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Magnetoacoustic plasmons in a bilayer quasi-two-dimensional spin-polarized system

I. Tifrea and D. C. Marinescu
Department of Physics, Clemson University, Clemson, South Carolina 29634

~Received 24 January 2001; published 31 July 2001!

We investigate the charge and spin response functions of a bilayer quasi-two-dimensional system, spin

polarized by a constant magnetic fieldBW . Terms beyond the random-phase approximation, the exchange and

correlation interactions, are introduced by using generalized spin-dependent local field factors,Gs
x,c(qW ,v). The

self-consistent magnetic interaction among the electron spins determines the coupling of the charge and the
longitudinal spin-density excitations, leading to coupled in-phase and out-of-phase electric and magnetic
modes. We find that the lowest frequency belongs to an acoustic mode, that represents the out-of-phase
oscillation of the longitudinal magnetizations in the two layers. This collective excitation is shown to become
important in the case of materials with large gyromagnetic factors, such as dilute magnetic semiconductors.

DOI: 10.1103/PhysRevB.64.073405 PACS number~s!: 71.45.Gm, 73.21.2b

As a measure of the strength of the interaction in a many-
particle environment, the departure of the collective modes
from the single-particle excitation frequency has often been a
conclusive probe of the microscopic properties of the system,
easily bridging theory with experimental data obtained in
spectroscopical studies.

Within the random phase approximation~RPA!, the exci-
tation frequencies of the collective modes emerge as the
poles of the response functions to an electromagnetic pertur-
bation and in certain cases they have been known for a long
time. A single unpolarized 2D layer exhibits a single charge
mode at plasma frequencyvp;Aq ~Ref. 1! while a bilayer
system was found to have two charge modes, associated with
the in-phase and out-phase density oscillations in the two
layers. While the high-frequency, in-phase mode, retains the
dispersion law of a 2D systemvS;Aq, the low-frequency
one propagates like an acoustic excitation withvA;q.2

When tunneling between the two layers is considered, the
out-of-phase mode acquires a gap, leading to a dispersion
given by v2;(D21C1q1C2q2)1/2, where D defines the
plasmon gap,C1 andC2 being positive constants related to
the material properties.3 We note here that these results were
derived in the cases of 2D or quasi-2D GaAs-type electronic
systems, whose energy spectrum in the presence of a mag-
netic field consists of unpolarized Landau-level minibands,
separated by the cyclotron energy\eB/m* .

In the present report, we focus on the study of collective
excitations in quasi-2D systems that exhibits a strong spin
polarization. This situation is common to dilute magnetic
semiconductor heterostructures~quantum wells!, whose en-
ergy spectrum in a magnetic field is dominated by a large
Zeeman splitting, proportional with the gyromagnetic factor
g, sometimes up to a hundred times the band value. Each
spin-split subband has a fine structure of Landau levels, but
quantum effects associated with the electron orbital motion
are weak. A semiclassical description of the electron energy
levels in the parabolic approximation is appropriate.

We consider a bilayer structure, formed by two quantum
wells of width L, situated in thexy plane separated by a
distanced in thez direction. We assume thatL!d, such that
inside each layer, the electrons are considered a 2D gas with

n electrons per unit area versus a positive background to

assure charge neutrality. A constant magnetic fieldBW is ap-
plied along theẑ axis, such that in equilibrium, the electron
population in each of the two wells, assumed identical, is
described by an initial spin polarization 0<uju<1, wherej
5(n↑2n↓)/(n↑1n↓), with n↑ andn↓ the spin-up~spin par-
allel to the applied dc magnetic field! and spin-down~spin
antiparallel to the applied dc magnetic field! electron densi-
ties, respectively. Any degree of polarization21,j,1 can
be obtained by varying the applied magnetic field.4,5 The two
electron systems are decoupled, no tunneling being consid-
ered.

