
Clemson University
TigerPrints

Publications Physics and Astronomy

12-15-1999

Coupling of Spin Waves with Charge- and Spin
Density Excitations in Spin-Polarized Quantum
Wells
D C. Marinescu
Clemson University, dcm@clemson.edu

J J. Quinn
University of Tennessee

Follow this and additional works at: https://tigerprints.clemson.edu/physastro_pubs

This Article is brought to you for free and open access by the Physics and Astronomy at TigerPrints. It has been accepted for inclusion in Publications
by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Please use publisher's recommended citation.

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro_pubs?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro_pubs?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Coupling of spin waves with charge- and spin-density excitations in spin-polarized quantum wells
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The coupling of spin waves with charge- and spin-density waves is shown to be induced by a spin-dependent
interaction in a quantum well, which is spin polarized by a dc magnetic field at an angleu to the symmetry
axis. The mixing of the plasmonic and magnonic modes, which occurs for both intra- and intersubband
transitions, depends on the coupling constant of the spin-spin interaction, the tilt angleu, and the initial spin
polarizationz. @S0163-1829~99!08247-8#

An intense experimental effort employing infrared ab-
sorption and inelastic light-scattering techniques has been
focused on probing the excitation spectrum of an electron
gas confined to a quasi-two-dimensional semiconductor het-
erostructure~2DEG!.1,2 The observed absorption peaks indi-
cate that linearly independent charge-density waves
~CDW’s!, spin-density waves~SDW’s!, and spin waves
~SW’s! propagate at frequencies corresponding to the poles
of the appropriate response functions. The first two excita-
tions are generated by fluctuations in the local density of
particles with a given spin, while the spin waves are associ-
ated with spin-flip processes.

When a dc magnetic field is applied perpendicular to the
2D layer, the energy levels within each subband are deter-
mined by the ratio of the Zeeman splitting 2g* B and the
cyclotron energy\vc5\eB/m* c (g* is the effectiveg
value andm* is the effective mass!. If 2g* B!\vc ~as in
GaAs heterostructures!, each subband is characterized by a
sequence of Landau levels, each of which displays a small
spin splitting.3 In the opposite limit, 2g* B@\vc ~as can
occur for dilute magnetic semiconductor structures!, the
main splitting within each subband is into widely separated
spin-up and spin-down components. The cyclotron energy
gives rise to small splittings of the spin subbands into
Landau-level ladders. The SW’s are not coupled to the CDW
and the SDW when the magnetic field is normal to the 2D
layer ~considered here as thex-z plane!.

The shift of the collective excitation frequency from the
single-particle transition is a consequence of the many-body
interaction. Theoretical investigations of the elementary
spectrum of a 2D electron gas in a normal magnetic field
have shown that the existence of the CDW and intersubband
SDW is a consequence of the mean electrostatic field, the
random-phase approximation~RPA! of the Coulomb
repulsion.4 Intrasubband SDW and both intra- and intersub-
band SW’s appear only when a spin-dependent interaction is
included.5 The former is negligible in GaAs whereg* is
very small but can give observable effects in dilute magnetic
semiconductors, where the effective gyromagnetic factor is
enhanced by the electron interaction with the magnetic ions
to values up to a hundred times its band value.

In this paper, we consider the applied dc magnetic fieldBW

at an angleu to the symmetry axis of the dilute magnetic
semiconductor well and show that the tilt of the magnetic
field produces the coupling of the spin- and charge-density
waves with the spin waves. The excitation frequencies for
the collective modes are derived within the RPA approxima-
tion by using the equation of motion for the one-electron
distribution function. Analytic results are obtained for small
values of the inclination angleu. The dependence of the
collective-mode frequencies on the equilibrium polarization
andu are studied in the long-wavelength limit.

The electron state in a quantum well of widthL is a plane
wave of wave vectorkW ~in the x̂- ẑ plane! modulated by
an envelope function that reflects theŷ-axis confinement.
The associated field operator is

ca~rW,y,sW !5(
kWs

aa;kWseikW•rWja~y!xs~sW !, ~1!

with ja(y)5A2/L sinap/L (a51,2, . . . ), thesubbanda

wave function. The spinorxs(sW) corresponds to a projection
s of the spinsW along the ẑ axis. If cks

† and cks are the
creation and destruction operators for an electron with spin
projections along the direction of the dc magnetic fieldû
5 ŷ sinu1ẑcosu, the equilibrium ground-state average
^cks

† cks&5nks is the number of electrons with spins paral-

lel to û per unit area. Elementary quantum mechanics deter-
mines that

aks5cos
u

2
cks1 i sin

u

2
cks̄ . ~2!

