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The subband levels of quantum wells grown in a periodic array form minibands whose bandwidthD depends
on the probability of interlayer tunneling. In the presence of a strong magnetic field, this system of minibands
can exhibit various Coulomb-interaction-driven spin polarization instabilities at an integral value of the filling
factor n. We investigate in particular the Hartree-Fock phase diagram in the case in which then50 spin-up
andn51 spin-down Landau levels are separated by an energy smaller thanD. A spin-density-wave ground
state is shown to occur at filling factorn52.

In the presence of a strong magnetic field, a single quan-
tum well is known to exhibit a spin polarization instability at
filling factor n52 at a finite value ofe5\(vc2vs), the
energy separation between the upper spin state of then50
Landau level,u0↑&, and the lower spin state of then51
Landau level,u1↓&.1 Quite generally, these instabilities result
from electron-electron interactions in situations in which the
exchange overcomes the correlation energy, and can lead to
the stabilization of spin-polarized phases. Experimental evi-
dence of such an interesting behavior has been reported by
several groups.2–4 It was, moreover, pointed out that in the
presence of many flavors of electrons~as, for instance, in the
case of multivalley degeneracy! the same system may un-
dergo a spin-density-wave~SDW! instability.5,6 An extensive
study of the Hartree-Fock phase diagram for the multivalley
configuration of Si inversion layers has been carried out in
Ref. 7. A physically equivalent situation arises within the
lowest Landau level when then50 and then51 energy
levels are replaced by the symmetric and antisymmetric lev-
els of a double quantum well.8

In this paper we extend the original work on a single
quantum well1 to a superlattice in which the Landau sub-
bands are replaced by minibands whose energy depends on
kz , the wave number in the direction of the superlattice axis.
The nature of the ground state is found to depend critically
on the magnitude of the bandwidthD of the minibands. For
small tunneling probability, the quasi-two-dimensional
~quasi-2D! system undergoes a paramagnetic to ferromag-
netic transition, as in the case of a 2D electron gas. For larger
tunneling probability a critical value of the miniband width
Dc occurs for which transitions from the lower miniband are
energetically favorable. The resulting partial occupancy es-
tablishes a Fermi level atkF2 (kF1) in the upper~lower!
miniband. A SDW coupling between these two bands results
at Q5p/a. This is an equivalent situation to that of a 3D
electron gas in a strong magnetic field as studied by Celli and
Mermin,9 except that the superlattice has real minibands in

which the periodic part of the Bloch function is not simply a
constant. In addition, two different Landau levels as well as
two different spin levels are involved. Ate50, the mini-
bandsu0,ky ,kz ,↑& and u1,ky ,kz ,↓& are degenerate, and each
band is half-filled, and when the electron-electron interaction
is considered, a rather standard Overhauser SDW~Ref. 10!
with Q52kF5p/a ~wherea is the superlattice period! oc-
curs. For ueu@D, the system has paramagnetic (u0↓& and
u0↑& occupied! or ferromagnetic (u0↓& and u1↓& occupied!
occupancy depending upon the sign ofe.

We model the superlattice as a periodic array of attractive
d-function potentials. For a single quantum well with poten-
tial V(z)52ld(z), the bound-state energy and wave func-
tion are given by e052\2k2/2m and z(z)5Ake2kuzu,
wherek5ml/\2. For the superlattice we take the potential
V(z)52l( ld(z2 la), with l an integer. The miniband
wave function and energy can be written~in a tight binding
approximation! as

c~kz ,z!5
1

AN
(

l
eikzlaz~z2 la ! ~1!

and

e~kz!5e0~114e2ka coskza!. ~2!

The wave function of Eq.~1! can be easily written in the
standard Bloch formckz

5eikzzu(kz ,z), whereu(kz ,z) is a
periodic function ofz with perioda. The complete function
for a superlattice state is

un,ky ,kz ,s&5eikzzu~kz ,z!fnky
~x,y!hs . ~3!

Here fnky
(x,y)5L21/2eikyyHn(x1kyl ), where l 5A\c/eB

is the magnetic length,Hn(x) is the nth simple harmonic
oscillator function, andhs represents the spin eigenfunction.
The allowed values ofky are 2p j /L, with j an integer andL
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the length for periodic boundary conditions in they direc-
tion. kz52p j /Na, wherej is an integer in the range6N/2.

As shown in Fig. 1, theu0↑& andu1↓& minibands become
almost degenerate whene5\(vc2vs) is made very small
~for instance, by orienting the applied magnetic field in the
appropriate direction!. We anticipate then that when the
bands overlap, the Hartree-Fock ground state of the superlat-
tice will be characterized by a spin density wave. In this case
the mechanism of formation for the SDW is the exchange
interaction between electrons in statesu0,ky ,kz ,↑& and those
in statesu1,ky ,kz1Q,↓&.

