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Abstract

This paper introduces the circulating processor model for parallel computer systems� The
circulating processor model is a product form queueing network model where the processors are
allowed to circulate between the parallel applications instead of the more traditional circulating
task model� Certain behaviors of parallel systems are better captured using this new approach�
The circulating processor model may be load dependent or load independent� The load depen�
dent circulating processor model is exact for systems which contain a single parallel application�
An exact error is calculated for the load independent circulating processor model for systems
which contain a single parallel application� The load dependent circulating processor model is a
good approximation to the actual system in the case of multiple parallel applications� The load
dependent circulating processor model compares favorably to the traditional circulating task
model�

Index Terms� circulating processor model� load dependent model� parallel systems� performance
evaluation� product form queueing network
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�� Introduction

The design and development of parallel computer systems is an important research topic for the
scienti	c community� Analytic models of these systems can be an important tool for evaluating
various design alternatives� Analytic models of these systems can be divided into state space based
models and non
state space based models� State space based models� such as Markov models
and Petri net models ��� enumerate all possible states that the systems may enter� While more
accurate� the computational complexity becomes intractable as the size of the system and workload
increases� Non
state space based models� such as product form queueing network models� do not
enumerate or evaluate the steady state probability of individual states in the underlying Markov
diagram of the system� Rather� computationally e�cient techniques are used to determine mean
performance metrics of the system ��� These traditional product form queueing network models�
however� do not capture behaviors such as task forking and joining� parallel gang scheduling� and
barrier synchronization which are common in parallel computer systems�

The focus of this paper is on the development of an alternate computationally e�cient queueing
network model� The goal is to retain the computational e�ciency of product form models� while
accurately modeling issues such as forking and joining of parallel tasks� gang scheduling� and
barrier synchronization� The circulating processor �CP� model is introduced� The CP model is
a product form queueing network model which captures certain behaviors exhibited by complex
parallel computer systems� while maintaining computational e�ciency� Related work includes other
models of parallel systems with computationally e�cient solution techniques �����

Section � introduces the circulating processor model and the types of systems to which this
model can be applied� Section � gives the analysis of the CP model when one parallel application
is in the system� Two versions of the CP model are presented� a load dependent CP model and a
load independent CP model� Section � gives the analysis of the CP model when multiple parallel
applications are in the system� In this case� the processor scheduling policy must be de	ned� Two
scheduling policies are analyzed� a fully parallel scheduling policy and a fully sequential scheduling
policy� Section � compares the CP model with a more traditional circulating task model� Section �
presents an application of the model to an actual parallel system� Section � gives conclusions and
future work on the circulating processor model of parallel systems�

�� The Circulating Processor Model

��� Overview

In a traditional queueing network model of a computer system� the processors are represented
by service centers� and the parallel applications �i�e�� jobs� tasks� workload� are represented by
customers which circulate among the service centers� In a parallel application� the application
splits and thus �visits� �i�e�� is assigned to� more than one processor at a time� This simultaneous
resource possession behavior is not allowed in product form models� In the fork
join application�
however� each processor only �visits� �i�e�� is assigned to� one parallel application at a time� An
alternate method of modeling the system is to represent the parallel applications by the service
centers in a queueing network model and the processors as the customers which circulate�

A number of observations make this model intuitively interesting and feasible� First� the number
of processors in the system is a known quantity� This corresponds to a closed queueing network
model with a 	xed multiprogramming level� Second� most parallel systems are homogeneous� where
all of the processors are identical� When viewed as customers in a queueing network model� these
�customers� are all statistically identical� or single
class� Third� when the parallel applications
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are di�erent� the traditional model which represents the parallel applications as the circulating
customers is a multiclass model with heterogeneous customers circulating among homogeneous
servers� When this is combined with the modeling of the non
product form fork
join behavior of
the parallel applications� the model is often too complex to solve exactly in all but the most simple
cases� With a circulating processor model� each application is represented by a di�erent service
center� which is parameterized independently� This allows homogeneous single class customers to
circulate among heterogeneous servers� Even when the applications are di�erent� as long as the
processors are the same� the model is single class and and has an e�cient product form solution�

