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The Multigraph Modeling Tool�

C�A� Childers� A� W� Apon� W� H� Hoopery� K� D� Gordon� L� W� Dowdy
Department of Computer Science yDepartment of Mathematics�Computer Science

Vanderbilt University Belmont University
Nashville� TN ����� Nashville� TN ���	�

Abstract

The Multigraph Modeling Tool �MMT� has been
developed as a performance prediction tool for paral�
lel applications executing on multicomputer systems�
MMT is a program generator that accepts as input a
system description �i�e�� a parallel application and the
hardware on which it executes� and from this descrip�
tion automatically generates an analytic model which
can be used to predict the performance of the system�
The solution of the analytic model results in standard
performance metrics such as processor utilization and
application response time� A change in a parameter of
the system description results in MMT automatically
generating a new analytic model� The di�erent sets
of metrics produced for a system by varying descrip�
tion parameters can be used by engineers to determine
those parameters which result in the best performance�
MMT has been applied to a network of RS�			 work�
stations and to an Intel Paragon�
�� Introduction

With the wide availability of high
powered com�
puting resources� it is often the case that several hard�
ware platforms are available to execute any given par�
allel application� Such platforms range from loosely

connected heterogeneous workstations connected via
an Ethernet to more tightly coupled homogeneous pro�
cessors connected via a mesh topology� Besides a vari�
ety of available hardware platforms� the software con�
�guration� such as the assignment of processes to pro�
cessors� can a�ect the performance of an application�
With these wide ranges of hardware platforms and
software con�gurations� it is not feasible to execute
a parallel application under all possible scenarios for
the purpose of determining which one results in the
best performance for that application� Given that the
performance of a parallel application can vary dramat�
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���OR
��		�

ically depending on the communication and compu�
tation patterns of the application and the hardware
on which it executes� it is important to determine
the hardware platform and software con�guration that
maximizes performance� The Multigraph Modeling
Tool �MMT� has been developed for this purpose�

MMT accepts as input a high level description of
a parallel application �i�e�� the hardware platform and
software con�guration� via the Multigraph High�level
Description Language �HDL� �
�� From this descrip�
tion MMT generates an analytic model in the form of
a Generalized Stochastic Petri Net �GSPN���� which is
solved for various performance metrics� Any change in
the HDL of an application automatically results in the
generation and solution of a new GSPN model which
produces updated performance metrics�

The remainder of the paper is organized as follows�
Section � gives an example of the use of MMT� Section
� describes MMT�s automatic generation of the GSPN
model� Section � validates several models with two
actual parallel applications on two di�erent hardware
platforms� Section � is the summary and conclusions�

�� Example

The purpose of MMT is to take as inputs 
� a de�
scription of an application in the form of a data �ow
graph� �� a description of the intended hardware on
which the application executes� and �� the mapping
between the two� and produce as outputs performance
metrics for the particular system� As an example� con�
sider the task graph and intended hardware platform
�a processor mesh� shown in Figure 
� The task graph
is a simple fork
join application shown in Figure 
�a��
The data �ow graph shown in Figure 
�b� consists of
actor nodes Ai that are equivalent to the application�s
tasks in a task graph and data nodes Di that serve
as bu�ers of data written �read� by the tasks �actor
nodes�� For example� data node D� is written by ac�
tor node A� and read by actor nodes A� and A�� In
addition to the data �ow graph� the application de�
scription includes the mean actor execution time� ti�
and the amount of data written to and read from each



data node� In this example� assume that actor node
A� takes � time units to complete� A� takes � time
units to complete� and actor nodes A� and A� require

 time unit each �t� � �� t� � �� t� � t� � 
�� Also
assume that A� writes �	 data units to D�� A� and A�

each read �write� 
	 data units from D� �to D� and
D��� and A� reads 
	 data units each from data nodes
D� and D��

The hardware description �shown in Figure 
�c��
includes the link connections between processors� the
scheduling policy at each processor� and the speed of
the links� In this example� each processor employs a
FCFS scheduling policy and all links transfer data at
a rate of 
 data unit per unit time�

The software con�guration �i�e�� the mapping be�
tween the application and hardware descriptions� pro�
vides the processor assignments of the actor and data
nodes� Also included in the software con�guration is
the assignment of communications between actor and
data nodes to sets of physical links� For example� let
the notation linkx�y represent the link between pro�
cessor x and processor y� If actor node A� is assigned
to processor 
 and data node D� to processor �� then
the set of physical links assigned to the communica�
tion between the two might be �link���� link����� In
this example� assume the following processor assign�
ments� 
� A� and D� are assigned to processor 
� ��
A� and D� are assigned to processor �� �� A� and D�

are assigned to processor �� and �� A� is assigned to
processor �� Communications between actor and data
nodes residing on the same processor do not require
the use of physical links and� therefore� are assumed
to take negligible time� Speci�c parameters of this
example are summarized in Figure ��

When the above scenario is input to MMT� MMT
generates a C program� The C program represents a
GSPN model of the system� This model is solved by
a GSPN solver� the Stochastic Petri Net Package���
�SPNP�� via the execution of the C program� and per�
formance metrics are generated as output� The com�
plete GSPN model in shown in Figure �� It is com�
posed of a Petri net compound �i�e�� a collection of
places and transitions� for every element of the system
description each of which is distinguished by dashed
lines in the �gure� Several performance metrics pro�
duced by MMT for this example are shown in Table 
�
The response times of actor nodes A�� A�� and A�

are equal to their respective service demands� The re�
sponse time of actor node A� is higher than its service
demand since it is required to wait on data from both
actor nodes A� and A� before it may begin execution�
Given the high link utilizations and queue lengths� it

Application data flow graph

Task graph Processor mesh(a)
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(c)
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Figure 1: Example application task graph, data flow graph, and
hardware platform
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Figure 2: Pictorial representation of the example hardware
and software configuration

is evident that communication is the bottleneck for
this application on the speci�ed hardware platform
and software con�guration� From this information�
one might� 
� choose another software con�guration
�i�e�� a di�erent process to processor assignment to re�
duce link contention�� �� execute the parallel appli�
cation on more processors in order to reduce the size
of each communication� �� execute the application on
fewer processors to take advantage of excess processor
capacity and reduce total interprocessor communica�
tion� or �� speed up the interprocessor communica�
tion by changing the communication protocol or link
speeds�

�� MMT�s GSPN Model

��� MMT Inputs

The Multigraph HDL is used to describe the sys�
tem inputs to MMT and consists of a hardware de�

A� A�� A� A�

Response time ����� ����� ���	
�

Processor � Processors �� � Processor �
Utilization ����� ����� �����

link��� link��� link���
Utilization ����� ����� �����

Queue length ����� ����
 ����


Table 
� Example MMT performance metrics



scription� an application description� and a software
con�guration� The hardware description consists of�

� a list of all processors and their queueing disciplines
�e�g�� FCFS� PS�� �� a list of all communication links�
their capacities� and their type �e�g�� Ethernet� store

and
forward� virtual circuit�� and �� the topology of
the hardware platform �i�e�� which links connect which
processors�� The application description is in the form
of a data �ow graph and consists of� 
� a list of all actor
nodes and their service time distributions �i�e�� their
mean execution times and their execution time vari�
ances�� �� a list of all data nodes and their capacities�
and �� the topology of the actor and data nodes �i�e��
which actor nodes read from �write to� which data
nodes�� The software con�guration speci�es the map�
ping between the hardware and software descriptions
and consists of� 
� the assignment of actor nodes and
data nodes to speci�c processors and �� the assign�
ment of actor�data node communications to speci�c
physical links�

��� MMT Detailed GSPN Model

MMT automatically generates a GSPN model by
using generic Petri net compounds for each element of
the system description� These general Petri net com�
pounds are templates� The templates are �lled in and
joined together with the information speci�ed in a sys�
tem description resulting in a complete GSPN model�
In this section� several MMT Petri net compound tem�
plates are presented�

The Petri net compound template used to model
the processors and links in the hardware description is
made up of one place with input and output arcs� The
origin �destination� of the input �output� arcs is deter�
mined by the parameters input to the software con�gu�
ration� For example� the Petri net compound template
for a FCFS processor is shown in Figure �� The input
and output arcs for a given processor connect to actor
node compounds for all actor nodes which execute on
that processor� The token in the processor place rep�
resents an idle FCFS processor� The token �ows from
this place to an actor node compound when that ac�
tor node is currently executing on the processor� Thus�
when the token is not present� the processor is being
utilized by an actor node� and no other actor node
may execute on the processor �i�e�� none may capture
the token�� When an actor node completes execution�
it returns the processor token via the input arcs from
the actor node compound to the processor place�

In Figure �� the Petri net compound template for
an actor node is shown� The input arcs to places
readyi represent input from the supplying data nodes�
These arcs are determined by the connections from
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Figure 3: The complete GSPN model for the example
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compounds read from
from data node

to data node 
compounds written to

begin

running

execute

done

end

to processor
compound

from processor
compound

ready ready m1

Figure 5: Actor node compound template

(e.g., Figure 4)

(e.g., Figure 4)

data to actor node speci�ed in the application de�
scription� When all of the readyi places contain a
token� the actor is ready to begin execution� If a to�
ken is available in the place representing the processor
on which this actor node is executing �e�g�� Figure �
template�� the transition begin �res� placing a token
in the place running� If the processor token is not
available� another actor is currently utilizing the pro�
cessor and this actor node is blocked� With a token
in place running� the timed transition execute �res
according to the speci�ed service time distribution�
When the execute transition �res� it places a token
in place done� This token causes the transition end to
�re which places a token in all data node compounds
to which this actor node writes data� The �ring of
the end transition also places a token in the processor
place on which this actor node is executing thereby
freeing the processor�

A virtual circuit Petri net compound template is
shown in Figure �� A communication between an ac�
tor node and a data node �or vice versa� utilizing a
virtual circuit must acquire all of the links in the path
speci�ed in the assignment description before the com�
munication may begin� This is modeled by the input
arcs from all the required links to the transition begin�
A token in the place ready indicates that the source
actor node is ready to send its data to the destina�
tion data node� Once all of the links are available�
the begin immediate transition �res placing a token
in the running place� The time spent waiting for the
links models the virtual circuit set up time� A token
in the running place enables the execute timed tran�
sition� This transition �res at a rate that is a function
of the physical link capacity �speci�ed in the hardware
description� and the message size �speci�ed in the ap�

ready

begin

running

execute

done

end

link link

   (data node)
from source actor node

to destination data node
  (actor node)

Figure 6: Virtual circuit compound template

plication description�� This transition represents the
message traversing the links to its destination node�
After the communication has completed� the links are
released by the output arcs from transition end return�
ing tokens to the link places�
��� MMT Outputs

The output metrics generated by MMT are 
� ac�
tor response time� �� processor utilization� through�
put� response time� and queue length� �� communica�
tion throughput and response time� �� link utilization
and queue length� and �� application throughput and
response time�
�� Model Validation

In this section� MMT is used to predict the perfor�
mance of two systems as input parameters are varied�
The predicted performance is then compared to the
actual measured performance of each system� These
predictions assume no a priori knowledge of the appli�
cations other than their data �ow graphs�
��� RS���� Workstations

