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ARTICLES

Exchange and correlation corrections to the response functions
of a spin-polarized electron gas

D. C. Marinescu
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

J. J. Quinn
Department of Physics, University of Tennessee, Knoxville, Tennessee 37966

~Received 20 December 1996!

We analyze the spin and charge responses induced in a spin-polarized electron gas by a weak electromag-
netic field. The coupled spin-charge response is derived from the equation of motion of the particle distribution
function in the presence of the perturbation. To obtain the correct frequency and the wave-vector dependence
we introduce the spin-dependent local-field factors,Gs

65Gs
x6Gs

c , which give the exchange (x) and correla-
tion (c) corrections to the random phase approximation. For an arbitrary degree of polarization of the electron
gas, we derive the exact analytical expressions forGs

6(qW ,v) in the limit of high frequency or large wave

vectors. The results forqW→` are expressed in terms of the two-particle correlation function,g(rW) at r50.
@S0163-1829~97!04628-6#

I. INTRODUCTION

In the study of the response functions of an electron gas
with a positive background, the concept of a local-field cor-
rection originates in the difference between the effective po-
tential experienced by an electron and the mean field value.
Exchange and correlation effects associated with the Cou-
lomb repulsion, which determine a decrease in the number of
particles surrounding a given electron are responsible for this
deviation. The exchange-correlation hole modifies the inter-
action between a probe electron and the rest of the electron
gas, leading to a potential variation. A self-consistent ap-
proximation first proposed by Kukkonen and Overhauser1

can be generalized to2

DFs~qW ,v!5v~qW !@12Gs
1~qW ,v!#Dn~qW ,v!

2G2~qW ,v!v~qW !sW •DsW~qW ,v!, ~1!

wherev(qW )5e2/4pq2 is the Fourier transform of the Cou-
lomb interaction. Equation~1! defines the local-field correc-
tions as the coupling functions of an electron with spins to
density and spin fluctuations,Dn(qW ,v) and DsW(qW ,v), re-
spectively. The spin-symmetric character ofDn indicates
thatGs

1 is the sum of the parallel and antiparallel spin ef-

fects, whereas the spin-antisymmetry ofDsW imposes that
Gs

2 is the difference. If we introduceGs
x for the exchange,

Gss
c for the same-spin correlation, andGss̄

c for opposite-spin
correlation, we can write

Gs
1~qW ,v!5Gs

x ~qW ,v!1Gss
c ~qW ,v!1Gss̄

c
~qW ,v!, ~2!

Gs
2~qW ,v!5Gs

x ~qW ,v!1Gss
c ~qW ,v!2Gss̄

c
~qW ,v!. ~3!

In the spin-polarized electron gas a static magnetic field
induces an equilibrium imbalance in the number of electrons
of opposite spins. As a consequence, the response to a weak
electromagnetic perturbation consists of coupled charge and
spin fluctuations, characterized by appropriate susceptibility
functions: pure electric,xee, pure magnetic~longitudinal
and transversal!, xmm, and coupled magnetic-electric,xem
andxme. The investigation of these functions has been done
just recently.3 In this case, the exchange-correlation interac-
tions are functions of the initial direction of the electron spin
and the local-field corrections depend parametrically on the
degree of polarization of the system.

Because of the difficulty involved in approximating
many-body interactions, limited knowledge has been gained
about the exact expressions of the local-field corrections. For
an unpolarized electron gas, it has been established from the
compressibility relation that at smallqW , Gs

6(qW ,v) varies
quadratically.4 Using the equation-of-motion method,
Niklasson5 and Zhou and Overhauser6 derived the limits for
large wave vectors:

lim
q→`

G1~qW ,v!5 2
3 @12g~0!#, ~4!

lim
q→`

G2~qW ,v!5 1
3 @4g~0!21#. ~5!

Hereg(0) is the two-particle correlation function at the ori-
gin. In this paper we obtain the equivalent asymptotes for the
local-field corrections in a spin-polarized electron gas.

II. MANY-BODY CORRECTIONS IN THE EFFECTIVE
FIELD APPROXIMATION

An electron gas—N electrons with a uniform positive
background, confined in the volumen—is spin polarized by
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a static magnetic field,BW 5Bẑ, such that in equilibrium there
areN↑ electrons with spins parallel to the field, andN↓ elec-
trons with spins of opposite orientation. Any degree of po-
larization of the system,z5(N↑2N↓)/N, can be obtained by
adjusting the value ofBW . The external perturbation consists
of an electric potential,f(rW,t), and a magnetic field,
bW (rW,t), whose direction is specified by the unit vector
û5(sinucosf,sinusinf,cosu). Assuming a sinusoidal time
and position dependence of the fields, based on Eq.~1!, a
self-consistent approximation for the Fourier component of
the effective one-particle perturbing Hamiltonian is

Hs~qW ,v!5gbW ~qW ,v!•sW 2ef~qW ,v!

1v~qW !@~12Gs
1!Dn~qW ,v!2Gs

2sW •DsW~qW ,v!#,

~6!

where g is the effective Bohr magneton. The exchange-
correlation effects are considered through the local-field fac-
tors,Gs

1 andGs
2 , defined by Eqs.~2!–~3!. sW is the usual

Pauli operator for the electron spin. In Eq.~6! we have ne-
glected the magnetic spin-spin interaction, much smaller
than the Coulomb repulsion. Introducing the raising and low-
ering spin operators,s1 ands2 , respectively, the product
bW •sW can be written as

bW •sW 5 1
2b1s21 1

2b2s11bzsz . ~7!