The spin polarization of the electron gas is justz5(n↑
2n↓)/(n↑1n↓). The magnetization,

mW 52g(
sW

(
a

E
0

L

d yE d2rca
†~rW,y,sW !~sW •BW !ca~rW,y,sW !,

has nonzero components onŷ and ẑ axes proportional to the
corresponding components of the dc magnetic field.

The equilibrium Hamiltonian of an electron gas in a dc
magnetic field is
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H05 (
kW ,s,a

S \2k2

2m*
1g* Bz sgn~s!D aa;kWs

†
aa;kWs

1(
a;kW

@g* B2aa;kW↑
†

aa;kW↓1g* B1aa;kW↓
†

aa;kW↑#

1
1

2 (
a,b,a8,b8

(
kW ,kW8,q8W ,s,s8

@vab
a8b8~qW 8!

24p~g* !2 sgns sgns8#aa8;kW2qW 8/2,s
†

3ab8;kW81qW 8/2,s8
†

ab;kW82qW 8/2,s8aa;kW1qW 8/2,s

18p~g* !2 (
a,b,a8,b8

(
kW ,kW8,qW 8

aa8;kW2qW 8/2,↑
†

3ab8;kW81qW 8/2,↓
†

ab;kW82qW 8/2,↑aa;kW1qW /2,↓ , ~3!

where the signum function sgn(s) is 1 for a spin up and
21 for a spin down. The many-body interaction term in Eq.

~3! includes the Coulomb repulsionvab
a8b8(qW ) and the effect

of a self-consistent magnetization.vab
a8b8(qW ) is the product of

the Fourier transform of the 2D Coulomb interactionv(qW )
52pe2/q and the form factor, which describes theŷ-axis
overlap of the electronic wave functions:

vab
a8b8~qW !5v~qW !E

0

L

dyE
0

L

dy8za8~y!zb8~y!

3e2quy2y8uzb~y8!za~y!. ~4!

A small electromagnetic perturbation@an electric potential
w(rW,y,t);w(qW ,y)ei (vt2qW •rW) and a magnetic induction of ar-
bitrary orientationbW (rW,y,t);bW (qW ,y)ei (vt2qW •rW] modifies the
local energy of the electrons and changes their distribution
functions. This generates density fluctuations and spin-flip
processes, which have a time and position variation imposed
by the perturbation. In a Fourier-transform representation,
these are functions of the wave vectorqW , and frequencyv.
The interaction Hamiltonian is

H int5(
a,b

(
kW ,qW

E
0

L

dyH(
s

@2ew~2qW ,y!

1gbz~2qW ,y!sgn~s!#ab;kW2qW /2,s
†

aa;kW1qW /2,s

1g@b1~2qW ,y!ab;kW2qW /2,↓
†

aa;kW1qW /2,↑

1b2~2qW ,y!ab;kW2qW /2,↑
†

aa;kW1qW /2,↓#J , ~5!

where a uniform notation for the external fields was used:
w5*0

Ldyja(y)w(qW ,v,y)jb(y). TheqW andv dependence is
implicitly understood.

There are three types of induced fluctuations. The field
components that leave the spin state unchanged,w and bz ,
determine variations in the electron density whose spin re-
mains parallel to theẑ axis. The transverse components of
the magnetic induction,b65bx6 iby , drive spin-flip pro-

cesses such that the spin projection is in thex̂-ŷ plane. Fur-
thermore, the collective modes can involve excitations in the
same subband,a5b, or in a different one,aÞb.

The frequency- and wave-vector-dependent density fluc-
tuations Dnas;bs8(q

W ,v) correspond to a transition of an
electron from a state (a,kW2qW /2,s) to a state (b,kW

1qW /2,s8), by exchanging momentumqW and energy\v with
the external perturbation. In a linear-response approximation,
this process is averaged over the ground state of the nonper-
turbed system. The frequency- and wave-vector-dependent
fluctuationDnas;bs(qW ,v) is

Dnas;bs~qW ,v!5E
0

L

d yja~y!jb~y!

3(
kW

@^ab;kW2qW /2,s
†

~v!aa;kW1qW /2,s~v!&

2^aa;kWs
†

aa;kWs&da,bdqW ,0

3^aa;kWs
†

aa;kWs&da,bdqW ,0#. ~6!

Analogously, a spin-flip process, associated with the Pauli
raising and lowering operatorss1 ands2, is described by

Dnas;bs̄~qW ,v!52E
0

L

d yja~y!jb~y!

