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ARTICLES

Exchange and correlation corrections to the response functions
of a spin-polarized electron gas

D. C. Marinescu
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

J. J. Quinn
Department of Physics, University of Tennessee, Knoxville, Tennessee 37966
(Received 20 December 1996

We analyze the spin and charge responses induced in a spin-polarized electron gas by a weak electromag-
netic field. The coupled spin-charge response is derived from the equation of motion of the particle distribution
function in the presence of the perturbation. To obtain the correct frequency and the wave-vector dependence
we introduce the spin-dependent local-field fact@§,= G»+ G¢, which give the exchangex) and correla-
tion (c) corrections to the random phase approximation. For an arbitrary degree of polarization of the electron
gas, we derive the exact analytical expressionsGgi(d, ) in the limit of high frequency or large wave
vectors. The results fo—o are expressed in terms of the two-particle correlation funcmﬁ) atr=0.
[S0163-182607)04628-9

I. INTRODUCTION In the spin-polarized electron gas a static magnetic field
induces an equilibrium imbalance in the number of electrons
In the study of the response functions of an electron gasf opposite spins. As a consequence, the response to a weak

with a positive background, the concept of a local-field cor-electromagnetic perturbation consists of coupled charge and
rection originates in the difference between the effective pospin fluctuations, characterized by appropriate susceptibility
tential experienced by an electron and the mean field valudgunctions: pure electricy.e, pure magnetic(longitudinal
Exchange and correlation effects associated with the Cowand transversal x,,m, and coupled magnetic-electrigqm
lomb repulsion, which determine a decrease in the number aind x,.. The investigation of these functions has been done
particles surrounding a given electron are responsible for thigist recently? In this case, the exchange-correlation interac-
deviation. The exchange-correlation hole modifies the intertions are functions of the initial direction of the electron spin
action between a probe electron and the rest of the electraand the local-field corrections depend parametrically on the
gas, leading to a potential variation. A self-consistent apdegree of polarization of the system.
proximation first proposed by Kukkonen and Overhatiser Because of the difficulty involved in approximating

can be generalized %o many-body interactions, limited knowledge has been gained
about the exact expressions of the local-field corrections. For
AD (d,0)=v(6)[1-G,(§,0)]AN(q, ) an unpolarized electron gas, it has been established from the
. e compressibility relation that at smafi, G, (§,») varies
—G (G,w)v(q)o-As(q,w), (1) quadraticall” Using the equation-of-motion method,

Niklassor? and Zhou and Overhau$etderived the limits for

wherev () =e?/47q? is the Fourier transform of the Cou-
large wave vectors:

lomb interaction. Equatiofil) defines the local-field correc-
tlons.as the Cogpllng func.t|0ns ofaan electronﬁwalth spito lim G*(G,w)=2[1—g(0)], )
density and spin fluctuation&n(g,w) and As(§,w), re- q—
spectively. The spin-symmetric character &h indicates . . .
that G} is the sum of the parallel and antiparallel spin ef- Jim G~ (d,w)=35[49(0)—1]. ®
fects, whereas the spin-antisymmetry 88 imposes that Hereg(0) is the two-particle correlation function at the ori-
G, is the difference. If we introducg;, for the exchange, gin. In this paper we obtain the equivalent asymptotes for the
G¢ , for the same-spin correlation, aﬁi:(f;for opposite-spin  local-field corrections in a spin-polarized electron gas.
correlation, we can write
Il. MANY-BODY CORRECTIONS IN THE EFFECTIVE
Gy (G,0)=Gi(§,0)+GS,(4,0)+G (d,0), (2 FIELD APPROXIMATION

. < = c = c . An electron gas—N electrons with a uniform positive
G, (0,0)=G,(q,0) +G,,(G,0) =G tG,w). (3  packground, confined in the volume—is spin polarized by
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The first order perturbation theory shows that the induced

a static magnetic field3=B?%, such that in equilibrium there I ) ) !
fluctuations are linearly related to the effective potentials by

areN, electrons with spins parallel to the field, aNg elec-
trons with spins of opposite orientation. Any degree of po-

larization of the system;=(N;—N,)/N, can be obtained by An,(§,0)=11,,P (g, w), 11
adjusting the value oB. The external perturbation consists s N =

of an electric potential,¢(f,t), and a magnetic field, An.(9.0)=1;,®.(qv), (12
B(F,t), whose direction is specified by the unit vector An_(G,0)=T1,®_(§,0). (13