In this form it is easy to see thatb15bx1 iby causes elec-
trons to flip spins from up to down, whileb25bx2 iby has
the opposite effect. These processes generate the transverse
~in respect to the direction of initial polarization! spin re-
sponse. The electric field andbz preserve the initial spin state
and induce fluctuations in the number of electrons whose
spin remains parallel to the direction of the static field. As a
result of the spin-response anisotropy, the associated local-
field correction,Gs

2 , is going to be direction dependent:
GL,s

2 for longitudinal variations andGT,s
2 for the transverse

ones.
The effective potential experienced by an electron of spin-

projections along theẑ axis is then, from Eqs.~6! and ~7!,

Fs~qW ,v!5gbz~qW ,v!sgn~s!2ef~qW ,v!

1v~qW !@~12Gs
1!Dn~qW ,v!

2sgn~s!GL,s
2 DsW~qW ,v!#, ~8!

where sgn(s) is equal to 1~or 21) when the spin is parallel
~or antiparallel! to the field.

Two complementary equations are written for the effec-
tive potentials experienced by electrons which flip spin,

F1~qW ,v!5gb1~qW ,v!2v~qW !GT,↑
2 Ds1~qW ,v!, ~9!

F2~qW ,v!5gb2~qW ,v!2v~qW !GT,↓
2 Ds2~qW ,v!. ~10!

The spin index of the transverse local-field corrections is
chosen to correspond to the initial direction of the spin. Ob-
serve that for an arbitrary degree of polarization,uzu<1,
Gs

2(z)5Gs̄
2(2z).

The first order perturbation theory shows that the induced
fluctuations are linearly related to the effective potentials by

Dns~qW ,v!5PssFs~qW ,v!, ~11!

Dn1~qW ,v!5P↑↓F1~qW ,v!, ~12!

Dn2~qW ,v!5P↓↑F2~qW ,v!. ~13!

We elect to include all the many-body effects in the local-
field corrections,Gs(qW ,v) and, consequently, write the co-
efficient of proportionality,Pss8, as the noninteracting elec-
tron response function:

Pss8~qW ,v!5
1

n (
kW

nkW2qW /2,s82nkW1qW /2,s

\v2~ekW1qW /2,s2ekW2qW /2,s8!
, ~14!

whereekW ,s5\2k2/2m2gsgn(s)B is the equilibrium energy
in the static magnetic field for an electron with statistical
distribution nkW ,s , momentum\kW , and spin projections
along theẑ axis. @An alternate definition ofPss8 which in-
cludes many-body corrections to the one electron energies is
discussed by Sturm.8#

When written for up and down spins, Eq.~11! leads to a
system of coupled equations which can be solved forDn↑
andDn↓ in terms of the external perturbation. We express
these results as charge density,Dr52e(Dn↑1Dn↓) , and
longitudinal magnetization,Dmz52g(Dn↑2Dn↓), fluctua-
tions. The coefficients of the linear system which relates the
induced response to the perturbing fields are the susceptibil-
ity functions. Therefore,

Dr5xeef1xembz ,

Dmz5xmef1xmmbz . ~15!

Because of the initial spin polarization, the response consists
of coupled charge and spin fluctuations described by

xee5
e2

D
@P↑↑1P↓↓12P↑↑P↓↓v~qW !~GL,↑

2 1GL,↓
2 !#, ~16!

xem52
eg

D
@P↑↑2P↓↓1v~qW !P↑↑P↓↓~GL,↓

2 2GL,↑
2 !#, ~17!

xme5
eg

D
@P↑↑2P↓↓12v~qW !P↑↑P↓↓~G↓

12G↑
1!#, ~18!

xmm52
g2

D
@P↑↑1P↓↓2v~qW !P↑↑P↓↓~22G↓

12G↑
1!#.

~19!

D is the determinant of the system:

D5 1
2 @122v~qW !P↑↑~12G↑

1!#@112v~qW !P↓↓GL,↓
2 #

1 1
2 @122v~qW !P↓↓~12G↓

1!#@112v~qW !P↑↑GL,↓
2 #.

Here, the wave vector and frequency dependence of the
local-field corrections was implicitly assumed. The trans-
verse magnetic fluctuations are obtained from Eqs.~12! and
~13!:
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Dm152gDn15xmm
1 b1 ,

Dm252gDn25xmm
2 b2, ~20!

along with the corresponding susceptibilities:

xmm
1 52

2g2P↑↓

112v~qW !P↑↓GT,↑
2

, ~21!

xmm
2 52

2g2P↓↑

112v~qW !P↓↑GT,↓
2

. ~22!

These results have been derived by Yi and Quinn3 and can
be used as alternative definitions for the many-body local-
field corrections,Gs

6 , longitudinal or transverse. A correct
wave-vector and frequency dependence of the susceptibility
functions can be obtained only when the right behavior of
the many-body corrections is known.

