kF2

A12S m2* v

\qkF2
D 2

. ~26!

In the opposite limit, whenq/2kF2;1, the imaginary part of
the dielectric function becomes

ImF 1

e2~qW ,v!
G

eh

52
\v

2e2kF2

1

A12S q

2kF2
D 2

. ~27!

Upon the insertion of Eqs.~26! and~27! into Eq.~22!, the
integral afterq can be performed with the same result in both
cases, leading to

1

t2QE~k!
U

e-h

5
2m2*

p\2kF2
2 E

2`

`

d~\v!S v lnU4m

\vU D
3

$12n@E~kW !2\v#%

12e2\v/kBT
. ~28!

When the excitation energy measured with respect to the
Fermi surface,D5\2k2/2m2* 2m, is introduced in Eq.~28!
and the change of variable,y5\v/kBT, is performed, the
relaxation rate becomes

\

mt2QE~D!
U

e-h

5
1

p S kBT

m D 2E
2`

`

d y

ylnU 4m

kBTyUeyeD/kBT

~ey1eD/kBT!~ey21!
.

~29!

At finite temperatures, the excitation energyD involved in
the electron-hole decay process is much smaller thankBT,
much lower than the Fermi energy. The most important con-
tribution to the integral comes from points near the origin,
where the (12e2y) becomes almost zero. Within logarith-
mic accuracy, in the vicinity ofy50, only y lnu4m/kBTu can
be retained inside the integral with the result

\

mt2QE~D!
U

e-h

52
1

p S kBT

m D 2

lnS kBT

4m D
3E

2`

`

d y
yeyeD/kBT

~ey1eD/kt!~ey21!
. ~30!

The integral overy can be integrated exactly with the
result16

\

mt2QE~D!
U

e-h

52
1

2p S kBT

m D 2

lnS kBT

m Dp21~D/kBT!2

11e2D/kBT
.

~31!

At the Fermi surface, whenD50, t2QE becomes

\

mt2QE~0!
U

e-h

52
p

4 S kBT

m D 2

lnS kBT

m D . ~32!

In the limit D!kBT, Eq. ~32! generates a finite width of the
conductivity peak equal to

G2e-h5
2\

t2QEue-h
52m

p

2 S kBT

m D 2

lnS kBT

m D , ~33!

a result also obtained in Ref. 11.
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For an arbitrary excitation energy, one should use the re-
sult of the numerical evaluation of Eq.~29! in Eq. ~10! to
determineG. Figure 3 showstQEue-h for D50, obtained both
by direct numerical integration and by logarithmic approxi-
mation, and forD50.5m andD5m.

B. Decay into plasma modes

The plasma modes are obtained at frequencies which can-
cel the real part of the dielectric function, Eq.~19!, when
simultaneously its imaginary part is also zero. When the dis-
tance between the wells is large, each layer exhibits indepen-
dent plasma oscillations whose small wave vector limit is
approximated byvpi

2 .2pnie
2q/mi* .14 The contribution of

the single-layer plasmon decay is identical to that studied in
the case of a single 2DEG and the results obtained in Ref. 17
are expected to apply here.

When the distance between layers is small and the form
factorF becomes larger, the interlayer interaction couples the
plasmon modes in the two layers. The result is the existence
of two orthogonal plasma oscillations that correspond to the
linear superposition of the in-phase and out-of-phase density
fluctuations.18,19The salient features of this phenomenon can
be extracted by investigating the zeros of the dielectric func-
tion of the bilayer system, Eq.~19!. The condition Ree250,
along with Imx1,2

0 50, leads to the following equation:

12v~x1
01x2

0!1v2x1
0x2

0~12F2!50. ~34!

In the small-q limit, it is expected that the frequency of the
symmetric mode satisfiesv1@qvF . In this case, in Eq.~34!
the asymptotic expressions of the polarization functions can
be used:x iv5v ip

2 /v2. This mode, often called an optical
plasmon ~OP!, has a dispersion law similar to a single-
electron layer,v15Ag1q, and represents the excitation fre-
quency of the in-phase density fluctuations in the two layers.
The constantg1 is readily obtained to be

g15
2pn1e2

m1*
1

2pn2e2

m2*
5

4pn1e2

m1*
, ~35!

where the same Fermi level was considered in the two wells.

1. Decay into acoustic plasmons

The out-of-phase density mode is an acoustic plasmon
~AP!, v25cpq. Following Ref. 19, we determine numeri-
cally the group velocity for different values ofa, as shown
in Fig. 4. The undamped propagation of the AP mode outside
of the electron-hole continuum is realized whencp is larger
thanvF25max(vF1,vF2) as indicated by analysis of thev-q
plane, Fig. 2. Experimentally, this situation can always be
achieved when the distance between the layers is made larger
than a critical value.19

FIG. 3. The relaxation rate for the electron-hole pair decay is
presented as a function of temperature atD50, D50.5m and
D5m. For D50, we show by comparison the results of the exact
numerical integration and the result of the logarithmic approxima-
tion.