The �rst system consists of an image processing
morphological �ltering algorithm executed on sev�
eral IBM RS�			 workstations connected by a �		
KB�second Ethernet� The data �ow graph for this
application is shown in Figure �� Actor node S splits
an image into n equal pieces� sending each piece to a
separate data node� Dai� i � 
� ���� n� After actor node
Ai executes� it sends its output data to actor node M �
via data node Dbi� Actor node M merges and dis�
plays the �ltered image� Actor and data nodes within
the same dashed lines execute on the same worksta�
tion� Communications between actor and data nodes
on separate processors� such as actor node S and data
node Da�� take place across the Ethernet� Negligible
communication time is assumed when actor and data
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Figure 7: Image processing application 
data flow graph

nodes reside on the same processor �e�g�� S and Da���
Input to MMT for this algorithm along with experi�
mental results are taken from���� Given P processors
and an NxN pixel image� the service rate of actors S
and M is ��������

N�
�N�P��� and the service rate of actor Ai

is P
������N� � The message startup overhead is �
��s

and the message size is
l
N�

P

m
� �N �

Predicted versus experimental results are graphed
for two di�erent image sizes in Figures � and �� As N
changes� the parameters varied are the service times
of each actor node� the number of actor nodes� and
the communication message sizes� The predictions ac�
curately track the same behavior as the experimental
results�

��� Intel Paragon

The second system is an LU decomposition appli�
cation executing on an Intel Paragon XP�S �� The
Paragon is a � x 

 mesh of �� processors connected by
�		 MB�sec uni
directional links� Each processor has
a link in the north� south� east� and west directions�
The Paragon uses wormhole routing� Each communi�
cation is assumed to have its own single link virtual
circuit� With n threads and a matrix of dimension m

�i�e�� an m x m matrix�� each thread executes m loops
in each of which n� 
 messages are sent� one to every
other thread� The mean and variance of the thread
service time parameters are obtained by averaging �
executions of the LU decomposition application on 

processor� A linear speedup is assumed� giving the ser�
vice time of each thread on n processors� For example�
from measurement data� an LU decomposition of a 
�
x 
� matrix executes on one processor in an average
of 	�
��� seconds� This is the service time for the
one actor node of this application� The assumed ser�
vice time for the application executing on � processors
is ������

� � 	�	��� seconds� representing the time for
each of the � actors to execute m loops� The processor

scheduling policy is assumed to be FCFS� The system
parameters varied include actor node service times� the
number of actors nodes �i�e�� the number of processors
over which the parallel application is forked�� and the
communication message sizes� Results are graphed in
Figures 
	 and 

 for matrices of dimensions 
� and
��� respectively� The �gures indicate that the MMT
predictions accurately track actual performance�
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Figure 8: Response times for 512 x 512 image

Figure 9: Response times for 1024 x 1024 image

Figure 10: Response times for a 16 x 16 matrix

��� Model Extension

Both of the above case studies indicate that a por�
tion of the predictive errors is due to the exponen�
tial service time distribution assumption� The high
variance of an exponential distribution is not repre�
sentative of the small variance measured in the actor



node service times� To validate this observation� the
previous GSPN models generated by MMT are solved
with constant distributions via simulation for the actor
node service times� The results of the simulations for
the image processing application are shown in Figures

� and 
�� These are the same experimental results
shown in Figures � and � in Section ��
� The �gures
indicate that the constant service time assumption re�
sults in more accurate models for this application�
	� Conclusions

MMT is a program generator of GSPN performance
predicting models� The automatic generation and so�
lution of a GSPN model given a high
level description
of the hardware and software makes it convenient for
engineers to evaluate the performance of their appli�
cations on multiple con�gurations� In this paper� the
predicted performance of two example systems is com�
pared to actual measured performance� The predic�
tions and measurements are in good agreement� MMT
can be applied to address �What if ��� �� types of ques�
tions such as �What if the background workload on
the processors increases by �	���� �What if the com�
munication links over which threads communicate are
upgraded��� �What if the communication paradigms
changed from store
and
forward to virtual circuit���
or �What if the thread placement for this application is
changed��� By automatically generating GSPN mod�
els� MMT is useful in predicting performance across
a large number of hardware platforms and software
con�gurations�
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