The circulating processor model gives an alternate method of gathering performance metrics
of parallel systems� The mean queue length of a service center in the circulating processor model
represents the mean number of processors assigned to the parallel application� which is equivalent
to the average parallelism of the corresponding application� The sum of the queue lengths of the
service centers in the circulating processor model is equivalent to the mean number of utilized
processors in the parallel system� The optimal branching probabilities� which can be calculated
for the circulating processor model� are associated with the optimal partition sizes for allocation of
processors in a parallel computing system�

Traditional performance metrics such as throughput of parallel applications and processor uti

lizations can also be calculated from the circulating processor model� However� they are somewhat
more complex to visualize intuitively� For example� traditional throughput using the circulating
processor model may be calculated as the number of processors which complete at the application
per unit time� weighted by the expected number of processors used by the application �i�e�� the
average parallelism of the application�� Processor utilization can be calculated by 	rst 	nding the
processor idle time� which is the mean wait time in the idle server of the CP model �i�e�� where
processors visit when they are not assigned to any application��

The circulating processor model is parameterized using the parallelism shapes of the parallel
applications ��� The parallelism shape gives the proportion of time that an application spends using
each number of processors� By using the parallelism shape of a parallel application� the service
time of the corresponding queueing network model server is load dependent� In this case� the
mean service time of an application depends on the number of processors present at its server �i�e��
currently assigned to the application�� This load dependent service time is equal to the amount of
time that the parallel application actually uses each number of processors� given that all processors
are available to the application� The CP model may also be parameterized using load independent
servers� calculated from the average amount of time that a processor spends at the application� In
either case� the circulating processor model will have the same number of underlying states� with
the same connections between states� but the �ow rates between the states will be di�erent�

The circulating processor model is still an approximation of certain parallel behaviors� In a
simple fork
join system� a parallel application arrives at a fork point and forks into some number
of parallel tasks� Each of these tasks may be assigned to di�erent processors at exactly the same
time� If many processors are idle at the time of a fork instruction� then many processors will begin
executing a parallel task at the same time� Viewed from the circulating processor perspective�
several processors leave the idle server and �arrive� in bulk at the parallel application server� This
state
dependent service and routing behavior in the actual system in not captured in either the
traditional models or in the CP model� and is a potential source of error�
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��� Target System Assumptions

The target system to be modeled is a parallel system in which several parallel applications execute�
As soon as one parallel application completes� another begins� so that the system can be viewed as
having a constant number of executing applications� The target system is a multiprocessor with N
identical processors� Various other assumptions may be made about the target system�

�� An additional delay server may be added to the model to represent terminal users submitting
their parallel applications to the multiprocessor�

�� The queueing discipline at the multiprocessor may be speci	ed �e�g�� FCFS� round
robin��

�� The service distribution at the multiprocessor may be speci	ed �e�g�� exponential� Coxian��

�� When the number of parallel applications executing in the system is larger than one� then
the scheduling policy at the multiprocessor may be speci	ed to be either fully parallel or fully
sequential ���� For fully parallel scheduling� a parallel application arrives at the multiprocessor
and forks into N tasks� each of which is scheduled on a unique processor� In this case� all
applications have the same number of tasks and the same fork
join task graph� but the service
demands for various tasks may be di�erent� For fully sequential scheduling� all tasks of the
application are scheduled onto a single processor� In this case� the number of tasks and the task
graphs of the applications may be di�erent� In either case� as each task completes� it arrives
at a barrier synchronization point where it waits for all of its siblings to complete� When all
sibling tasks have completed execution at the multiprocessor� the synchronization operation is
completed� and the parallel application continues to circulate in the closed queueing network
model�

�� An application may release each assigned processor as soon as the tasks which have been
assigned to it completes� Because siblings 	nish at di�erent times� this allows tasks of other
applications to begin execution immediately on the released processor�

Due to the parallel synchronization behavior� an exact model would not have a product form
solution�

As a simple example of a target system� consider the system illustrated in Figure �� The
multiprocessor consists of three processors� and terminal activity is modeled as a delay server�
Assume that parallel application A executes on this system and has a task graph as shown in
Figure �� Upon arriving at the multiprocessor� application A forks into three parallel tasks� A��
A�� and A�� which execute concurrently on the three processors� Each parallel task of application
A is assigned to a distinct processor of the system� The mean service time� or loading� of task Ai

is designated ai� As the tasks complete at the multiprocessor� a barrier synchronization forces all
tasks to wait until the completion of the 	nal task before application A returns to visit the delay
server� The application executes at the delay server for an exponentially distributed amount of
service time� designated a�� Several applications� A� B� � � �� may be in the system at the same time�
so that the multiprogramming level may be any positive integer�

�� Analysis with a Single Parallel Application

Consider the case when there is� �� a single parallel application executing in the system� �� a single
terminal delay server in addition to the multiprocessor� and �� N tasks of the application� each of
which is assigned to a unique processor� Figure � shows the Markov state space diagram for the
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Figure �� Markov Diagram for Actual System� � Processors� � Parallel Application

single parallel application running on the target system in which the multiprocessor contains three
processors and the service times at the multiprocessor are exponentially distributed� The states
are labeled with the tasks that are active during that state� No task is active at the multiprocessor
when parallel application A is at the terminal delay server� Tasks A�� A�� and A� are all active
when the program 	rst arrives at the multiprocessor� just after the fork point� The tasks complete
one at a time� in some order� until the application completes execution at the multiprocessor and
returns to the delay server� The performance of the actual system is calculated based on the steady
state probabilities of the eight possible system states shown in Figure �� Let the states of the

Markov diagram of the actual target system be denoted by h i� For example�
D

�

�

A�

E
denotes the

state in which only task A� is active at the multiprocessor� This implies that tasks A� and A� have
completed and are waiting at the synchronization join point�

States in which there are an equal number of tasks active at the multiprocessor are enclosed in
a shaded box� Let hnI � nAiactual denote the state�s� where nI is the number of idle processors� and
nA is the number of processors actively executing a task� Where no confusion arises� the subscript
will be dropped� This alternate view of the state space leads to a model in which the states are
described by the number of processors currently executing tasks of the parallel application �i�e�� a
model in which the processors circulate between being active� working on an application�s tasks�
and being idle� awaiting the arrival of a new application��

��� Load Dependent Circulating Processor Model

The load dependent circulating processor model for the example system in Figure � with one
parallel application is illustrated in Figure �� The number of service centers is equal to the number
of parallel applications plus an additional service center� denoted the idle server� This server models
the idle time that each processor experiences between assignments to an application� Since there is
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Figure �� Possible Parallelism Pro	le and Shape for an Application

a single application� the approximate model is a simple two device closed queueing network� The
multiprogramming level is three� corresponding to the number of processors�

A processor is idle whenever it is not servicing any task of a parallel application� Idle times for
a given processor occur when the queue at that processor is empty� The various processors may be
idle at various times� since sibling tasks complete execution at di�erent times�

The service center loadings� or service times� are dependent on the number of processors cur

rently at the center� and are labeled in Figure �� The loadings at the idle server when there are ��
�� and � processors present are designated by LI���� LI���� and LI���� respectively� The loadings
at parallel application A when there are �� �� and � processors present �i�e�� allocated or assigned
to A� are designated by LA���� LA���� and LA���� respectively� The model parameterization issue
is to determine these device loadings�

In the load dependent circulating processor model� the demands are calculated based on the
parallelism pro	le �or parallelism shape� of the application� The parallelism pro	le is determined
experimentally� and indicates the number of processors in use by the application as a function of
time during the execution of the application ��� Figure ��a� illustrates a possible parallelism pro	le
for an application which is allocated � processors� The parallelism shape is obtained directly from
the parallelism pro	le� and gives the cumulative fraction of time that each number of processors
is allocated� Figure ��b� illustrates the corresponding parallelism shape for the same parallel
application� In the load dependent circulating processor model� the load dependent demands �mean
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loadings� for parallel application A �i�e�� the LA�i��s� are parameterized by the parallelism shape
directly� That is� LA�i� is set to the time that the program executes on i processors� In Figure ��
LA��� � �� LA��� � �� and LA��� � �� Also given by the parallelism shape is the amount of the
time that the application uses � processors� due to delays caused by communication� or between
invocations of the application� This time is indicated by LA���� and can be calculated as the
di�erence between the total time that measurements were taken on the system and the total time
that the application was executing on one or more processors�

If the underlying Markov state space diagram of the actual target system is available� the load
dependent demands can also be calculated analytically� The state probabilities can be found by
solving the global balance equations� The total demand of a parallel application for a given number
of processors is calculated as the mean time spent in the set of states in which that given number of
processors is present at the parallel application� For example� the mean service time of application
A when there is one processor present� LA���� is calculated as�

LA��� � time spent in h�� �i
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In general� the total demand for a given number of processors is equal to the mean service time
that an application requires the given number of processors� From Little�s Result ���� the mean
service time is equal to the total probability of being in the set of states �i�e�� the states using the
given number of processors�� divided by the throughput from all individual states in the set� In
this case� the visit ratios for all sets of states in the actual system are the same and equal to ��
since �ow goes through sets h�� �i� h�� �i� h�� �i� h�� �i� and back to h�� �i �see Figure ��� Therefore�
the total demand �mean loading� of application A when there is one processor present� LA���� is
equal to the mean service time while in h�� �i�

Note that LA��� � LI��� and LA��� � LI���� In general� for a single parallel application�

LA�i� � LI�N � i�� � � i � N ���

where LA��� indicates the mean time that application A uses � processors�
Figure � shows the state space diagram for the load dependent circulating processor model

for one application and three processors� The state space description for the circulating processor
model in Figure � is the vector hnI � nAi� where nI is the number of idle processors� and nA is the
number of processors executing at parallel application A� Each state in the diagram for the load
dependent circulating processor model is denoted by hN � i� iild cp� where i is the number of busy
processors�
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Figure �� Markov Diagram for Load Dependent CP Model� � Processors� � Parallel Application

The example shows that there is a one to one correspondence between each state� hN� i� iild cp�
in the circulating processor diagram �i�e�� Figure ��� and a set of states� hN� i� iiactual� in the actual
system diagram �i�e�� Figure ��� There is not a one to one correspondence between the arcs in the
two diagrams� For example� there is positive �ow from state h�� �ild cp to state h�� �ild cp in the
circulating processor diagram� but there is no �ow from state h�� �iactual to state h�� �iactual in the
actual system� However� as shown below� the steady state probability distributions for the two
Markov diagrams are identical�

The equivalence of the steady state probability distribution for the states in the load circulating
processor model� and the sets of states in the actual system is true in general for one parallel
application� for any number of circulating processors� Speci	cally�

Lemma� The probability of being in state hN�i� iild cp in the load dependent circulating
processor model is equal to the probability of being in the corresponding partition hN �
i� iiactual in the actual target system�

Proof� This can be shown by induction on i�

Let T be the total time spent in all states�

T �
NX
i��

LA�i� �
NX
i��

LI�i��

Prob�hN� �ild cp can be calculated from the birth
death Markov diagram of the circulat

ing processor model�

Prob�hN� �ild cp �
�

� �
NX
i��

iY
j��

�
LI�N�j���

�
LA�j�

�
�

� �
NX
i��

�
LI�N�

�
LA�i�

�
LI�N�
NX
i��

LA�i�

�
LI�N�

T

� Prob�hN� �iactual�
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Now� assume that Prob�hN � i� iild cp � Prob�hN � i� iiactual for some i� It remains to
show that Prob�hN � i� �� i� �ild cp � Prob�hN � i� �� i� �iactual�

Since

Prob�hN � i� iiactual �
LA�i�

NX
j��

LA�j�

� and

Prob�hN � i� �� i� �iactual �
LA�i� ��
NX
j��

LA�j�

�

then

Prob�hN � i� �� i� �iactual � Prob�hN � i� iiactual
LA�i� ��

LA�i�

� Prob�hN � i� iild cp
LA�i� ��

LA�i�

� Prob�hN � i� �� i� �ild cp�

�

From a general perspective� it is noted that the mapping from hN � i� iiactual to �N � i� i�ld cp is
exact due to calculating the total mean time in each partition as a function of the exact probabilities
and throughput of the individual states in the partition� The steady state probability distributions
are equivalent even though the Markov chain does not satisfy lumpability conditions ���� Since
the total �ow out of each partition goes to a single other partition� the rate of �ow is equal to the
inverse of the total mean time in the source partition� This results in a cyclic Markov chain with
N � � states� as seen in Figure �� The cyclic chain is equivalent to a birth
death Markov chain for
the circulating processor model as shown in Figure ��

Due to the equivalence of the steady state probability distributions of the actual system and
the circulating processor model� any Markov reward function which rewards these corresponding
states equally will yield equivalent performance measures� Therefore� the mean utilization of the
application �i�e�� the average parallelism� will be the same for both models� However� throughput
must be viewed di�erently in the actual system than in the circulating processor model� The
throughput in the circulating processor model �i�e�� Figure �� is processor throughput� and gives the
number of processors which complete per unit time� and is calculated as

N��X
i��

Prob�hN � i� ii
�

LI�N � i�
�

Throughput viewed in the actual system �i�e�� Figure �� is application throughput� and gives the
number of applications which complete per unit time� Application throughput calculated from the
load dependent circulating processor model� TPUTld cp� is equal to processor throughput divided
by the number of processors required to complete the application� For a single parallel application�
when the application forks to all available processors� the number of processors required to complete

��



N,0 N-1,1 N-2,2 0,N

�� �� ��

�� �� ��

�N��

�N

Figure �� Markov Diagram for the Load Dependent CP Model� � Parallel Application

the application is the total number of processors� N � Thus� the application throughput of the load
dependent circulating processor model is given as

TPUTld cp �
�

N

N��X
i��

Prob�hN � i� iild cp
�

LI�N � i�
���

�
�

N

N��X
i��

Prob�hN � i� iiactual
�

LI�N � i�

�
�

N

N��X
i��

�
NX
j��

LA�j�

�
�

NX
j��

LA�j�

� TPUTactual

Therefore� the load dependent circulating processor model is exact for a system in which there
is a single parallel application� Speci	cally� the probability of being in the set hN � i� iiactual in the
actual system� in which there are i active tasks at the multiprocessor� is equal to the probability of
being in the single state hN � i� iild cp in the circulating processor model� in which there are are i
active processors� Further� application throughput can be calculated from the circulating processor
model� and is equal to the throughput of the actual system�

��� Load Independent Circulating Processor Model

Although the load dependent circulating processor model is exact in the single application case� it
requires that the parallelism shape be known in order to parameterize the model� If the parallelism
shape is unknown� it is still possible to construct a load independent circulating processor model�
In this case� loadings at each server are the same regardless of the number of processors which
are currently at the parallel application� For the load independent model� LA�i� � LA�j� and
LI�i� � LI�j� for all i and j� Since the load dependent circulating processor model maps exactly
to the actual system� the error between the actual system and the load independent circulating
processor model can be determined by comparing the load dependent and the load independent
circulating processor models�

Consider the slightly modi	ed Markov diagram for the load dependent circulating processor
model shown in Figure �� This is a generalization of Figure �� In Figure � the rates are labeled
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Figure �� Markov Diagram for the Load Independent Counterpart Model� � Parallel Application

�i� and represent the rate of processing at the parallel application when i processors are allocated
to the application �i�e�� �i �

�
LA�i�

�� The load independent counterpart model is constructed by
calculating the �average� rates of processing of both the parallel application and the idle server�
The average rate of service of the idle processor� �I � is calculated as the average of all rates �owing
from left to right in Figure �� weighted by the state probabilities� Similarly� the average rate of
service of application A� �A� is calculated as the average of all rates �owing from right to left in
Figure �� likewise weighted by the state probabilities�

�I � Prob�hN� �ild cp�� � Prob�hN � �� �ild cp��� � � �� Prob�h�� N � �ild cp�N��

�A � Prob�h�� Nild cp�N � Prob�h�� N � �ild cp�N�� � � � �� Prob�hN � �� �ild cp��

The solution of the Markov diagram gives the probability of being in state hN� �ild cp as