The dielectric and magnetic response functions to an elec-
tromagnetic perturbation, whose Fourier transform is de-
scribed by a momentumqW and frequencyv dependent elec-

tric potential,w(qW ,v) and magnetic inductionbW (qW ,v), are
obtained by an equation-of-motion method, in a self-
consistent approach that include terms beyond the RPA. The
exchange and correlation interactions between electrons are
considered by generalizing Kukkonen and Overhauser6 to
include spin-dependent local-field correctionsGs

6(qW ,v).
This idea was first proposed by Yi and Quinn,7 who analyzed
the effect of the polarization factorj on the characteristic
frequencies of collective modes in a three-dimensional
system.

The single-particle HamiltonianHs describes self consis-
tently the effect of the external perturbation and of the in-
duced spin and charge fluctuations. An electron of spinsW in
the i th layer is affected by charge-density fluctuations in both
layersDn( i ) ( i 51,2), and the spin-density fluctuationDs( i )

in the same layer. This distinction stresses the long-range
action of the Coulomb interaction, whereas the magnetic in-
teraction is assumed to be strong enough only between spins
in the same layer. The Fourier component ofHs can be
written asH(qW ,v)5H01H I

s(qW ,v), whereH0 is the equi-
librium Hamiltonian andH I

s is generated by the spin-
dependent self-consistent effective perturbation. This semi-
classical description of the electron system is justified by the
negligible Landau splitting of the energy levels. The effec-
tive perturbation Hamiltonian is
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H I
s( i )5gsW •bW 2ew1v~q!@~12Gs

1!Dn( i )2Gs
2sW DsW ( i )#

1
4pg2

L
sW DsW ( i )1v~q!F~q!

3@~12Gs
1!Dn( j )2Gs

2sW DsW ( j )#, ~1!

where for simplicity thesW and v dependence of the local-
field parameters, fluctuations, and disturbance is not dis-
played. The two indicesi and j label the two layers of those
of the considered system. The others parameters entering Eq.
~1! are the Fourier transform of the bare Coulomb interac-
tion, v(q)52pe2/«q, the form factor associated with the
Coulomb interaction between the two layers,F(q)5exp
@2qd#, and the width of the two layersL. (e is the dielectric
constant.! These values of the Coulomb interaction are those
of a pure 2D system, true in our case only under the assump-
tion that the width of a quantum well is much smaller than
the distance between layers. In general, one needs to calcu-
late the expression of the form factors that result from the
overlap of the electronic wave functions along theẑ axis.
Therefore, the results presented in this paper, in which it is
assumed that all electrons have the same subband index, cor-
respond to intrasubband excitations. Intersubband excitations
will be analyzed elsewhere.8

The local-field correctionsGs
6(qW ,v) can be expressed in

terms of correlation and exchange field corrections
Gs

c (qW ,v), as Gs
6(qW ,v)5Gs

x (qW ,v)6Gs
c (qW ,v). The exact

form of the exchange and correlation local-field corrections
in a spin-polarized electron system is still an open question.
Asymptotic values for large and small wave-numbersq for
Gs

6(qW ,v) were obtained in Ref. 9 in the three-dimensional
case and in Ref. 10 for the two-dimensional one, by using the
equation of motion method.11–13 In general, the local-field
corrections are a function of the polarization factorj and the
two-particle correlation function at the origing(0). The
asymptotic values for two- and three-dimensional cases are
listed in Ref. 10.

The applied electric potentialw(qW ,v) andbz(qW ,v) from
Eq. ~1! generate fluctuations in the number of spins whose
orientation remains parallel to the initial polarization direc-
tion, alongẑ. Since the up and down spins oscillate indepen-
dently, coupled spin- and charge-density excitations, SDE
and CDE, respectively, will result.7 In the first order of per-
turbation theory, the induced fluctuations are proportional
with the effective interaction potential, where the coefficient
of proportionality is the appropriate polarization function,
Ps,s8 :

Pss8~qW ,v!5
1

A (
kW

nkW2qW /2,s82nkW1qW /2,s

\v2«kW1qW /2,s1«kW2qW /2,s8

. ~2!