III. MICROSCOPIC DERIVATION OF THE MANY-BODY
CORRECTIONS

We proceed by extending the equation-of-motion method,
first proposed by Niklasson,5 to the physical system de-
scribed in the previous section. The unperturbed Hamiltonian
of the system,H0, is

H05(
kW ,s

ekW ,sckW ,s
†
ckW ,s

1
1

2n(qW v~q!(
kW ,s

(
kW8,s8

ckW2qW /2,s
†

ckW81qW /2,s8
†

3ckW2qW /2,s8ckW1qW /2,s , ~23!

with ekW ,s5\2/2m2gBsgn(s), the energy of an electron
with spin s in the static magnetic field. OperatorsckW ,s

† and

ckW ,s create and annihilate an electron of momentum\kW and
spin projections along an arbitrary axis uˆ . In particular, we
chooseû to be along the perturbing magnetic field, such that
the electronic spinors are eigenfunctions ofsW •bW . In this rep-
resentation, the Hamiltonian of the perturbation is just

H1~ t !5(
qW

(
kW ,s

@gb~2qW ,t !sgn~s!

2ef~2qW ,t !#ckW2qW /2,s
†

ckW1qW /2,s . ~24!

The orthogonal transformation to creation or annihilation op-
erators for electrons with spins projected along theẑ axis is
realized by

ckW ,↑5akW ,↑cos
u

2
1akW ,↓sin

u

2
eif, ~25!

ckW ,↓5akW ,↑sin
u

2
2akW ,↓cos

u

2
eif. ~26!

Since the kinetic energy and the Coulomb interaction terms
do not depend on the axis on which the spin is projected, we
can immediately write, in terms of thea’s operators,

H05(
kW

ekW ,sakW ,s
†
akW ,s

1
1

2n(qW v~q!(
kW ,s

(
kW8,s8

akW2qW /2,s
†

akW81qW /2,s8
†

3akW2qW /2,s8akW1qW /2,s . ~27!

Substituting Eqs.~25! and ~26! into ~24!, the interaction
Hamiltonian becomes

H1~ t !5g(
qW ,kW

H b1~2qW ,t !akW2qW /2,↑
†

akW1qW /2,↓

1b2~2qW ,t !akW2qW /2,↓
†

akW1qW /2,↑

1(
s

@b~2qW ,t !sgn~s!

2ef~2qW ,t !#akW2qW /2,s
†

akW1qW /2,sJ . ~28!

The first two terms describe electronic spin-flip processes
driven by the transverse components of the magnetic field,
b1 and b2 , while the third one gives the coupled density
and spin fluctuations of the electrons whose initial spin state
remains unchanged under the perturbation.

A. The longitudinal response

The electric potential and theẑ component of the perturb-
ing magnetic field induce fluctuations in the number of elec-
trons of a given spin without changing their spin state. The
dynamical deviations from equilibrium are described by a
Wigner distribution function:

f kW ,s
~1!

~qW ,t !5^akW2qW /2,s
†

~ t !akW1qW /2,s~ t !&, ~29!

such that the induced electron density is

Dns~qW ,t !5(
kW

D f kW ,s
~1!

~qW ,t !. ~30!

D f kW ,s
(1) is the perturbation produced by the external field

D f kW ,s
(1) (qW ,t)5 f kW ,s

(1) (qW ,t)2dqW ,0nkW ,s . The time-dependent be-
havior of the Wigner distribution is determined by the equa-
tion of motion:

i\
]

]t
^akW2qW /2,s

†
~ t !akW1qW /2,s~ t !&

5^@akW2qW /2,s
†

~ t !akW1qW /2,s~ t !,H01H1~ t !#&. ~31!

Taking the Fourier transform one obtains
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@\v2~ekW1qW /2,s2ekW2qW /2,s!#D f kW ,s
~1!

~qW ,v!

5
1

n
~nkW2qW /2,s2nkW1qW /2,s!$gbz~qW ,v!sgn~s!

2ef~qW ,v!1v~qW !@Dn↑~qW ,v!1Dn↓~qW ,v!#%

1
1

n(qW 8
v~qW 8! (

kW8,s8
@D f kW2qW 8/2,s;kW 8,s 8

~2!
~qW 2qW 8,qW 8;t !

2D f kW1qW 8/2,s;kW 8,s 8
~2!

~qW 2qW 8,qW 8;t !#, ~32!

where

D f kW ,s;kW8,s8
~2!

~qW ,qW 8;t !

5^akW2qW /2,s
†

~ t !akW82qW 8/2,s8
†

~ t !akW81qW 8/2,s8~ t !akW1qW /2,s&

2^akW2qW /2,s
†

~ t !akW1qW /2,s~ t !&^akW82qW 8/2,s8
†

~ t !akW81qW 8/2,s8&

2dqW 1qW 8,0 f kW ,s;kW 8,s8
~2!

~qW ! ~33!

is the perturbed part of the two-particle distribution function.
At equilibrium, this function is

f kW ,s;kW8,s8
~2!

~qW !5^0uakW2qW /2,s
†

akW81qW /2,s8
†

akW81qW /2,s8akW1qW /2,su0&

2^0uakW2qW /2,s
†

akW1qW /2,su0&

3^0uakW2qW /2,s8
†

akW81qW /2,s8u0&. ~34!

Therefore, the induced density fluctuations for electrons of a
given spins can be obtained from Eqs.~30! and ~32!:

Dns~qW ,v!5Pss@2ef~qW ,v!1gsgn~s!bz~qW ,v!

1v~qW !~Dn↑1Dn↓!#1
1

n(qW 8
v~q8!

3(
kW ,s

(
kW8,s8

1

\v2~ekW1qW /2,s2ekW2qW /2,s!

3@D f kW2qW 8/2,s;kW8,s8
~2!