0= (sinfbcosp,sindsing,cos). Assuming a sinusoidal time ) )
and position dependence of the fields, based on(BEg.a  We elect to include all the many-body effects in the local-
self-consistent approximation for the Fourier component ofield correctionsG,(q,») and, consequently, write the co-

the effective one-particle perturbing Hamiltonian is efficient of proportionalityI1,,,, as the noninteracting elec-
tron response function:

H, (G, 0)=yb(G,»)-5—ed(qd,w)

1 NE—gr2,0’ — Nkt d/2,0
+o(@[(1-G))An(G,0)—G, G-As(G,w)],

HUU’(qaw):_z ’

VoK ho— (€4 g2,0— €k-gi2,0"

(14

6) wheree; ,=#%2k?/2m— ysgn(o) B is the equilibrium energy
where y is the effective Bohr magneton. The exchange-in the static magnetic field for an electron with statistical
correlation effects are considered through the local-field facdistribution ng ,,, momentum?%k, and spin projectiono
tors, G and G, , defined by Eqgs(2)—(3). & is the usual along thez axis.[An alternate definition ofl,,, which in-
Pauli operator for the electron spin. In E) we have ne- cludes many-body corrections to the one electron energies is
glected the magnetic spin-spin interaction, much smallediscussed by Sturffi.
than the Coulomb repulsion. Introducing the raising and low- When written for up and down spins, E(1) leads to a
ering spin operatorsy, ando_, respectively, the product system of coupled equations which can be solvedXar
b- & can be written as andAn, in terms of the external perturbation. We express

these results as charge densiyp=—e(An;+An), and
b-G=%b.o_+ib o, +b,a,. (7) Ipng|tud|nal magn.etlzatmrﬁmzlz - y(AnT—Anl), fluctua-
tions. The coefficients of the linear system which relates the
In this form it is easy to see th&t, =b,+ib, causes elec- induced response to the perturbing fields are the susceptibil-
trons to flip spins from up to down, while_=b,—ib, has ity functions. Therefore,
the opposite effect. These processes generate the transverse
(in respect to the direction of initial polarizatipispin re-
sponse. The electric field atd preserve the initial spin state
and induce fluctuations in the number of electrons whose
spin remains parallel to the direction of the static field. As

Ap=XeeP+ Xerbz,

AM= XmeP+ XmmP2 - (15

result of the spin-response anisotropy, the associated loc
is going to be direction dependent:

field correction,G_ ,
G_ , for longitudinal variations an@ . for the transverse
ones.

a_

ecause of the initial spin polarization, the response consists
of coupled charge and spin fluctuations described by

eZ

Xee=py [Ty +10} + 211411 ju(@)(GL 1+ G )L (16)

The effective potential experienced by an electron of spin-

projectiono along thez axis is then, from Eq96) and (7),

D ,(0,0)=yb,(d,0)sg o) —ed(d, w)
+u(@[(1-G,)An(G,w)

—sgna)GL ,As(q,w)], ®)

where sgn§) is equal to 1(or — 1) when the spin is parallel

(or antiparallel to the field.

Two complementary equations are written for the effec-

tive potentials experienced by electrons which flip spin,
¢, (q,0)=yb.(q,0)~v(d)Gr As.(d,w), (9

¢ _(q,0)=yb_(q,0)~v(G)Gr As_(G,w). (10)

ey . _ _
Xem= — B[Hn_Hu+U(Q)HMH¢¢(GL,¢_GL,T)]- (17

ey . + +
Xme= [ =TI} |+ 20(ILIT (G] -G)],  (19)

2
Y -
Xmm=— 5 [y 11 =0 (I I (2-G = G[)].
(19
D is the determinant of the system:
D=3[1-2v(e)IT;;(1-G)][1+2v(I| |G ]
+3[1=20()I | | (1-G)[1+2v(§ 111G 1.