3(
kW

@^ab;kW2qW /2,s̄
†

~v!aa;kW1qW /2,s~v!&

2^aa;kW s̄
†

aa;kWs&da,bdqW ,0#. ~7!

The frequency dependence of the creation and destruction
operators is determined by the usual equation of motion,
which involves their commutator with the total
Hamiltonian.6

When the commutators are estimated, the fully interacting
equations for the density fluctuations are obtained. However,
this infinite chain of coupled equations cannot be solved ana-
lytically if some approximations are not performed. For sim-
plicity, we choose to analyze only transitions between two
given minibands,a andb. In this case, the Coulomb inter-
action matrix element, Eq.~4!, becomes

vab~q!5
2pe2

q H 2

qL
1

1

~qL!21~2pa!2
da,b

2
2

~qL!2

~2pa!~2pb!

@~qL!21~2pa!2#@~qL!21~2pa!2#
J .

~8!

Another simplification occurs for values ofu which as-
sure thatg* B is much smaller than all the energies involved
in the problem. The coupling between oscillations corre-
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sponding to different wave vectors generated by the static
components of the applied magnetic field are neglected un-
der the assumption that sinu!1.

To show how a magnetic interaction intermediates the

coupling between the density and spin fluctuations, we revert
to the simplest approximation, that of a self-consistent mag-
netic field. We introduce the generalized polarization coeffi-
cients of the electron gasPss8

ab to be

Pss8
ab

5(
kW

S cos2
u

2
nkW2qW /2,s

b
1sin2

u

2
nkW2qW /2,s̄8

b D2S cos2
u

2
nkW1qW /2,s

a
1sin2

u

2
nkW1qW /2,s̄8

a D
\v2~eb;kW1qW /2,s82ea;kW2qW ,s!

. ~9!

In a mean-field theory, the linear-response approximation de-
termines that the density fluctuations,Dnab5Dn↑

ab

1Dn↓
ab , and the spin-density fluctuations,Dsab5Dn↑

ab

2Dn↓
ab , satisfy

Dnab5Pab~2ew1vabDnab!1g* z cosuPab

3~bz24pg* Dsz
ab!1 ig* z

sinu

2
Pab

3@b124pg* Dn1
ab#2 ig* z

sinu

2
Pab

3@b224pg* Dn2
ab#, ~10!

Dsab5zPab~2ew1vabDnab!1g* Pab

3~bz24pg* Dsz
ab!cosu. ~11!

In the same approximation, the spin-flip fluctuations are
given by

Dn1
ab5g* P↑↓

ab@b124pg* Dn1
ab#

1 i z sinuP@2ew1vabDnab#, ~12!

Dn2
ab5g* P↓↑

ab@b224pg* Dn2
ab#1 i z sinuP

3@2ew1vabDnab#. ~13!

Equations~11! and ~13! form a self-consistent system of
equations, which describes the oscillations generated by the
applied electromagnetic perturbation in the quantum well.
The excitation frequencies of the collective modes are deter-
mined by requiring that the homogeneous system obtained in
the absence of the outside field has a nontrivial solution. The
coupling among density fluctuations of electrons with differ-
ent wave vectorskW mediated by the transverse components of
the dc magnetic field,B656 iB sinu, makes it very difficult
to obtain a solution for an arbitrary tilt angle.

The excitation frequency of the various collective modes
is a solution of the secular equation,

$~12Pabvab!@114p~g* !2Pab#14p~g* !2~Pab!2

3vabz2 cos2u%@118p~g* !2P↑↓
ab#@118p~g* !2P↓↑#

12z2p~g* !2$P↓↑
ab@118p~g* !2P↑↓

ab#

1P↑↓
ab@118p~g* !2P↓↑

ab#%~Pabṽ !2 sin2u50. ~14!

The last term of Eq.~14! describes the coupling between
the density fluctuations and the spin fluctuations. It exists
only if the 2D electron gas is spin polarized under a tilt angle
u. The strength of this hybrid mode is determined by the
coupling constant of the spin-spin interaction, which in the
approximation we used is just the self-consistent magnetiza-
tion. The loss of axial symmetry, which occurs when the dc
magnetic field is tilted at an angleu, is at the origin of this
effect. The excitations generated by fluctuations in the den-
sity of the electrons with spin parallel to theẑ axis are ex-
pected to occur at frequencies much larger than the Zeeman
energy 2g* B, where the spin-wave modes begin. By ne-
glectingPss̄ in Eq. ~14!, a quadratic equation in (Pabvab) is
obtained and solved for both intra- and intersubband modes.