~qW ,qW 8,v!

2D f kW1qW 8/2,s;kW 8,s8
~2!

~qW ,qW 8,v!#. ~35!

Again,Pss is the polarization function for spins electrons
in the absence of the interaction, defined by Eq.~14!. Since
the fluctuation of the electron density for a given spin de-
pends self-consistently on the induced densities of electrons
of both spins, the dielectric and magnetic responses are
coupled.

Equation~35! does not give a straightforward solution for
Dns since the behavior ofD f kW ,s;kW 8,s8

(2) (qW ,qW 8,v) is not
known. The two-particle fluctuations are determined by the
commutator of two-body distribution function with the
Hamiltonian. They satisfy the following equation:

F\v2
\2kW•qW

m
2

\2kW•qW 8

m GD f kW ,s;kW 8,s8
~2!

~qW ,qW 8;v!

5
1

n
@ f kW2~qW 1qW 8!/2,s;kW 8,s8

~2!
~2qW 8!

2 f kW1~qW 1qW 8!/2,s;kW 8,s8
~2!

~2qW 8!#

3Cs~qW 1qW 8,v!1
1

n
@ f kW 82~qW 1qW 8!/2,s8;kW ,s

~2!
~2qW !

2 f kW81~qW 1qW 8!/2,s8;kW ,s
~2!

~2qW !#Cs8~qW 1qW 8,v!

1 F̄ kW ,s;kW 8,s8
~2!

~qW ,qW 8;v!1 F̄ kW ,s;kW 8,s8
~m!

~qW ,qW 8;v!

1 F̄ kW 8,s8;kW ,s
~m!

~qW 8,qW ;v!. ~36!

Cs is the external perturbing field experienced by an elec-
tron. For a spinor projected along theẑ axis,
Cs52ef1gbzsgn(s).

In this expression, the first two terms on the right-hand
side originate in the interaction of one electron with the ex-
ternal field, in the presence of another electron. We have
followed Niklasson5 and usedF̄ kW ,s;kW8,s8

(2) to describe the mu-
tual interaction between the two electrons in the presence of
all the other members of the gas.F̄ kW ,s;kW8,s8

(m) (qW ,qW 8;v) and

F̄ kW8,s8;kW ,s
(m) (qW ,qW 8;v) represent the interaction of one electron

with the rest of the particles, in the presence of the other
electron. Three-particle correlations are involved in all these
terms.

B. The transverse response

Under the influence of the transverse components of the
magnetic perturbation,b6(qW ,v), some of the electrons
change their initial spin state:b1(qW ,v) determines transi-
tions from up to down, whileb2(qW ,v) has an opposite ef-
fect. The appropriate Wigner distribution to describe the in-
duced magnetization can be derived from the following
considerations. The particle number operator for electrons
with spin projections along the x̂ axis is

hkW ,s
x

~qW ,t !5ckW2qW /2,s
x†

~ t !ckW1qW /2,s
x

~ t !, ~37!

where the operatorckW ,s
x and its conjugate are given by Eq.

~26! particularized for thex̂ axis (u590°,f50°). After the
substitutions are performed, one can write immediately

hkW ,↑
x

~qW ,t !2hkW ,↓
x

~qW ,t !5akW2qW /2,↑
1

~ t !akW1qW /2,↓~ t !

1akW2qW /2,↓
1

~ t !akW1qW /2,↑~ t !, ~38!

and analogously for theŷ axis (u590°,f590°),

hkW ,↑
y

~qW ,t !2hkW ,↓
y

~qW ,t !5 i @akW2qW /2,↑
†

~ t !akW1qW /2,↓~ t !

2akW2qW /2,↓
†

~ t !akW1qW /2,↑~ t !#. ~39!

It is convenient to form the linear combinations,Dh6

5Dh16 iDh2,
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Dh1~qW ,t !52akW2qW /2,↓
†

~ t !akW1qW /2,↑~ t !, ~40!

Dh2~qW ,t !52akW2qW /2,↑
†

~ t !akW1qW /2,↓~ t !. ~41!

Clearly, the relevant time-dependent Wigner distributions
for the spin-flip processes induced byb1 and b2 , respec-
tively, are

f kW
1

~qW ,t !52^akW2qW /2,↓
†

~ t !akW1qW /2,↑~ t !&,

f kW
2

52^akW2qW /2,↑
†

~ t !akW1qW /2,↓~ t !&. ~42!

The corresponding Fourier components of the transverse
magnetic fluctuations can be obtained by summing overkW :

Dm1~qW ,v!52g(
kW

D f kW
1

~qW ,v!, ~43!

Dm2~qW ,v!52g(
kW

D f kW
2

~qW ,v!. ~44!

Following the method outlined in the previous section, we
derive the time variation ofDm1(qW ,v):

Dm1~qW ,v!522gP↑↓b1~qW ,v!2
2g

n (
qW 8

v~qW 8!(
kW

(
kW8,s8

1

\v2~ekW1qW /2,↑2ekW2qW /2,↓!

3@^akW2qW /2,↓
†

~v!akW82qW 8/2,s8
†

~v!akW81qW 8/2,s8~v!akW1qW 82qW /2,↑~v!&

2^akW2qW 81qW /2↓
†

~v!akW82qW 8/2,s8
†

~v!akW81qW 8/2,s8~v!akW1qW /2,↑~v!&#. ~45!