The spin index of the transverse local-field corrections isHere, the wave vector and frequency dependence of the
chosen to correspond to the initial direction of the spin. Obdocal-field corrections was implicitly assumed. The trans-
serve that for an arbitrary degree of polarizatiofi<1, verse magnetic fluctuations are obtained from Ef8) and

G, (O=Gz(-9). (13
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Am,=—yAn,=xnb- . t
H0: Z ER),O'alZ’U-aIZ,O'
k

Am_=—yAn_=x.b-, (20
1
along with the corresponding susceptibilities: +52q v(q)EE kz aEfq.,zygaqu.,zyg,
) ) e
Xiho=— 2y, —, (21) Xag—g2,0' A+ Gi2,0 - (27)
) Substituting Eqgs.(25 and (26) into (24), the interaction
o 2711 4 22 Hamiltonian becomes
" 1+420(N G,
. . . N -'- =
These results hav_e been_ d_e_rlved by Yi and Qtiamd can Hq(t)= 72 b (— q’t)aﬁfq/zﬁakwm
be used as alternative definitions for the many-body local- G,k

field corrections,G,, , longitudinal or transverse. A correct ot )
wave-vector and frequency dependence of the susceptibility er*(_q’t)al?—c1/2,1a'<+ﬁ’2~T
functions can be obtained only when the right behavior of

the many-body corrections is known. +> [b(—4q,t)sgn o)

lll. MICROSCOPIC DERIVATION OF THE MANY-BODY o
CORRECTIONS —ed(—a.b)]ag_ g, Bk+ar.o| - (28

We proceed by extending the equation-of-motion method,

first proposed by_NikIasso_'ﬁ,to the physical system de- Tne first two terms describe electronic spin-flip processes
scribed in the previous section. The unperturbed Hamiltoniagyiven by the transverse components of the magnetic field,

of the systemHy, is b, andb_, while the third one gives the coupled density
and spin fluctuations of the electrons whose initial spin state
HO:Z GR,UCE,UCE,a remains unchanged under the perturbation.
k,o
1 t t A. The longitudinal response
+2_,,Z v(Q)Z 2 Ck—gr2,6Ck + 12,07 . . X N i
q ko k' o' The electric potential and tHecomponent of the perturb-
X Ci_qi2.00 Cits qi2.0 23 N9 magnetic field induce fluctuations in the number of elec-

trons of a given spin without changing their spin state. The
with eg ,= 2/2m— yBsgn(o), the energy of an electron dynamical deviations from equilibrium are described by a

with spin o in the static magnetic field. Operatomég and  Wigner distribution function:

Ci , Create and annihilate an electron of momentiknand

spin projections along an arbitrary axis'uIn particular, we D6 ty=(al ac. « (t 29
choosell to be along the perturbing magnetic field, such that Ko D= gz, (Vg2 (V), @9
the electronic spinors are eigenfunctionssob. In this rep- . o

resentation, the Hamiltonian of the perturbation is just such that the induced electron density is

H1<t>=2q > [yb(—G,)sgrio)
k,o

An,(G.0)=2 A (G.1). (30)
k

—ed(—a0IC, gp,Cirane (29

1) : .

The orthogonal transformation to creation or annihilation opAf(gt), is the perturbation produced by the external field

erators for electrons with spins projected along zheis is Af(ﬁi;(d,t)zf(lzl;(q,t)— 80Mk.s- The time-dependent be-

realized by havior of the Wigner distribution is determined by the equa-
tion of motion:

P e
c,;'T:a,;,TcosZ+am3|n§e'¢, (25)
R,
0 0 |ﬁE<a|2_q/2,o.(t)alz+ﬁ/2,(r(t)>
G, = &k, Sin; —ag, cos; €'7. (26)

+
i o . ) :<[ag_q/zvo(t)a|2+q/2,(r(t)aHo+ Hy(H)]). (31
Since the kinetic energy and the Coulomb interaction terms

do not depend on the axis on which the spin is projected, we

can immediately write, in terms of th&'s operators, Taking the Fourier transform one obtains



[ho— (€ 2.0~ k- gra.0) JA T o(G, )

1
= ;(nE—q/z,o_ Nk+g/2,0)1 Y00, 0)sgn(o)

—e¢(d,0)+u(q)[An(d,w)+An (G,)]}

1 N’ 2 S_ &1/
+;§ v(g )PE/ (AT 4 i o (=G0 51)
2 ~ SN!' ;'
~ A i o (G076 1D)], (32
where
A (@75
1 1
<a§7q/2,o.(t)a|2/ qr/zygr(t)alzurq//2,0'(t)alz+q/2,(r>
1 1
_<a127q/z'o(t)alz+q/2,a(t)><a|z/711f/gyg'(t)alz’-%—q’/Z,o’)
—5q+q',of&?3;g,’a,(q) (33

is the perturbed part of the two-particle distribution function.
At equilibrium, this function is

(2) N T T N R
fgyg;gr ,Ur(Q) =(0| A G12,0%%" + Gi2,0 Ak + /2,07 Akc+ d2,010)
t -
—(Olag_ g B+ d12,010)

t
X<O|a|2_¢j/2’(,ralz’+€|/2,zr’|0>' (34)

Therefore, the induced density fluctuations for electrons of a

given spino can be obtained from Eq§30) and (32):

Anu(a!w) = HU’U’[ - e¢(q!w) + 'ysgr(a')bz(q,w)

1
+o(@(An+An)]+ = v()
q!