The existence a differential magnetic instability can be
inferred from very simple considerations. When an electron
from the u0↑& miniband moves into theu1↓& miniband, the
energy of the transition can be seen as made up of three
parts: the ‘‘kinetic energy,’’ which here is simply the energy
gap between the two states in the absence of the electron-
electron interactions, the exchange energy of the electron
with all the other electrons with the same spin, and the bind-
ing energy of the electron and the hole which is left in the
initial miniband.11 The matrix element of the Coulomb inter-
action between electrons in minibandsun,kW1QW ,s& and
um,kW8,s8& is

vnm~kz ,qW ,QW !

5
e2

L
F~kz ,qz ,Qz!E

2`

` dqx

q2
e(2 l 2/2)(qy

2
1qx

2
22iqxQy)

3H dn,0dm,01F12
l 2

2
~qy

21qx
2!Gdn,0dm,1

1F12
l 2

2
~qy

21qx
2!G2

dn,1dm,1J , ~4!

with qW 5kW82kW anddn,m the Kronecker delta. The form factor
F(kz ,qz ,Qz) describes the exchange of momentum along
thez direction. Assuming small tunneling probability, an ap-
proximate expression forF(kz ,qz ,Qz) is obtained:

F~kz ,qz ,Qz!

5
2p

a2 S 4k2

4k21qz
2D 2H 122kae2ka sinS qza

2 D
3cosF S kz1

qz

2
1

Qz

2 DaGFsinS Qza

2 D
2

2k

qz
cosS Qza

2 D G J . ~5!

By summing over the exchanged momentumqW , one obtains
the exchange energy and the electron-hole binding energy.11

The latter is gnm(kz ,Qy ,Qz)52(qy ,qz
vnm(kW ,qW ,QW ),

whereas the former is simplyenm
ex (kz)5gnm(kz ,0,0). The

exciton energy involving the statesu0,ky ,kz ,↑& and u1,ky
1Qy ,kz1Qz ,↓& is given by

W5e2
D

2
@cos~kz1Qz!a2coskza#2g00~kz,0,0!

1g01~kz,0,0!1g01~kz ,Qy ,Qz!. ~6!

The paramagnetic ground state becomes differentially un-
stable forW<0. The first electronic states to experience this
instability are those withkz5p/a ~at the maximum energy
in the lower band! interacting withkz50 ~at the minimum in
the upper band! so thatQz5p/a also. Using these values of
kz and Qz , and by settinglQy5 lQyc51.25 ~the value for
which the 2D instability occurs!, we plot the curveW50 in
the e,D plane in Fig. 2 where, for illustration purposes, we
have also chosena50.5l . Above this curve, the paramag-
netic occupancy~of u0↓& and u0↑&) is a stable Hartree-Fock
solution for the interacting system.

For large negative values ofe and for negligible tunnel-
ing, electrons occupyu0↓& and u1↓& minibands and the

FIG. 1. Energy spectrum of theu0,ky ,kz ,↑& and u1,ky ,kz ,↓&
minibands. The minimum interband transition energy is decreased
from the valuee because of the finite bandwidthD. An instability
to a SDW ground state can occur whene becomes comparable to
D.

FIG. 2. Hartree-Fock phase diagram of the superlattice in the
presence of a quantizing magnetic field. The nature of the ground
state depends critically on the magnitude of the bandwidthD. At
small D the system undergoes a paramagnetic to ferromagnetic
transition. For values ofD exceeding a critical valueDc a SDW
ground state becomes possible.
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ground state is ferromagnetic. The energy of an exciton in-
volving the statesu1,ky ,kz ,↑& and u0,ky1Qy ,kz1Qz ,↓&
consists of the ‘‘kinetic energy’’2e, the lost exchange
2g11(kz ,0,0)2g01(kz ,0,0), and the electron-hole binding
energy g01(kz ,Qy ,Qz). Clearly the ferromagnetic ground
state becomes differentially unstable when the exciton en-
ergy

W̃52e2
D

2
@cos~kz1Qz!a2coskza#2g11~kz,0,0!

2g01~kz,0,0!1g01~kz ,Qy ,Qz! ~7!

becomes negative. As before, this first occurs for values of
the momentum at the edges of the Brillouin zone,kz5p/a,
and for a momentum transferQz5p/a. In Fig. 2, the curve
W̃50 delimits the region below which the ferromagnetic
occupancy~of u0↓& and u1↓&) is a stable Hartree-Fock solu-
tion. The two dashed curves cross atD5Dc . In the weak
tunneling regime ofD,Dc , the paramagnetic occupancy oc-
curs for W.0, while the ferromagnetic occupancy obtains
for W̃,0. The paramagnetic to ferromagnetic transition oc-
curs forW<e<W̃, just as it does for a 2D system.1 Which
of these possible solutions is more stable is determined by
comparing the corresponding Hartree-Fock total energies
just as in the single-layer case. This leads to the solid line
separating paramagnetic and ferromagnetic states in Fig. 2.
At higher tunneling values, whenD.Dc , the miniband
broadening determines the appearance of an intermediate
ground state characterized by a spatially varying local mag-
netic moment. As we show below a possible candidate is a
SDW ground state.