The four-operator averages included in Eq.~45! describe electrons interacting through the Coulomb interaction, while at the
same time one of them changes its spin state. They are simply the two-particle fluctuations considered for electron spinors
projectedalong the xˆ and ŷ axis. Employing the set of transformations given by Eqs.~25! and ~26!, one can show that

(
s8

^akW2qW /2,↓
†

~v!akW82qW 8/2,s8
†

~v!akW81qW 8/2,s8~v!akW1qW /2,↑~v!&

5 (
s,s8

@sgn~s!^ckW2qW /2,s
x†

~v!ckW82qW 8/2,s8
x†

~v!ckW81qW 8/2,s8
x

~v!ckW1qW /2,s
x

~v!&

2 isgn~s!^ckW2qW /2,s
y†

~v!ckW82qW 8/2,s8
y†

~v!ckW81qW 8/2,s8
y

~v!ckW1qW /2,s
y

~v!&#

5
1

2(
s,s8

$@sgn~s!D f kW ,s;kW8,s8
~2!

~qW ,qW 8;v!#x2 i @sgn~s!D f kW ,s;kW8,s8
~2!

~qW ,qW 8;v!#y%. ~46!

@D f kW ,s;kW8,s8
(2) (qW ,qW 8;v)#x „or @D f kW ,s;kW8,s8

(2) (qW ,qW 8;v)#y… is the perturbation of the distribution function of two particles whose spins
are projected alongx̂, ~or ŷ) direction, respectively.

An identical analysis can be performed forDm2(qW ,v), with the result

Dm2~qW ,v!522P↓↑gb2~qW ,v!2
2g

n (
qW 8

v~qW 8! (
kW ,kW8,s8

1

\v2~ekW1qW /2,↓2ekW2qW /2,↑!

3@^akW2qW /2,↑
†

~v!akW82qW 8/2,s8
†

~v!akW81qW 8/2,s8~v!akW2qW 81qW /2,↓~v!&

2^akW1qW 82qW /2,↑
†

~v!akW82qW 8/2,s8
†

~v!akW81qW 8/2,s8~v!akW1qW /2,↓~v!&#, ~47!

where from~25! and ~26!

(
s8

^akW2qW /2,↓
†

~v!akW82qW 8/2,s8
†

~v!akW81qW 8/2,s8~v!akW1qW /2,↑~v!&

5
1

2(
s,s8

$@D f kW ,s;kW8,s8
~2!

~qW ,qW 8;v!sgn~s!#x1 i @D f kW ,s;kW8,s8
~2!

~qW ,qW 8;v!sgn~s!#y%. ~48!
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The frequency dependence of the pair distribution functions for transverse spin states is determined by equations of motion
analogous to Eq.~36!. In these cases,Cs5sgn(s)b6 . The corresponding equations for the four-operator averages are finally

F\v2
\2kW•qW

m
2

\2kW8•qW 8

m G(
s8

^akW2qW /2,↓
†

akW81qW 8/2,s8
†

akW82qW 8/2,s8akW1qW /2,↑&

5
1

2n (
s,s8

@ f kW2~qW 1qW 8!/2,s;kW8,s8
~2!

~2qW 8!2 f kW1~qW 1qW 8!/2,s;kW8,s8
~2!

~2qW 8!#gb1~qW 1qW 8,v!

1
1

2n (
s,s8

@ f kW82~qW 1qW 8!/2,s8;kW ,s
~2!

~2qW !2 f kW81~qW 1qW 8!/2,s8;kW ,s
~2!

~2qW !#sgn~s!sgn~s8!gb1~qW 1qW 8,v!

1 (
s,s8

@ F̄ kW ,s;kW8,s8
~2!

~qW ,qW 8,v!1 F̄ kW ,s;kW8,s8
~m!

~qW ,qW 8;v!1 F̄ kW8,s8;kW ,s
~m!

~qW ,qW 8;v!#. ~49!

Also,

F\v2
\2kW•qW

m
2

\2kW8•qW 8

m G(
s8

^akW2qW /2,↑
†

akW81qW 8/2,s8
†

akW82qW 8/2,s8akW1qW /2,↓&

5
1

2n (
s,s8

@ f kW2~qW 1qW 8!/2,s;kW8,s8
~2!

~2qW 8!2 f kW1~qW 1qW 8!/2,s;kW8,s8
~2!

~2qW 8!#gb2~qW 1qW 8;v!

1
1

2n (
s,s8

@ f kW82~qW 1qW 8!/2,s8;kW ,s
~2!

~2qW !2 f kW81~qW 1qW 8!/2,s8;kW ,s
~2!

~2qW !#sgn~s!sgn~s8!gb2~qW 1qW 8;v!

1 (
s,s8

@ F̄ kW ,s;kW8,s8
~2!

~qW ,qW 8;v!1 F̄ kW ,s;kW8,s8
~m!

~qW ,qW 8;v!11 F̄ kW8,s8;kW ,s
~m!

~qW ,qW 8;v!#. ~50!

As before, the first terms on the right-hand side of the above equations describe the interaction between an electron and the
external field in the presence of the other electron~as a result of the external field one electron flips spin, while the ‘‘spectator’’
does not!. Since the equilibrium values of the two-particle distribution functions do not depend on the particular axis of the
spin projection, we have employed the following equality:

@ f kW ,s;kW8,s8
~2!

~qW !#x,~y!5 f kW ,s;kW8,s8
~2!