1

2

IZ,O' |Z,,0" how— (6I2+ Gl2,0 Elz—d/Z,o')
@ e
XA g 2oricr o (6,0 @)

A i o (0.8 )] (39

Again, I1 ., is the polarization function for spior electrons
in the absence of the interaction, defined by Bdl). Since

the fluctuation of the electron density for a given spin de-
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ﬁZEq’ h2E~ﬁ’ 2 o
ho— m — m AfE’U;R,ol(q,q 'w)
1
_ (2) -,
= qraneir,e(—a")
(2) -,
a0 (707
X¥ (g+qG’ +1 f(_z) o a
O'(q q ,(,L)) ;[ k/i(q+q/)/21(’_,;k’”( q)
2 ol N =
_ffzr)+(q+q/)/2,g,;QVU(—Q)]‘PU,(q+q ,®)
SFR (060 P (00 )
+EE?,)fT/;|Z,(r(q”’q);w)' (36)

V¥ is the external perturbing field experienced by an elec-
tron. For a spinor projected along the& axis,
V,=—e¢p+ yb,sgn(o).

In this expression, the first two terms on the right-hand
side originate in the interaction of one electron with the ex-
ternal field, in the presence of another electron. We have

followed Niklassof and usedF ) , to describe the mu-

k,lr;lz’,(r

tual interaction between the two electrons in the presence of

all the other members of the gaggni;lz,’g,(ﬁ,(j’;w) and
EET‘)U,_,;U(q,q';w) represent the interaction of one electron

with the rest of the particles, in the presence of the other
electron. Three-particle correlations are involved in all these
terms.

B. The transverse response

Under the influence of the transverse components of the
magnetic perturbationp.(G,»), some of the electrons
change their initial spin staté, (q§,») determines transi-
tions from up to down, whildo_(q,w) has an opposite ef-
fect. The appropriate Wigner distribution to describe the in-
duced magnetization can be derived from the following
considerations. The particle number operator for electrons

with spin projectiono alongthe% axisis

37

where the operatom’é’lf and its conjugate are given by Eq.

(26) particularized for thes axis (6=90°,¢=0°). After the
substitutions are performed, one can write immediately

R +
”E,o(q*t) = CE—q/z,u(t)CE+ 2.0t

7 (@0 =7 (G0 =a_ g, (Dag: g, (1)

+a_ g (D3 g1, (38)

pends self-consistently on the induced densities of electrongng analogously for thg axis (§=90°,¢=90°),
of both spins, the dielectric and magnetic responses are

coupled.
Equation(35) does not give a straightforward solution for

An, since the behavior ofAf(IEZ()r_l;,U,(ci,d’,w) is not

known. The two-particle fluctuations are determined by the

commutator of two-body distribution function with the
Hamiltonian. They satisfy the following equation:

T (G0 =7t (GD=1[3_ g, (Dag,qz, (1)

_ag,q/z,l(t)ahq/z,ﬂt)]- (39

It is convenient to form the linear combinationd,»™
=Ant*iAgy,
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A77+(§,t):ZaE_q/g,l(t)ahd/z,T(t)a (400 The co-rrespondipg Fourier components of thg transverse
magnetic fluctuations can be obtained by summing &ver
A (G1)=2a%_g, (Dag, gz, (D). (41)
+(5 — g
Clearly, the relevant time-dependent Wigner distributions Am™(G,) 72|2 At (Q,o), (43)
for the spin-flip processes induced by andb_, respec-
tively, are
. . Am™(§,0)=—y>, Af:(G,0). (44)
fe (@D =2(a)_g (Dagi gz (), K
- " i Following the method outlined in the previous section, we
fe =2(ag_gr1 (DA g2, (1)) (42)  derive the time variation cAm™ (§,w):

1

- - 2y -,
Am*(§,w)=—2911; b, (.0)— —2 v(G)> . - -
vy K Ko ho— (€ g2~ €&-g2,)