FIG. 4. The group velocity of the acoustic plasma modes of the
bilayer system is calculated numerically for values ofm1* /m2* 5a
ranging from 1.0 to 2.0 as a function ofk1d, the product of the
Thomas-Fermi wave vector in the first layer (k152e2m1* /\2) and
the interlayer distance.

FIG. 2. The (v-q) plane of the bilayer system. Electron pairs
can be excited in the electron-hole continuum common to both lay-
ers or only in the electron-hole continuum of layer 2. The optical
~OP! and acoustical~AP! plasmon branches are represented outside
the electron-hole continuum. The available decay states are limited
by the solid angle integration inq space, described by the solid
thick line.
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The contribution of the plasmon modes to the relaxation
processes is strongly limited by three factors. First, AP
modes exist outside the electron-hole continuum when

v~q!,
\kF2q

m2*
1

\q2

2m2*
. ~36!

Here, the right-hand side corresponds to min@\kF1q/m1*
1\q2/2m1* ;\kF2q/m2* 1\q2/2m2* #. Second, the solid angle
integration inq space imposes, for the layer in which the
excited quasiparticle resides~layer 2 in our problem!,

Uv~q!1
\q2

2m2*
U,

\pq

m2*
. ~37!

At T50 K a third condition is imposed by the maximum
excitation energy available,D; hence,v(q),D. Satisfying
Eqs.~36! and~37! simultaneously at finite temperatures lim-
its the integration afterq in Eq. ~22! to a finite interval
@0,qmax#, as seen in Fig. 2. Hereqmax is determined from a
simple analysis to be dependent on the energy of the excited
quasiparticle,D5\k2/2m2* 2m:

qmax55
0, for D,mF S cp

vF2
D 2

21G ,
2kF2SAD

m
112

cp

vF2
D , for mF S cp

vF2
D 2

21G,D,4m
cp

vF2
S cp

vF2
21D ,

2kF2S cp

vF2
21D , for D.4m

cp

vF2
S cp

vF2
21D .

~38!

The threshold for decay into AP modes is defined by a criti-
cal momentum valuekc15m2* cp /\ and a corresponding
critical excitation energy

Dc15m@~cp /vF2!221#. ~39!

In the problem at hand, the maximum excitation energy for
the quasielectron tunneling in layer 2 isDe5m(a21).
Therefore, for the AP mode excitation to be possible,De
.Dc1, leading to

a.~cp /vF2!2. ~40!

At the same time, the maximum quasihole energyDh5m(1
2a21) suffices to excite AP modes in layer 1 if

2.
1

a
1aS cp

vF2
D 2

. ~41!

Since cp /vF2.1, this equation does not have solutions.
Therefore, the AP modes will be excited only in layer 2 by
the QE decay. Within the RPA, at plasma frequency, the
imaginary part of the inverse dielectric function can be ap-
proximated by

ImF 1

e~qW ,v!
G

pl

52
p

U]Ree~qW ,v!

]v
U d„v2v1~q!…. ~42!

For acoustic plasmons it can be shown that

]Ree

]v
5

k2

\q2cp

1

A12~vF2 /cp!2
, ~43!

wherek252e2m2* /\2 is the Thomas-Fermi screening wave-
length in the second layer. The relaxation time integral fol-
lows from Eq.~22!:

1

t2QE~D!
U

AP

5
\cp

m2*
A12~vF2 /cp!2E

0

qmax
dq

3
$12n@E~kW !2\cpq#%

12e2\cpq/kBT

3
q

A 2

m2*
~D1m!2S cp1

\q

2m2*
D 2

.

~44!

A change of variable inside the integral tox5q/kF2 leads to

\

mt2QE~D!
U

AP

52A~cp /vF2!221E
0

qmax /kF2
d x

3
$12n@E~kW !22m~cp /vF2!x#%

12e22m(cp /vF2)x/kBT

3
x

A~11D/m!2~cp /vF21x!2
. ~45!

Analytic results can be obtained at very low temperatures
when kBT<D<m and the Fermi factors under the integral
are equal to 1. By using for the upper limit of the integral
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afterq the corresponding values given in Eq.~38! we obtain
for DP$m@(cp /vF2)221#; 4m(cp /vF2)(cp /vF221)%

\

mt2QE~D!
U

AP

5
8

A

cp

vF2
FAD

m
112S cp

vF2
D 2

2
cp

vF2
arcsinA12

~cp /vF2!2

D/m11 G ~46!

and forD.4m(cp /vF2)(cp /vF221)

\

mt2QE~D!
U

AP

5
8

A

cp

vF2
HAD

m
112S cp

vF2
D 2

2AD

m
112S 2cp

vF2
21D 2

2
cp

vF2

3arcsinF2cp /vF221

AD/m11
A12

~cp /vF2!2

D/m11

2
cp /vF2

AD/m11
A12

~2cp /vF221!2

D/m11 G J .