~qW !, ~51!

whereF̄ kW ,s;kW8,s8
(2) (qW ,qW 8;v) represents the mutual interaction between the two electrons in the presence of the rest of the electron

gas.FkW ,s;kW8,s8
(m) (qW ,qW 8;v) and F̄ kW8,s8;kW ,s

(m) (qW ,qW 8;v) are a consequence of the many-body effects and correspond to the interaction
between one electron and the rest of the gas in the presence of the other electron. These terms contain the perturbed parts of
the three-particle distribution functions.

IV. THE LIMIT OF LARGE Q¢ OR v

The iterative procedure involved by the equation-of-motion method can be continued indefinitely: the time evolution of the
n-body distribution function is dependent not only on the external fields, but also on the (n11)-particle correlations. This
chain can be terminated in the limit of large wave vectors or high frequency, when the Coulomb interaction between electrons
becomes negligible with respect to the external perturbations. We consider that the outside electromagnetic field is strong
enough, so only two-particle correlations are significant. Consequently, we neglect all the terms denoted byF̄ kW ,s,kW8,s8 in Eqs.
~36!, ~49!, and ~50!. Furthermore, we assume that\v and\2q2/2m are much larger than the Zeeman splitting in the static
magnetic field,gB. With these assumptions, the simplified equations for the two-particle distribution functions are substituted
in Eqs.~35!, ~43!, and~44!. Keeping the leading terms in\v and\2q2/2m, we obtain

Dns5Pss@gbz~qW ,v!sgn~s!2ef~qW ,v!1v~qW !~Dn↑1Dn↓!#1gG1sbz~qW ,v!2eG2sf~qW ,v!. ~52!

G1s andG2s represent the exchange and correlation contribution to the response, obtained from the equation of motion of the
two-particle distribution function:
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G1s0
5

1

2n2
v~q!F \2q2/m

~\v!22~\2q2/2m!2G
2H (

qW 8
a~qW ,v!S qW •qW 8

q2 D 2 v~qW 8!

v~qW !
(
kW ,s

(
kW8,s8

@11sgn~s0!sgn~s!# f kW ,s;kW 8,s8
~2!

~qW 8!

2FqW •~qW 1qW 8!

q2 G2 v~qW 1qW 8!

v~qW !
(
kW ,s

(
kW8,s8

sgn~s8!@sgn~s!1sgn~s0!# f kW ,s;kW8,s8
~2!

~qW 8!J , ~53!

G2s0
52

1

2n2
v~qW !F \2q2/m

~\v!22~\2q2/2m!2G
2H (

qW 8
a~qW ,v!S qW •qW 8

q2 D 2 v~qW 8!

v~qW !
(
kW ,s

(
kW8,s8

@11sgn~s0!sgn~s!# f kW ,s;kW8,s8
~2!

~qW 8!

2FqW •~qW 1qW 8!

q2 G2 v~qW 1qW 8!

v~qW !
(
kW ,s

(
kW8,s8

@11sgn~s0!sgn~s!# f kW ,s;kW8,s8
~2!

~qW 8!J , ~54!

with

a~qW ,v!5
1

2F S \v1\2q2/2m

\v2\2q2/2mD 21S \v2\2q2/2m

\v1\2q2/2mD 2G . ~55!

In an analogous way, in the limit of large wave vectors or high frequencies, the transverse magnetic fluctuations are found to
be

Dm152P↑↓gb1~qW ,v!12gb1~qW ,v!GT~qW ,v!, ~56!

Dm252P↓↑gb2~qW ,v!12gb2~qW ,v!GT~qW ,v!, ~57!

whereGT(qW ,v) is expressed by

GT~qW ,v!52
1

2n2
v~qW !F \2q2/2m

~\v!22~\2q2/2m!2G
2

(
qW 8

H a~qW ,v!FqW •qW 8

q2 G2 v~qW 8!

v~qW !
(
kW ,s

(
kW8,s8

f kW ,s;kW8,s8
~2!

~qW 8!

2FqW •~qW 1qW 8!

q2 G2 v~qW 1qW 8!

v~qW !
(
kW ,s

(
kW8,s8

sgn~s!sgn~s8! f kW ,s;kW8,s8
~2!

~qW 8!J . ~58!

The system of equations obtained from Eq.~35! written for up and down spins, gives the charge and longitudinal spin
responses. The corresponding susceptibilities functions are

xee~qW ,v!5e2
P↑↑1P↓↓1G1↑1G2↓

12v~qW !~P↑↑1P↓↓!
, ~59!

xem~qW ,v!52eg
P↑↑2P↓↓1G2↑2G2↓

12v~qW !~P↑↑1P↓↓!
, ~60!

xme~qW ,v!5eg
P↑↑2P↓↓1G1↑2G2↓

12v~qW !~P↑↑1P↓↓!
, ~61!

xmm~qW ,v!52g2
P↑↑1P↓↓24P↑↑P↓↓1G2↑@122P↑↑v~qW !#1G2↓@122P↓↓v~qW !#

12v~qW !~P↑↑1P↓↓!
. ~62!

The transverse susceptibilities are derived from~56! and ~57!:

xmm
1 522g2~P↑↓1GT!, ~63!

xmm
2 522g2~P↓↑1GT!. ~64!

The response functions have been previously obtained in Eqs.~16!–~22! using the local-field approximation. Thus, by com-
parison, we can derive the exact expressions of the many-body corrections for largeqW or high frequency.