The intrasubband excitations occur within the same en-
ergy subband. For the lowest energy subband (a51),
Pv(q), from Eqs.~9!, is simply equal tovp

2/v2, wherevp

52pne2/m* is the plasma frequency for a 2D electron sys-
tem. These results are equivalent to the long-wavelength
limit of the noninteracting electron-gas polarization func-
tions, characteristic of plasma oscillations. In this situation,
Eq. ~14! has just one valid solution forv:

v25vpF12kz2S 12
sin2u

2 D G , ~15!

where k54p(g* )2/v(q). The excitation is the charge-
density wave, associated with the symmetric combination of
density fluctuations in the up- and down-spin electrons. It is
excited at the plasma frequency in 2D corrected by a term
that reflects the coupling with the spin modes. Spin-flip pro-
cesses about the initial polarization direction generate a non-
zero contribution to theẑ-axis spin dynamics, proportional to
4p(g* )2nz2 sin2u/m* as one can determine by comparing
Eq. ~15! with its value in the caseu50.

As an example of the intersubband collective modes, we
calculate the excitation frequencies between the ground state
(a51) and the first excited level (b52). For simplicity, we
will assume that the electron density in theb subband is
much smaller than the electron density in subbanda. The
intersubband modes start at excitation frequencies compa-
rable to the single-particle transition,V5e22e1. In this
case,Pabvab is given by

Pv~q!5
2nv~q!~\V!2

~\v!22~\V!2
. ~16!
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There are two collective modes. One corresponds to the spin-
symmetric density fluctuation, charge-density wave, and it
begins at

\vCDW5\VF11
nv~q!

~\V!
~12kz2!G18p~g* !2nz2

sin2u

2
.

~17!

The lower-frequency mode corresponds to antisymmetric
spin oscillations, that form a spin-density wave. The excita-
tion frequency is

\vSDW5\VF12
4p~g2!2n

~\V!
~12z2!G24p~g* !2

sin2

2
.

~18!

A gap opens up in the intrasubband excitation spectrum,
which is a result of an initial spin polarization and of the
inclination angle. This effect was also observed in the case of
the inter-Landau-level transitions in GaAs structures.7

The same analysis can be performed in the case of the
excitation frequencies of the spin-flip processes. In a first-
order approximation in (4pg* ), we obtain that intrasubband
down-up excitations, that generate the spin waves, occur at

\v152g* B18p~g* !2zn1
\2q2

2m* nz

18p~g* !2S m* vp

2p\ D 2

nz
sin2u

4
. ~19!

The up-down excitation mode starts at a frequencyv2

5v1(2z). The SW dispersion law is odd inz since the
spin-flipping process depends on the direction of the mag-
netic field. Of course, the CDW and the SDW, which are
density modes determined only by the magnitude ofBW , are
functions ofz2.

Intersubband spin-flip transitions are also analyzed for
transitions between the subbandsa51 and b52. In this
situation, the generalized polarization functions, Eq.~9! be-
come

P↓↑v5
1

2 Fn~11z cosu!

\v2\V1
2

n~12z cosu!

\v1\V2 G , ~20!

P↑↓v5
1

2 Fn~12z cosu!

\v2\V2
2

n~11z cosu!

\v1\V1 G , ~21!

whereV15e↑
b2e↓

a andV25e↓
b2e↑

a are the single-particle
spin-flip transitions. By solving the secular equation, Eq.
~14!, we obtain the excitation frequencies for the collective
modes of the interacting system,

\v15\V124p~g* !2n~11z cosu!

3F11S nm* v~q!

2p\2 D z
sin2u

2 G , ~22!

\v25\V124p~g* !2n~12z cosu!

3F11S nm* v~q!

2p\2 D z
sin2u

2 G . ~23!

The influence of the plasma modes on these excitation fre-
quencies is mediated by the term proportional to sin2u, which
also includes the wave-vector-dependent Coulomb interac-
tion matrix element.

We have shown that in an asymmetrically spin-polarized
quantum well a weak self-consistent magnetic perturbation
generates a coupling between the plasmonic modes and the
spin waves, dependent on the anisotropy angleu and on the
degree of initial polarization,z. This coupling occurs for
both intra- and intersubband excitations. The general algo-
rithm described in this paper, can be extended to include any
other type of self-consistent spin-dependent interaction. In
this sense, the results we obtained should be interpreted as
qualitative, rather than quantitative. Of great interest, of
course, will be the inclusion of the spin-dependent short-
range Coulomb effects, which are expected to dominate the
self-consistent magnetization, even in the case of dilute mag-
netic semiconductors.

This work was supported by Lockheed Martin Energy Re-
search, Grant No. 3210-001D.
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Clemson, SC 29634.
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