~47!

The relaxation rate of a quasielectron due to the decay into
acoustic plasmons,G2AP5\/$t2QE@12n(D1m)#%, at T
50.2TF (TF is the Fermi temperature! is presented in Fig. 5
as a function ofD. HereGAP increases withD up to the point
where the energy of the acoustic plasmon is equal to the
maximum energy transfer for a given momentumk of the
quasiparticle. When this point is reached, the upper limit of
the integral becomes constant, equal to the value imposed by
the intersection with the electron-hole continuum andGAP

decreases as 1/AD. The temperature dependence ofGAP
whenD5m appears in Fig. 6.

2. Decay into optical plasmons

The relaxation processes involving OP’s are possible only
when the quasiparticle excitation energy\2p2/2m2* 2m is
larger than a critical valueDc2 determined by the lowest

value of the quasiparticle momentumpc2 for which Eq.~37!
is satisfied, exactly as in the case of a single-2D-electron
layer analyzed in Refs. 10 and 17. Herepc2 and q* , the
corresponding momentum transfer, are found by imposing
that the OP curve v15Ag1q and V(q)5\pq/m2*
2\q2/2m2* admit a common tangent in the (v,q) plane.
This condition leads toq* 5(k2kF2

2 )1/3 andpc53q* /2, con-
ducing to a critical excitation energy

Dc25mF9

4 S k2

kF2
D 2/3

21G . ~48!

In the experiment we propose, the maximum QE energy is
fixed by the band structure alignment in the two wells at
(a21)m. For the OP plasmon decay to occur, it is then
necessary that

a.
9

4 S k2

kF2
D 2/3

. ~49!

The imaginary part of the inverse dielectric function can be
directly estimated, with the result

ImF 1

e2
G52pv1d~v2v1!. ~50!

By using this value of Im@1/e2# in Eq. ~22!, in the vicinity of
the critical excitation energy, for a quasiparticle of momen-
tum k, the relaxation time can be approximated by

\

mt2QE~k!
U

OP

5
4A2m2* e2

\m
A g1

3~k1pc2!

3
12n@E2~k!2\v1~q* !#

12e2\v1(q* )/kBT
. ~51!

A similar result was obtained in Ref. 17.

V. DISCUSSION

The aim of the experiment proposed in this paper is to
verify the correctness of the theoretical predictions for the

FIG. 5. The decay rate of an excited QE into acoustic plasmons
as a function of the excitation energy is calculated fora52 at T
50.2TF for a sample with electronic densityn251.631011 cm22,
interlayer distanced5200 Å, and effective electron massm2*
50.1me .

FIG. 6. The temperature dependence of the rate of decay into
acoustic plasmons is plotted forD5m. Here a52.0 andcp /vF2

51.25.
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quasiparticle relaxation lifetime when decay into plasmonic
modes is an important mechanism. For this purpose, appro-
priately high excitation energies should be reached, as estab-
lished by Eqs.~40! and~48!. A numerical solution to Eq.~40!
can be obtained from Fig. 3, where we find, for example, that
for a52 one can selectcp /vF251.25. To illustrate our re-
sults, we assume generic sample parameters: carrier density
N51.631011 cm22, interlayer distanced5200 Å, and ef-
fective electron massm2* 50.1me . We note that for this
sample, the values obtained for the Fermi vector,kF

5A2pN5108 m21, and for the Thomas-Fermi wavelength,
k253.73109 m21, would requirea525 for the optical plas-
mons to be excited, according to Eq.~48!. Therefore, the
excitation of the optical plasmons will not be possible in this
experiment.

The width of the conductance peaks, Eq.~9!, is given by
A2(aG1

21G2
2), whereG1 andG2 are to be considered func-

tions of the excitation energy of the corresponding peak. At
the first peak,De50 for the electron in layer 2 andDh5
2m(12a21) for the hole in layer 1 allow only the excita-
tion of electron-hole pairs in both layers. At the second peak,
where De5(a21)m and Dh50, AP modes are excited
along with electron-hole pairs in layer 2. Employing Eqs.

~29! and ~10! we plot the temperature dependence of the
conductivity peaks in Fig. 7. Assuming that the decay into
electron-hole pairs is a mechanism well understood, relevant
information can be extracted about the temperature depen-
dence of the decay into AP modes.
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FIG. 7. The finite tunneling widths of the two conductivity
peaks are plotted as a function of temperature for the casea52.0.
At eV5(12a21)m, the widthA2(aG1

21G2
2) is determined by the

relaxation into electron-hole pairs in both layers. AteV5(a
21)m, the relaxation into AP modes that occurs only in layer 2
makes a finite contribution.
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