In the same limit, the polarization functions of the free electrons, Eq.~14!, become
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Ps0 ,s0
5@11sgn~s0!z#P0 , ~65!

Ps0 ,s 0̄
5F12sgn~s0!z

\v

eq
GP0 , ~66!

with eq5\2q2/2m. P0 is the asymptotic value of the same spin free-electron response function forj50:

P05S N2n D \2q2/2m

~\v!22~\2q2/2m!2
. ~67!

With this substitution, the microscopic expression for the transverse local-field corrections,GT,↑
2 , is obtained from Eqs.

~21!, ~58!, and~63!:

GT,↑
2 ~qW ,v!5

1

N2~12z\v/eq!
2(
qW 8

H a~qW ,v!S qW •qW 8

q2 D 2 v~qW 8!

v~qW !
(
kW ,s

(
kW8,s8

f kW ,s;kW8,s8
~2!

~qW 8!

2FqW •~qW 1qW 8!

q2 G2 v~qW 1qW 8!

v~qW !
(
kW ,s

(
kW8,s8

sgn~s!sgn~s8! f kW ,s;kW8,s8
~2!

~qW 8!J . ~68!

The complementary result,GT,↓
2 , is a consequence of the symmetry relation,GT,↓

2 (z)5GT,↑
2 (2z), satisfied for any degree of

polarization,uzu<1.
The comparison of the systems of equations,~16!–~19!, and~59!–~62!, leads, after long but simple mathematical manipu-

lations, to the expressions of the local-field corrections associated with density and longitudinal spin fluctuations. Therefore,
for an electron of spin projections0,

GL,s0
2 5

@12zsgn~s0!#

N2~12z2!2 (
qW 8

H a~qW ,v!S qW •qW 8

q2 D 2 v~qW 8!

v~qW !
(
kW ,s

(
kW8,s8

@sgn~s0!1sgn~s!#@sgn~s!2z# f kW ,s;kW8,s8
~2!

~qW 8!

2FqW •~qW 1qW 8!

q2 G2 v~qW 1qW 8!

v~qW !
(
kW ,s

(
kW8,s8

@sgn~s0!1sgn~s!#@sgn~s8!2z# f kW ,s;kW8,s8
~2!

~qW 8!J , ~69!

Gs0

1 5
@11zsgn~s0!#

N2~12z2!2 (
qW 8

H a~qW ,v!S qW •qW 8

q2 D 2 v~qW 8!

v~qW !
(
kW ,s

(
kW8,s8

@11sgn~s!sgn~s0!#@12zsgn~s!sgn~s0!# f kW ,s;kW8,s8
~2!

~qW 8!

2FqW •~qW 1qW 8!

q2 G2 v~qW 1qW 8!

v~qW !
(
kW ,s

(
kW8,s8

@11sgn~s!sgn~s0!#@12zsgn~s8!# f kW ,s;kW8,s8
~2!

~qW 8!J . ~70!

As before,GL,↑
6 (z)5GL,↓

6 (2z). These expressions are exact
in the large wave-vector or high frequency limit. It is re-
markable that the frequency and wave-vector dependence of
the longitudinal and transverse local-field corrections are dif-
ferent as a result of the initial polarization of the system. For
\v5eq /z, the many-body effect for the transverse response
is divergent, leading to a negligible susceptibility. Thus, the
magnitude of the response can be controlled, by varyingz.

The equilibrium two-particle distribution function is re-
lated to the pair-correlation function through

(
kW

(
kW8

f kW ,s;kW8,s8
~2!

~qW !5NsNs8E drWe2 iqW •rW@2gss8~rW !21#.

~71!

The pair-correlation function,gss8(rW) represents the prob-
ability of finding an electron of spins8 at a distancerW from
a particular electron of spins located at the origin.

The asymptotic expressions of the many-body corrections
in the limit qW→` are obtained by making use of the follow-
ing mathematical identity:

1

n(qW 8
S qW •qW 8

q2q82De2 iqW 8•rW5
1

3
d~rW !. ~72!

When Eq.~71! is introduced in Eqs.~68!, ~69!, and ~70!,
using the above mathematical identity, the long-wave limits
of the local-field factors are expressed in terms ofgss8(0):

lim
qW→`

G↑
1~qW ,v!5

1

3~11z!
@~213z!2~214z!g↑↓~0!#,

~73!

lim
qW→`

GT,↑
2 ~qW ,v!5

1

3
$2~12z2!@g↑↓~0!1g↓↑~0!#13z221%,

~74!
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lim
qW→`

GL,↑
2 ~qW ,v!5

1

3~11z!
@~2z14!g↑↓~0!21#. ~75!

Of course, by the virtue of the exclusion principle,
g↑↑(0)5g↓↓(0)50. The qW→` limit maintains the anisot-
ropy of the local-field corrections associated with the spin
response. Whenz50, the anisotropy disappears and we re-
cover the results obtained by Niklasson5 and Zhu and
Overhauser6 for G1 andG2, respectively:

lim
z→0

lim
qW→`

G15 2
3 @12g~0!#, ~76!

lim
z→0

lim
qW→`

G25 1
3 @4g~0!21#. ~77!