The nature of the ground state can be analyzed by intro-
ducing the Hamiltonian of the interacting system,

H5(
n

(
kz

en,kz ,scn,kz ,s
† cn,kz ,s1

1

2 (
n,m

(
kW ,qW ,QW ,s,s8

vnm

3~kW ,qW ,QW !cn,kW1QW 1qW ,s
†

cm,kW ,s8
†

cm,kW1qW ,s8cn,kW1qW ,s . ~8!

Heren andm take only the values 0 and 1, and the first term
of the Hamiltonian is the kinetic energy. The second de-
scribes the Coulomb interaction between electrons in mini-
bandsun,kW1QW ,s& and um,kW ,s8&. A possible Hartree-Fock
SDW ground state is obtained from the coherent mixing of
states of opposite spins from theu0,kW ,↑& and u1,kW1QW ,↓&
minibands. Theu0,kW ,↓& miniband is considered fully occu-
pied ~and remains such! and does not enter the dynamics of
the system. Linear-independent operators describing this
state are obtained fromckW through a standard canonical
transformation,1

c0,kW ,↑5cosukWakW1sinukWbkW , ~9!

c1,kW1QW ,↓52sinukWakW1cosukWbkW . ~10!

The spin inclination angle of each pair of states,ukW , and the
new quasiparticle spectrum are determined by minimizing
the total Hartree-Fock energy of the system. By defining the
quantitygkW as

gkW5(
qW

v01~kW ,qW ,QW !sin 2ukW1qW@ f ~EkW1qW
2

!2 f ~EkW1qW
1

!#,

~11!

ukW is obtained by solving the self-consistent equation

tan 2ukW5
gkW

~ ẽ1,kW1QW ,↓2 ẽ0,kW ,↑!
. ~12!

Here ẽn,kz
is the single particle energy with inclusion of ex-

change, and the occupation probabilities of the new states
f (EkW

6) are given by the usual Fermi function evaluated for
the quasiparticle energies

EkW
6

5
1

2
@~ ẽ1,kW1QW ,↓1 ẽ0,kW ,↑!6A~ ẽ1,kW1QW ,↓2 ẽ0,kW ,↑!21gkW

2
#.

~13!

EkW
6 differ from the normal-state solutions only in the vicinity

of kW52Q/2, where a gap equal to 2g opens up in the energy
spectrum. This is shown in Fig. 3 where the spin-up band has
been displaced byDkz5Qz5p/a. The overlapping bands
would cross, but the SDW exchange coupling opens up gaps
at the crossings.

Equation~12! admits three solutions for the angleukW . The
solutionsuk50 anduk5p/2 correspond, respectively, to the
paramagnetic and ferromagnetic states of the system. The
third solution, which we will label asukW

* , corresponds to a
SDW state and is a differentially stable solution whene
,D. This can be surmised either from Overhauser original
paper10 or from the result of Ref. 9 where it was shown that,
for a three-dimensional electron gas in the presence of a
magnetic field, a linear SDW solution has lower energy than
the paramagnetic state~when many Landau levels are as-
sumed to be occupied! independently of the specific form of
the repulsion potential.12 This would correspond in our case
to independence of the result of the exact form ofv10(kW

2kW8) in Eq. ~12!.
The magnetic moment associated with the SDW will be

proportional to (x̂ cosQzz1ŷsinQzz)sin 2ukW . This oscillatory
magnetization must be added to the uniform magnetization

FIG. 3. Quasiparticle spectrum of the superlattice in a linear
SDW state. A gap 2g opens up atkz5Qz/2a. Here we have taken
e50.
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associated with the fully occupiedu0↓& Landau level, which
is parallel to the direction of the applied magnetic field
~considered for simplicity to be parallel to the superlattice
axis!.

Very recently Brey investigated the magnetic phases of a
superlattice in which only then50 Landau level was
considered.13 In this case, the spin splitting\vs appears in
the theory in place of our\(vc2vs). This spin splitting is
always positive and must be greater or equal to a minimum
value dictated by the electron concentration and the integral
filling factor. Brey’s treatment makes use of the basis func-
tion with a layer indexl in contrast to our use of a miniband
wave vectorkz , and has no discussion of the miniband width
D in relation to the energy scale\vs . Nevertheless, a canted
antiferromagnetic state is found when the tunneling ampli-

tude and the layer separation satisfy certain conditions. We
have shown here that the canted antiferromagnetic phase,
which occurs when the two open bands overlap, is simply the
Overhauser SDW studied by Mermin and Celli. For materi-
als in which the spin and cyclotron splittings are of compa-
rable magnitude, the flexibility of adjusting the parametere
5\(vc2vs) in both magnitude and sign afforded by the
present model should be important for the experimental ob-
servation of these transitions. The transformation of the
quasi-2D subband levels into minibands makes the connec-
tion between two- and three-dimensional systems more ap-
parent, and also allows us to use the proofs of Refs. 9 and 10
that, within the Hartree-Fock approximation, a SDW state
will have lower energy than the paramagnetic state indepen-
dently of the exact form of the interaction.

*Present address: Department of Physics and Astronomy, Clemson
University, Clemson, SC 29634.
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