(A is the area of the quasi-two-dimensional layer.! Since we
assume that all the many-body effects are incorporated in the
local-field correction, Eq.~2! is the polarization of the non-
interacting electron system. Therefore,«(kW )5\2kW2/2m*
1gBsgn(s) is the equilibrium energy in the initial dc mag-
netic field, andnkW ,s is the usual Fermi distribution function

for a quasiparticle with momentumkW and spin projections
along thez axis. @The function sgn(s) is 1 for spin up and
21 for spin down.# Therefore, under the spin-dependent ef-
fective potential,

Vs
( i )5gbzsgns2ew1v~q!@~12Gs

1!Dn( i )

2GL,s
2 Ds( i )sgns#1

4pg2

L
Ds( i )sgns1v~q!F~q!

3@~12Gs
1!Dn( j )2GL,s

2 Ds( j )sgns#, ~3!

linear fluctuations areDns
( i )(qW ,v)5PssVs

( i )(qW ,v).
Due to the spin-response anisotropy the local-field correc-

tion factors in Eq.~3! are direction dependent:GL,s
2 (qW ,v)

being associated to the longitudinal variations, whereas
GT,s

2 (qW ,v) to the transverse ones.
In addition to the longitudinal CDE and SDE modes, the

interaction of the transverse components of the magnetic
field with the electron spin in Eq.~1! generates spin-flip
fluctuations or spin waves. Using the usual decomposition of
the spin operator, these modes are driven by (1/2)s1b1

1(1/2)s2b2 , whereb15bx1 iby and b25bx2 iby . The
effective down-up potential,

V1
( i )5 1

2 gb12 1
2 v~q!GT,↑

2 Ds1
( i )2 1

2 v~q!F~q!GT,↑
2 Ds1

( j ) ,
~4!

inducesDn1
( i )(qW ,v)5P↓↑V1

( i )(qW ,v), while its up-down cor-
respondent

V2
( i )5 1

2 gb22 1
2 v~q!GT,↓

2 Ds2
( i )2 1

2 v~q!F~q!GT,↓
2 Ds2

( j ) ,
~5!

triggersDn2
( i )(qW ,v)5P↑↓V2

( i )(qW ,v).
The collective excitations of the system are obtained for

those values of the frequency at which the oscillations are
maintained even in the absence of the perturbative field, i.e.,
the matrix of the susceptibility functions has a null determi-
nant. The transverse modes can be decoupled immediately
and their characteristic equation is

F11
1

2
Pss8S v~q! f ~q!GT,s

2 2
4pg2

L D G
3F11

1

2
Pss8S v~q!g~q!GT,s

2 2
4pg2

L D G
50, ~6!

where f (q)511F(q), g(q)512F(q), and ~s,s8! can be
any of the combinations~↑,↓! or ~↓,↑!. For a given orienta-
tion of the polarization fieldBW there are four characteristic
frequencies for the possible spin-flip transverse modes. For
example, by using the long wavelength limit for the polar-
ization function P↑↓(qW ,v) ~associated with down-up pro-
cesses!, P↑↓(qW ,v)> nz/v22gB , we obtain
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VT152gB1
1

2
nzS 4pg2

L
2v~q! f ~q!GT,↓

2 D ,

VT252gB1
1

2
nzS 4pg2

L
2v~q!g~q!GT,↓

2 D . ~7!

The proportionality of VT22VT1 with nze2qdv(q)
3GT,↓

2 (qW ,v) allows an independent verification of the trans-
verse local-field correction,GT,↓

2 (qW ,v), by comparison with
experimental data.

The characteristic frequencies of the longitudinal modes
are the solutions of the following equation:

$12b~P↑↑1P↓↓!2g~q!v~q!@P↑↑~12G↑
12GL,↑

2 !1P↓↓~12G↓
12GL,↓

2 !#12bg~q!v~q!P↑↑P↓↓~22G↑
12G↓

1!