T T . .
X [<a[2_q/2'l(w)a|zr _Q!/Z‘o.r(w)ak'+G’/2,o—’(w)ak+q’ 721/2,T(w)>

T T
- <a|27qf +q/21(w)agr,qr,z_gr(w)aﬁ/+q'/2,<r'(w)a|2+q/2,T(w))]- (45

The four-operator averages included in Ep) describe electrons interacting through the Coulomb interaction, while at the
same time one of them changes its spin state. They are simply the two-particle fluctuations considered for electron spinors
projectedalong the"xand ¥ axis Employing the set of transformations given by E(b) and (26), one can show that

T T - R
Z <a12_q/2’l( w)aﬁ/ _q//zvu./(w)ak’ +q’l2,g’(w)ak+q/2,T(w)>
(o8

_ xt xt X X
- z/ [Sgr(O')<CE7q/210_(G))CIZ,7(_].,/210_,((0)C|2,+q,/2'a_,(w)clz+q/210_(a))>
o0

. yt yt y y
! Sgr(‘fxck—q/z,a(“’)ck' —gri2,00 (@)Cg +q'/2,g'(“’)ck+q/2,a(“’)>]

1 R _ .
=52 {[sgMo)AR) (6.6 0)]—i[sgrM o)A o (6. w)],). (46)

[Af(ﬁzf)r-ﬁf U,(ﬁ,ﬁ’;w)]x (or [Af(ﬁzf),-ﬁf U,(q,d';w)]y) is the perturbation of the distribution function of two particles whose spins
are projected along, (or §) direction, respectively.

An identical analysis can be performed fhm™ (¢, ), with the result

1

oo R 2y -,
Am™(§,w)=—2IT;yb_(G,0)— —2 v(d) X - -
Vg kk'.o' hw—(€ktgr, — €k—gr,r)

t t . R
X [<a12_q/2vT(w)a|2/ _qr/zY,,/(w)ak’ +q'/2,g'(w)ak7q' +q/2,1(w)>

T T . .
- <a|2+ G’ —q/Z,T(w)alz’ _qr/z‘gr(w)ak’ +d’/2,0’(w)ak+q/2,l( C!)))], (47)

where from(25) and(26)

T T . .
2 <a12_ q/zvl( w)aﬁr _qr/zvo.r(w)ak’ +d’/2,a-’(w)ak+(jI2,T(w)>
g

1 ] . -
=52 {[A ) (6.0 0)sgo) L HIARD ) (6,6'0)5gM(0)],). (48)
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The frequency dependence of the pair distribution functions for transverse spin states is determined by equations of motion
analogous to Eq.36). In these casedl’ ,=sgn(o)b- . The corresponding equations for the four-operator averages are finally

L. & 200 2
ﬁw—ﬁ kq_#k-q > (al _, a AR g0 Ak gt
m m | (B e rqrze A -arze A a

= —Z [0 e vz or(— 0 = T e gz or(— 01704 (G40, 0)

E [ sz ol ~ O~ Tk s/ 2.00 k0~ DISIN)SATT) YD (G4 @)

+ 2 [Fo o (G0 @) +Fi e (6,650 +FE ¢ (6.0)]. (49
Also,
h2|2. = hZ r.q’ + "
ho— m_  m 2 (B 218 4 712,00 AR — ' 12,0 Bk +12,1)

_ ) S (2 -, o
T2y E [fE—<q+q’)/z,a;|Z',a/( a )_fk+(ﬁ+d’)/20k’ (=a)]yp(d+0"0)
1 (2) = (2 ~ , I
o 2 [ qrazeio D1 g gz o~ @)1SGH @IS0 ) YD (G+ 1 w)
+Zt LA FF (GG 0)++F e (6.70)]. (50)

As before, the first terms on the right-hand side of the above equations describe the interaction between an electron and the
external field in the presence of the other electi@ma result of the external field one electron flips spin, while the “spectator”

does not Since the equilibrium values of the two-particle distribution functions do not depend on the particular axis of the
spin projection, we have employed the following equality:

[T 5 o (D k= Fonir (4D, (51)

Where_f()r o (6,4 ;w) represents the mutual interaction between the two electrons in the presence of the rest of the electron

gas. Fk ko (4,4 w) andF(" Kok, ,(0,4";w) are a consequence of the many-body effects and correspond to the interaction

between one electron and the rest of the gas in the presence of the other electron. These terms contain the perturbed parts o
the three-particle distribution functions.