The values of the pair-correlation functions at the origin,
g↑↓(0) andg↓↑(0), have to be calculated self-consistently.
Following a simple model proposed by Zhu and
Overhauser,2 we derive in the Appendix their expressions as
functions of the degree of polarization,z, and obtain@Eq.
~A11!#

gss̄ ~0!5
32@12zsgn~s!#

~813r s!
2 , ~78!

where r s measures in Bohr radii the distance between two
electrons.

V. CONCLUSIONS

Local-field corrections,G6(qW ,v), were introduced as ap-
proximations for the many-body interactions in the self-
consistent, one-particle Hamiltonian, Eq.~6!. In the
equation-of-motion method, the time variation of the particle
density at large wave vectors or high frequency leads to an
analytic expression forG6(qW ,v). This result is exact since it
is a consequence of an external constraint and does not re-
quire additional assumptions about the multiple-particle cor-
relations. The asymptotic values can be used as physical lim-
its for any extrapolation of the correction factors at arbitrary
qW andv.

These results should be tested in experiments. A spin-
polarized electron gas can be created by a static magnetic
field applied to a dilute magnetic superconductor quantum
well embedded in a modulation-doped nonmagnetic host. In
this system, a weak electromagnetic field can induce coupled
spin and charge fluctuations, the resonances of the response
being associated with intra- and inter-subband excitations.
The analysis of the infrared absorption spectrum should al-
low then a comparison with theoretical determinations.
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APPENDIX: THE TWO-PARTICLE CORRELATION
FUNCTION AT THE ORIGIN

The two-particle correlation function,gss8(r ) is defined
as the probability of finding an electron of spins8 at a dis-
tance rW from the electron of spins located at the origin,
rW50. For fermions, the value of this function atrW50 is
determined by the particles of opposite spin to the one cho-
sen as a reference, in agreement with the Pauli principle. In a
spin-polarized electron gas, the number of up and down
spins are different. Consequently, the values ofgss8(0) are
different when the reference spin is up or down. The corre-
sponding pair correlation values areg↑↓(0) andg↓↑(0), re-
spectively.

To obtaingss̄ (0) for an electron of a given spins in a
spin-polarized electron gas we follow a simple calculation
proposed by Overhauser.7 A pair of electrons with opposite
spins forms a singlet state whose wave function is

C~rW !5F~rW !
1

A2
~ u↑&1u↓&22u↓&1u↑&2), ~A1!

whereF(rW) is the spatial wave function, whileu↑& and u↓&
are the spin eigenfunctions.rW is the coordinate of the relative
motion. Since the interaction between electrons is spherically
symmetric,F(rW);R(r ). The Schro¨dinger equation satisfied
by the radial wave function,R(r ), is

2
\2

m S d2Rdr2 1
2

r

dR

dr D1V~r !R5ER. ~A2!

V(r ) is the effective potential, andm is the mass of the
electron.E is considered to be equal to two free-electron
energies,E5\2k2/m, with k the momentum of the relative
motion. In the absence of the interaction, the solution is

R~r !5
A2
kr
sinkr. ~A3!

The probability that both electrons are localized atr50 is
then uR(0)u252. Assume now that the spin of one electron
in the pair is specifieds. The weight of the termus&1u s̄ &2 in
the spin eigenfunction is 1/2. Furthermore, the chance of
encountering an electron of spin states̄ is @12sgn(s)z#/2.
Thus, the particle density at the same position with the elec-
tron of spins is reduced to

gss̄~0!5
12sgn~s!z

2
. ~A4!

When the Coulomb interaction is considered, because of
the repulsion, the density around a particular electron de-
creases. To calculate this decrement, an expression for the
screened Coulomb repulsion,V(r ), is needed. In the Over-
hauser model,V(r ) is approximated with the potential of a
sphere uniformly filled with screening charge density~out-
side the sphere the screening is zero!. The total screening
charge inside the sphere ise, while the radiusa is just the
separation between two electrons. In this approximation,
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V~r !5H e2r S ar 1
1

2

r 2

a2
2
3

2D , r<a

0, r>a,

~A5!

wherea5(3/4pn)3.
With this choice of potential, we solve the Schro¨dinger

equation. The change of variable,u(r )5R(r )/r , leads to

2
\2

m S d2dr2D1V~r !u5Eu. ~A6!

The solution,u(r ), and its derivative,du/dr, have to be
continuous on both sides ofr5a. We introduce the dimen-
sionless variables: s5r /a, q5ka, r s5a/aB , with
aB5\2/me2 the Bohr radius, and write fors<1,

d2u

ds2
1Fq22r sS 1s1s22

3

2D Gu50. ~A7!

Outside the sphere, in the absence of any potential,u(s)
satisfies u91q2u50. An exact solution for s>1 is
u(s)5sin(qs2f) (f is a phase shift!. The amplitude and
slope of the solutionu(s) have to be the same fors51. The

dominant behavior ofu is in the vicinity of the origin, at
s50. Then we can approximateu with u(s)5bs, whereb
is the slope at the origin. Hence, from Eq.~A7!, we obtain
immediately

u8~s!'br sS s1
s4

8
2
3

4
s2D1b. ~A8!

The slope ofu(s) at s51 is then

u8~1!5b@11 3
8 r s#, ~A9!

which has to be equal to the slope obtained fors>1,
u8(s)51. Thus,

b5
1

11 3
8 r s

. ~A10!

The reduction in the pair-correlation function at the origin
caused by the Coulomb repulsion is then

gss̄~0!5
32@12sgn~s!z#

~813r s!
2 . ~A11!
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