22g2~q!v2~q!P↑↑P↓↓@GL,↑
2 ~12G↓

1!1GL,↓
2 ~12G↑

1!#%3$12b~P↑↑1P↓↓!2 f ~q!v~q!@P↑↑~12G↑
12GL,↑

2 !

1P↓↓~12G↓
12GL,↓

2 !#12b f ~q!v~q!P↑↑P↓↓~22G↑
12G↓

1!22 f 2~q!v2~q!P↑↑P↓↓@GL,↑
2 ~12G↓

1!

1GL,↓
2 ~12G↑

1!#%50, ~8!

whereb54pg2/L. Note that in the RPA, whenGs
6(qW ,v)50, and in the absence of the self-consistent magnetization,b50,

Eq. ~8! generates the excitation frequencies for the CDE of a bilayer system in the absence of a spin imbalance~j50!.2 The
solutions of Eq.~8! can be written in terms of the 2D spin-dependent plasma frequenciesvs

252pe2nsq/«ms* , wherens

5n@11jsgn(s)#/2 andms* 5m* /A11jsgn(s).9 With a5(2«g2/Le2)q, the two charge-density modes are obtained to be
excited at

V1
25a~v↑

21v↓
2!1 f ~q!@v↑

2~12G↑
12GL,↑

2 !1v↓
2~12G↓

12GL,↓
2 !#

2
2v↑

2v↓
2f ~q!$a~22G↑

12G↓
1!2 f ~q!@GL,↑

2 ~12G↓
1!1GL,↓

2 ~12G↑
1!#%

a~v↑
21v↓

2!1 f ~q!@v↑
2~12G↑

12GL,↑
2 !1v↓

2~12G↓
12GL,↓

2 !#
. ~9!

V2
25a~v↑

21v↓
2!1g~q!@v↑

2~12G↑
12GL,↑

2 !1v↓
2~12G↓

12GL,↓
2 !#

2
2v↑

2v↓
2g~q!$a~22G↑

12G↓
1!2g~q!@GL,↑

2 ~12G↓
1!1GL,↓

2 ~12G↑
1!#%

a~v↑
21v↓

2!1g~q!@v↑
2~12G↑

12GL,↑
2 !1v↓

2~12G↓
12GL,↓

2 !#
. ~10!

By using the asymptotic expression of the polarization function in the long-wavelength limit2 Pss5n@1
1jsgn(s)#q2/2m* v2 , it is then easy to surmise from Eqs.~9! and ~10! that in the long-wavelength limitV describes the
classic propagation of a 2D plasmonV1;Aq, while V2 corresponds to the acoustic plasmon associated with the out-of-phase
charge oscillations described in Ref. 2, with the specification that our calculation includes also the spin corrections.

On account of the spin coupling that generate the self-consistent magnetization, two longitudinal spin-dependent modes
arise that describe the in-phase and out-of-phase magnetization fluctuations in the two layers, respectively,

V3
25

2v↑
2v↓

2$a f ~q!~22G↑
12G↓

1!2 f 2~q!@GL,↑
2 ~12G↓

1!1GL,↓
2 ~12G↑

1!#%

a~v↑
21v↓

2!1 f ~q!@v↑
2~12G↑

12GL,↑
2 !1v↓

2~12G↓
12GL,↓

2 !#
, ~11!

V4
25

2v↑
2v↓

2$ag~q!~22G↑
12G↓

1!2g2~q!@GL,↑
2 ~12G↓

1!1GL,↓
2 ~12G↑

1!#%

a~v↑
21v↓

2!1g~q!@v↑
2~12G↑

12GL,↑
2 !1v↓

2~12G↓
12GL,↓

2 !#
. ~12!