IV. THE LIMIT OF LARGE (j OR w

The iterative procedure involved by the equation-of-motion method can be continued indefinitely: the time evolution of the
n-body distribution function is dependent not only on the external fields, but also omthé&)¢particle correlations. This
chain can be terminated in the limit of large wave vectors or high frequency, when the Coulomb interaction between electrons
becomes negligible with respect to the external perturbations. We consider that the outside electromagnetic field is strong
enough, so only two-particle correlations are significant. Consequently, we neglect all the terms derfotggiby: in Egs.
(36), (49), and(50). Furthermore, we assume thiab and#2g/2m are much larger than the Zeeman splitting in the static
magnetic field,yB. With these assumptions, the simplified equations for the two-particle distribution functions are substituted
in Egs.(35), (43), and(44). Keeping the leading terms ifww and%2g?/2m, we obtain

Ana'z H(ro’[ 7bz(q1w)sgr(0) - e¢(qvw) +U(q))(AnT + Anl)] + yrlabz(qvw) - eFZU¢(q!w)' (52)

I'y, andI’,, represent the exchange and correlation contribution to the response, obtained from the equation of motion of the
two-particle distribution function:
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1 #29%/m 2 q’
T10y= 5720(Q) (ﬁw)Z—(thqZIZm)z} |qE “(q"")< : ) v(q )E k,E, [1+sgrioo)sgna)lf) ¢, . (G)
_[q'(qﬁ D) S S coronsario)+sarton]iZ o (@), 53
q v(d) Ko k.o

1 -
L25,==520(0) 2

#2g2/m 2 v(q’) 2 ./
(ﬁw)z_(hzqz,Zm)z} [qE a(d,o >( 7 ) U(q)%k,Eg [1+sgn(oo)sgn o)1) ¢ . (G')

G- (G+ G +q
—[q GOP@ g S 11 sgropsgnoi@ @), (5
a v(G) ko Ko
with
- hw+ﬁ2q2/2m 2 [ho—h%g%2m\? 5
@(G:0)= 3| | 5o nZqzzm) | Feth2g@zm (59

In an analogous way, in the limit of large wave vectors or high frequencies, the transverse magnetic fluctuations are found to
be

Am. =211, b, (G,0) +29b.(4,0)T+(G,0), (56)

Am_=211,;yb_(q,)+2yb_(G,0)I'1(q,w), (57)

wherel'+(§,w) is expressed by

. 1 A2q?/2m 2 _[6-d']Pv(@") R
FT(quw):_ﬁv(q)[(ﬁw)Z_(ﬁqu/Zm)Z} Z] [a(in) Y l;(q,) ; o f(lZZ) K’ (r’(q,)
q o o
g-(G+qG’ +
AT 5 5 gorsarta )P (0] (59
a U(Q) Ko Ko

The system of equations obtained from E®5) written for up and down spins, gives the charge and longitudinal spin
responses. The corresponding susceptibilities functions are

., +1I1I, +I'++T
Xed G w)=2———t 12 (59)
) H —I0,,+Ty—T,
Xen(G,0) = —ey——+ 2121 (60)

l U(q)(HTT+Hu)

n.,—I1I, +0'y,—T
Xmed G, 0)=ey—— 2L (61)

S 10 —4IL I + T [ 12100 (G) ]+ g [1- 21T ju ()]

Xmm( G, @)= — - (62)
m 1—v(q) (I, +11,))
The transverse susceptibilities are derived fi@® and (57):
Xr;m:_Z?’Z(Hu"'FT), (63
X,;m=—2y2(l_[“+I‘T). (64

The response functions have been previously obtained in(Efs-(22) using the local-field approximation. Thus, by com-
parison, we can derive the exact expressions of the many-body corrections fog lardeégh frequency.
In the same limit, the polarization functions of the free electrons,(E4), become
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I, ,,=[1+sgroo) {11, (65

) p—

0'0,0'0

h
1—sgr(ao>§6—“’}no, (66)
q

with eq=ﬁ2q2/2m. I1, is the asymptotic value of the same spin free-electron response functiga-€or

N #29%/2m
20 (he)2— (h2qP2m)?" (67)

Hoz

With this substitution, the microscopic expression for the transverse local-field correcigns,is obtained from Egs.
(21), (58), and(63):

- e 1 - q-q’ zv(q/) (2) .,
C1.(00) = P Zrureg?> {a(q’“’)<_qz_) @ 2 2 ek (@)
q-(d+d)

2v(G+d")
qz s

v(d) Ko K.o

sgro)sgric ) F2 g (G} (68)

The complementary resulgy |, is a consequence of the symmetry relatiGg,  ({) =G+ ;(—¢), satisfied for any degree of
polarization,|{|<1.

The comparison of the systems of equatidi§)—(19), and(59)—(62), leads, after long but simple mathematical manipu-
lations, to the expressions of the local-field corrections associated with density and longitudinal spin fluctuations. Therefore,
for an electron of spin projection,

1_ s .67\ 2 1
Gy %2 |a<q,w>(¥) M) S rsgitoe) +sarto)isaro)— ., . (d)

q' U(q) k,o k',o’
—’. _’+ ~/ 2 _)_’_ ~/!
—[q (@IS S [sarioe +sgrio)lisare) — 012 . @)}, (69
q U(Q) k,o k' o' e
. [1+Csgrog)] G4\ 2u(@) )
G%:Nz(l—_gg’;% |a(q,w)( 7 ) 1@% kE [1+sgn(o)sgn(oo)[1-¢sgr(o)sgnoo)1f )., (G")
5. ->+ =r1\12 ->+ =1
—[q (@ d) 23S S 114 sgrio)sgrioo - sario) T2 . (@)'. (70
q U(CI) k,o k', o' e

As before,Gf’T(g)sz, (= ). These expressions are exact The asymptotic expressions of the many-body corrections
in the large wave-vector or high frequency limit. It is re- in the limit §—o are obtained by making use of the follow-
markable that the frequency and wave-vector dependence ofg mathematical identity:
the longitudinal and transverse local-field corrections are dif-
ferent as a result of the initial polarization of the system. For 1 g-g igrr 1
fiw=€4/¢, the many-body effect for the transverse response ;2 7?q'2)¢ =34 (72
is divergent, leading to a negligible susceptibility. Thus, the 4
magnitude _o_f the response can b_e c_ontrolled, by_ varglng When Eq.(71) is introduced in Eqs(68), (69), and (70),
The equilibrium two-particle distribution function is re- ging the above mathematical identity, the long-wave limits

lated to the pair-correlation function through of the local-field factors are expressed in termggf.(0):
2 - —ig-7| > lim G (g ——1 2+3 2+4 0
2 2t o (@=N,N,, | dfe”¥2g,,.(")-1]. qIm i (q,w)—3(1+§)[( {)—(2+48)g;,(0)],
k k/ — 00
(71) (73

The pair-correlation functiong,,./ () represents the prob- lim G=.(d :E 2(1— 72 0)+ 0)1+372—1
ability of finding an electron of spie’ at a distance from qulo 11(6:0)=3{2(1= 9191, (0) +9,,(0)]+3¢7~ 11,
a particular electron of spinr located at the origin. (74
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APPENDIX: THE TWO-PARTICLE CORRELATION

1
lim G (6, 0)= m[(2£+4)g”(0)_ 1]. (75 FUNCTION AT THE ORIGIN
G—er

The two-particle correlation functiory,,(r) is defined
Of course, by the virtue of the exclusion principle, s the probability of finding an electron of spirf at a dis-
9:1(0)=g,,(0)=0. The §—c limit maintains the anisot- tancer from the electron of spinr located at the origin,
ropy of the local-field corrections associated with the spin”=0. For fermions, the value of this function &t=0 is
response. Whei=0, the anisotropy disappears and we re-determined by the particles of opposite spin to the one cho-
cover the results obtained by NiklasSoand zZhu and sen as areference, in agreement with the Pauli principle. In a

Overhausérfor G* andG ™, respectively: spin-polarized electron gas, the number of up and down
spins are different. Consequently, the valueg gf,(0) are
different when the reference spin is up or down. The corre-

i ; +_2
!'LT‘O;'ELG =35l1-9(0)], (76) sponding pair correlation values age,(0) andg,(0), re-
spectively.
To obtaing,z(0) for an electron of a given spia in a
lim lim G~ =3[4g(0)—1]. (77 spin-polarized electron gas we follow a simple calculation
{—0G—w proposed by Overhausér pair of electrons with opposite

spins forms a singlet state whose wave function is
The values of the pair-correlation functions at the origin,

g;,(0) andg ;(0), have to be calculated self-consistently. 1
Following a simple model proposed by Zhu and V() =®(F)—=(|T)1]1)2—=11)1]T)2), (Al)
Overhausef,we derive in the Appendix their expressions as V2

functions of the degree of polarizatiofj, and obtain[Eq. . ) ) )
(A11)] where®(F) is the spatial wave function, whilg) and||)

are the spin eigenfunctionsis the coordinate of the relative
motion. Since the interaction between electrons is spherically