In the absence of the induced magnetization, these modes
exist only if GL,s

2 (qW ,v),0, or in terms of exchange and
correlation factors,GL,s

x (qW ,v),GL,s
c (qW ,v). Their experi-

mental observation is possible only if they are situated out-
side the electron-hole continuum. Again, in the long wave-
length limit, our analysis involves the asymptotic expression
of the polarization function Eq.~2! leading to a regular 2D

magnetoplasmon from Eq.~11!, and to an acoustic magnetic
excitation from Eq.~12!.

This latter mode has the lowest frequency of the four
modes and will have the strongest contribution to possible
decay processes. It is then important to analyze under what
circumstances it will exist. If all the local-field correction
factors are set to zero~RPA!, from Eq.~12! we obtain in the
long-wavelength limit:
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V4
25vF

2q2S A12j2

A11j1A12j
D

qTF«g2

Le2

11
2«g2

e2Ld

, ~13!

with qTF52m* e2/«\2 the usual Thomas-Fermi wave num-
ber. As in the case of charge excitations, this mode exists
only for a finite distance between the layers. Moreover, this
distance has to be greater than a critical value for the collec-
tive excitation to fall outside the electron-hole continuum.
This results from the condition that the the group velocity of
the collective mode is greater than the higher of the two
Fermi velocities,vFs5vF@11jsgn(s)#. ~Note that in order
to include such effects, one should consider the spin depen-
dence of both the Fermi momentum and the effective elec-
tron mass.! Therefore, forj.0, when vF↑.vF↓ the inter-
layer distance should satisfy:

d.dc5

2«g2

Le2

2«g2

Le2
qTF

A12j

11j1A12j2
21

. ~14!

The critical distance between the two layers thus determined
is spin dependent, via the polarization factorj. The denomi-
nator of Eq.~14! is required to be positive, which imposes
that

2«g2

Le2
qTF

A12j

11j1A12j2
.1. ~15!

This condition limits dramatically the number of instances in
which the effect discussed here can be observed. For a quan-
tum well of a typical width of 100 Å, Eq.~15! is satisfied
only for large values of the gyromagnetic factorg. This is
why we suggest that the existence of an acoustic magneto-
plasmon can be observed only in dilute magnetic semicon-
ductor structures whoseg can be as high as 100mB . For a
given layer thickness,L, Eq. ~15! is satisfied only up to a
critical polarization value,jc . For well widths of the order
of hundreds of angstroms, the average size of a quantum
well, jc is close to one, so the magnetoacustic plasmon we
predict should be observed for different values of the polar-
ization. For larger widths, the polarization parameter is lim-
ited in agreement with Eq.~15!. In Fig. 1, we analyze the
dependence of the critical interlayer distance,dc as function
of the polarization factorj for a layer thicknessL52
31028 m. Close to jc , the critical distance increases
abruptly signaling the softening of the magneto-acoustic col-
lective mode, which can not be observed any more.

In conclusion, we present an analysis of the possible
transverse and longitudinal collective modes in a dilute semi-
conductor bilayer structure. Transverse spin fluctuations are
associated with spin waves as expected and the difference of
their excitation frequencies can be directly associated with
the transverse local-field correction. We show that four col-
lective excitations can result from the coupling of charge and
spin fluctuations: in-phase and out-of-phase charge density
excitations, and in-phase and out-of phase spin-density exci-
tations. The SDE and CDE coupling is mediated by the self-
induced magnetization. The out of phase modes are acoustic,
both for charge and spin. The out-of-phase SDE is described
by an acoustic dispersion, which if exists outside the
electron-hole continuum represents the lowest frequency
possible for a collective excitation in this system. Based on
our results obtained in the RPA, we argue that it will be
possible to observe the acoustic magnetoplasmon in a mate-
rial with high g, such as a dilute magnetic semiconductor.
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FIG. 1. The dependence of the critical interlayer distancedc on
the polarization factor,j, is presented forL5231028 m, «.12,
g.100mB , andm* .0.1me . For these values, the critical polariza-
tion factorjc.0.99.
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