_ 321 {sgro)] symmetric,®(F)~R(r). The Schrdinger equation satisfied

ol 0)= — = 78 : . )

g ) (8+3ry) (78 by the radial wave functiork(r), is

wherer, measures in Bohr radii the distance between two #%2(d’R 2 dR

electrons. Tl arZ +F ar +V(r)R=ER. (A2)

V(r) is the effective potential, andh is the mass of the
electron.E is considered to be equal to two free-electron
Local-field correctionsG ™ (G, w), were introduced as ap- energiesfE=7%2k?/m, with k the momentum of the relative
proximations for the many-body interactions in the self-motion. In the absence of the interaction, the solution is

consistent, one-particle Hamiltonian, Eq6). In the

equation-of-motion method, the time variation of the particle 2

density at large wave vectors or high frequency leads to an R(r)= Wsinkr. (A3)
analytic expression faB~ (g, ). This result is exact since it

IS a consequence of an _external constramt_and do‘?s not The probability that both electrons are localizedr at0 is
quire additional assumptions about the multiple-particle cor-

2_ ;
relations. The asymptotic values can be used as physical Iirr;[t1en |R(0)|*=2. Assume now that the spin of one electron

its for any extrapolation of the correction factors at arbitrary![';éhgpﬁ)r?lrelizzﬁﬁfrﬂzgﬁ Tgelgel?:r:}r?gérri;?énhﬂé|§}2an6 of
g ando. . . . encountering an electron of sbin stateis [1—,sgn(o)g]/2
Th_ese results should be tested in experiments. A Spln]"hus, the particle density at the same position with the elec-
polarized electron gas can be created by a static magner:t(rzon of spine is reduced to
field applied to a dilute magnetic superconductor quantu pina

well embedded in a modulation-doped nonmagnetic host. In
this system, a weak electromagnetic field can induce coupled
spin and charge fluctuations, the resonances of the response

being associated with intra- and inter-subband excitations.
The analysis of the infrared absorption spectrum should al- \when the Coulomb interaction is considered, because of
low then a comparison with theoretical determinations. the repulsion, the density around a particular electron de-
creases. To calculate this decrement, an expression for the
screened Coulomb repulsiok(r), is needed. In the Over-
hauser modelY(r) is approximated with the potential of a
The authors have benefited from numerous useful discusphere uniformly filled with screening charge densiout-
sions with Professor A. W. Overhauser. This work has beeside the sphere the screening is 2efbhe total screening
supported by DOE and Lockheed Martin Energy Researcleharge inside the sphere és while the radiusa is just the
Corporation. separation between two electrons. In this approximation,

V. CONCLUSIONS

1_
9,of0)= T (A2
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+1r2 3 rsa
2@ 2) T

0, r=a,

e2
r

=l o

V(r)= (A5)

wherea= (3/4mn)?3.

With this choice of potential, we solve the ScHimger
equation. The change of variablg(r)=R(r)/r, leads to

h?[ d?

dr?
The solution,u(r), and its derivativedu/dr, have to be
continuous on both sides of=a. We introduce the dimen-
sionless variables: s=r/a, q=ka, rg=alag, with
ag=7%2/mé the Bohr radius, and write fs<1,

+V(r)u=Eu. (A6)

m

d?u . l+ , 3
ds s %72
Outside the sphere, in the absence of any potentigd)
satisfies u”+q?u=0. An exact solution fors=1 is

u(s)=sin(@s—¢) (¢ is a phase shift The amplitude and
slope of the solutiom(s) have to be the same fe=1. The

R u=0. (A7)

dominant behavior ofi is in the vicinity of the origin, at
s=0. Then we can approximatewith u(s)= Bs, wherep

is the slope at the origin. Hence, from E@7), we obtain
immediately

st 3,
u'(s)=pgrg S+§_ZS )+,8. (A8)
The slope ofu(s) ats=1 is then
u'(1)=B[1+3rsl, (A9)

which has to be equal to the slope obtained 31,
u’(s)=1. Thus,

1
1+3rg

(A10)

The reduction in the pair-correlation function at the origin
caused by the Coulomb repulsion is then

_ 31-sgn(o){]

g(rE(O)_ (8+3rs)2 (All)
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