Prob�hN� �ild cp �
�

� � ��
��

� ��
��

� � � �� ��
�N

�
���� � � ��N
NX
i��

NY
j���j ��i

�j

�

Prob�hN � k� kild cp �

NY
j���j ��k

�j

NX
i��

NY
j���j ��i

�j

� ���

Thus� by substituting to 	nd �I and �A� the load independent service rates for the idle server and
the application are

� � �I � �A �

N

NY
i��

�i

NX
i��

NY
j���j ��i

�j

�

The Markov diagram for the load independent circulating processor model of Figure � is il

lustrated in Figure �� Since all rates on all arcs are equal in the Markov diagram of the load
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independent model� the probability of all states in the load independent model are equal �i�e��
in Figure �� Prob�hN � i� iili cp �

�
N�� � i�� Therefore� performance metrics can be calculated

directly� For example� the rate at which processors leave the idle server in the load independent
circulating processor model is

��Prob�hN� �ili cp � � � �� Prob�h�� N � �ili cp� � ��
�

N � �
� � � ��

�

N � �
� � �

N

N � �
�

That is� given a single parallel application in the system� with N processors at the multiprocessor�
the processor throughput of the load independent circulating processor model is equal to N

N����
Therefore� since each application requires service from each of the N processors �in parallel�� the
application throughput of the load independent circulating processor model is

TPUTli cp �
�

N

N

N � �
� �

�

N � �

By substituting Equation � into Equation � and simplifying� the application throughput of the
load dependent circulating processor model� TPUTld cp� is equal to

�
N
� �Recall that it was shown

that TPUTld cp was exact and equal to TPUTactual�� Therefore� the relative error of application
throughput of the load independent circulating processor model is dependent only on the number
of processors at the multiprocessor� and is equal to �

N�� � �����

�� Analysis with Multiple Parallel Applications

When the number of applications executing in the system is larger than one� the scheduling policy
at the multiprocessor must be speci	ed� The state space diagram for the actual system will vary�
depending on these assumptions� The applicability of the various circulating processor models will
also vary� depending on the scheduling assumptions made for the actual system� The two extreme
scheduling policies are analyzed here� the fully parallel scheduling case and the fully sequential
scheduling case�

��� Fully Parallel Scheduling

In fully parallel scheduling� a parallel application arrives at the multiprocessor and forks into N

tasks� each of which is scheduled on a unique processor� The state space diagram for fully parallel
scheduling with � parallel applications and with � processors is shown in Figure �� The two
applications are A and B� The tasks of application A are labeled Ai� and the tasks of application B
are labeled Bi� The tasks execute at the multiprocessor using a FCFS queueing discipline� When
a task completes� the processor on which it was executing is released� and it may begin executing
a task of another parallel application� There is one additional server in the network� which is a
delay server� The delay server is used to represent the time that a processor spends not servicing
a parallel application� The delay server may represent waiting time while communication occurs
between tasks� waiting time while sibling tasks complete� or idle time between the submission of
parallel applications� The labels A� and B� indicate the presence of the application at the delay
server� The service times at the servers are assumed to be exponentially distributed� but the mean
service times for di�erent applications may be di�erent�

In Figure �� the states are labeled with the tasks that are active or queued at each device in

that state� In the state labeled h��
B�A�

� i� task A� arrived 	rst and is executing at the �top�
processor� Task B� arrived second and is waiting to execute in a FCFS queueing discipline at the
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Figure ��� Simpli	ed Markov Diagram for the Actual System� � Processors� � Applications

same processor� In state h��
B�A�

� i no tasks are either waiting or executing at the other processor

of the multiprocessor or at the delay server� In the state labeled h
A�

B��
�

� i� both application A

and B are �executing� at the delay server� The �tasks� A� and B� execute at rates �
a�

and �
b�
�

respectively� There are two possible arcs leaving state h
A�

B��
�

� i� representing the completion of the
two tasks at the delay server �i�e�� an arrival to the multiprocessor�� This system is not product
form� so global balance equations must be solved in order to determine the state probabilities�

In the system containing a single parallel application �Section ��� the circulating processor model
is compared against the actual system by grouping the states of the Markov diagram for the actual
system �Figure �� into sets of states with a more abstract state description� The same procedure is
applied to the system with � parallel applications� The aggregated state description for the system
with � parallel applications is a vector hnI � nA� nBi� where nI is the number of idle processors
�i�e�� processors which are not actively executing a task�� nA is the number of processors actively
executing a task of parallel application A� and nB is the number of processors actively executing a
task of parallel application B� For � parallel applications� with � processors� the aggregated state
space is fh�� �� �i� h�� �� �i� h�� �� �i� h�� �� �i� h�� �� �i� h�� �� �ig� In Figure � the sets of states in the
aggregate state space are shaded� Using the aggregate state description� a simpli	ed picture of the
Markov diagram is shown in Figure ���

The load dependent circulating processor model for two parallel applications is illustrated in
Figure ��� There are three service centers in this model� one each for parallel application� A and
B� and one for the idle server� I � The multiprogramming level of the model is equal to the number
of processors in the multiprocessor� �� The load dependent demands are labeled for applications A
and B and for the idle server� I � The branching probabilities are labeled as Pij � which represents
the probability of a processor which completes at server i next being assigned to server j� for
i� j � fA�B� Ig�

In the circulating processor model� it is possible for a processor to leave an application and
branch either to the other application or to the idle server� When a processor leaves the idle server�
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due to being allocated to an application� it branches to a parallel application with a speci	ed
probability� These branching probabilities� PIA and PIB � are dependent on the relative throughputs
of the applications� If a processor leaves an application and branches directly to another application
�i�e�� PAB or PAB�� this represents the event that a parallel task of a second application has been
queued at this processor while it is still busy executing a task of the 	rst application� As soon
as the processor completes the current task� it begins executing the queued task immediately� If
no task is in the wait queue for the processor in the actual system� then this is modeled in the
circulating processor model by the event that the processor branches to the idle server �i�e�� PAI or
PBI��

The Markov diagram for the circulating processor model is shown in Figure ��� The states are
labeled h�� �� �i� h�� �� �i� h�� �� �i� h�� �� �i� h�� �� �i� and h�� �� �i� The rate of �ow along each arc is
labeled� As in the case of a single parallel application� the Markov diagram of Figures � and ��
cannot be mapped exactly from one to another� Even though there is a one
to
one correspondence
of states between the two diagrams� there is not a one
to
one correspondence of arcs between the
states� For example� there is an arc with positive �ow from state ��� �� ��ld cp to state ��� �� ��ld cp in
the load dependent circulating processor model� but there is no �ow from state ��� �� ��actual to state
��� �� ��actual in the actual system� Unlike the system with a single parallel application� the steady
state probability distribution of the actual system is not equivalent to the steady state probability
distribution of the load dependent circulating processor model� This leads to error when using the
circulating processor model for calculating the performance of a system which contains multiple
parallel applications�

����� Load Dependent Circulating Processor Model

For the simple case of two parallel applications and two processors� the performance metrics of the
actual system can be calculated directly from the Markov diagram �Figure �� by solving the global
balance equations� The performance metrics of the load dependent circulating processor model can
be calculated using a product form solution technique� such as mean value analysis ��� The error
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between the two models can be calculated� Figure �� illustrates the relative error between the
actual throughput and the load dependent circulating processor model throughput as the demands
at the applications A and B are varied� In this 	gure the demands at the delay server for both
applications are set equal to ���� The demands of the two multiprocessor tasks of application A are
equal to each other� and the demands of the two multiprocessor tasks of application B are equal to
each other� The greatest relative error occurs when the demands by tasks of applications A and B
are both small �i�e� when the multiprocessor is lightly loaded and the delay server is more heavily
loaded�� As the multiprocessor becomes more heavily utilized� the relative error decreases�

Along the diagonal slice of Figure �� where demands by tasks of application A equal the
demands by tasks of application B� all tasks place the same demands on the multiprocessor� and the
processors at the multiprocessor are balanced� Figure ���a� illustrates the relative error when all
multiprocessor task demands are equal� The relative error along this slice is shown in Figure ���a��
It can be analytically shown that the relative error approaches �

�� as the demands of all tasks
approach in	nity� The relative error approaches � �i�e�� ����� as the demands of all tasks approach
zero�

Figure ���b� illustrates the relative error along the slice of Figure �� where the demand of each
task of Application B is equal to ��� The demand the tasks of Application A are varied� The
relative error is close to ���� when the demand by Program A is close to �� The relative error is
positive for small demands by Program A� As the demand by Program A increases� the relative
error become negative and remains negative� This indicates that the load dependent circulating
processor model tends to overestimate throughput when the multiprocessor is heavily loaded� In
this case the error is always less than ����

The method of calculating the performance metrics of the actual system directly from the
Markov diagram does not extend to higher multiprogramming levels or to more processors� be

cause the number of states in the state space becomes large� A discrete event simulation for the
solution of the actual fork
join system was constructed using the queueing network solution package
QNAP ���� All simulations were run to a ��� con	dence level� From the simulation� measurements
were collected in order to calculate the load dependent loadings and the branching probabilities�
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These measurements were used to parameterize the circulating processor model� The load depen

dent circulating processor model was solved exactly by QNAP� using a load dependent mean value
analysis algorithm�

Figure �� shows the relative error between the actual system and its circulating processor model�
In this 	gure the task demands are set to ��� and the number of processors and the multiprogram

ming level are varied over a wide range� As expected� no error occurs with � application� The 	gure
shows that the greatest relative error in throughput occurs when the multiprogramming level is
small �� to ��� and when the number of processors is large� As the multiprogramming level �i�e��
the number of parallel applications� increases� the relative error decreases�

����� Load Independent Circulating Processor Model

The performance metrics of the load independent circulating processor model can be calculated
using a product form solution technique� As in the load dependent case� the error between the load
independent circulating processor model and the actual system can be calculated for the simple
case of two parallel applications and two processors� since the performance metrics of the actual
system can be calculated directly from the Markov diagram �Figure ��� Figure �� shows the relative
error between the throughput of the actual system and the load independent circulating processor
model for � parallel applications and � processors�

In Figure ��� the demands at the delay server for each application are set equal to ���� The
demands of the two tasks of application A are equal� and the demands of the two tasks of application
B are equal� The demands of the tasks of application A and B are allowed to vary independently�
Figure �� shows that the relative error is always positive� and tends to be high except when the
multiprocessor is very lightly loaded �i�e�� when the demands of the tasks of the two applications
are both close to ��� The load independent circulating processor model is not a good approximation
to the actual system in the case of multiple parallel applications�
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��� Fully Sequential Scheduling

In the case of a single parallel application� when the number of tasks forked is equal to the num

ber of processors� it is possible to construct a circulating processor model which gives the exact
performance metrics as the actual system �see Section ����� It is also possible to construct a circu

lating processor model which is exact when fully sequential scheduling is used� In fully sequential
scheduling� all tasks from the same applications are assigned to the same processor and are executed
sequentially on that processor� The application is complete when all of its component tasks have
completed execution� The applications are assigned to a free processor in the order that they arrive�
Figure �� shows the Markov diagram for a system in which there are two parallel applications and
two processors� The processors are assumed to be identical�

Figure �� can also be viewed as the Markov diagram for the circulating processor model� In
this Markov diagram� processor one visits application A� followed by the idle server� followed by
application A� and so on� Processor two visits application B� followed by the idle server� followed by
application B� and so on� The processors circulate independently in the closed queueing network�
As long as the number of processors is equal to the number of applications in the parallel system�
this model will be exact for any task graph� The model is product form and mean performance
metrics can be found using e�cient solution techniques�

�� Comparison to the Circulating Task Model

A more traditional way of modeling parallel systems is to construct a single class load independent
product form queueing network model in which the tasks of the parallel application are viewed as
independent customers which circulate among the processors of the network ���� In this model�
N service centers represent the N processing nodes of the multiprocessor system� A delay server
models the interarrival times of the applications to the multiprocessors� The service demands at
each of the service centers are determined from measurement data� By measuring the utilization
of each processor and the number of tasks served� their ratio gives the mean service demand� The
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average measured number of tasks� or task multiprogramming level� MT � is measured as the sum
of the mean queue lengths over all service centers � Because there may be multiple parallel tasks
per application� MT will be larger than the number of circulating applications� M �

Figure �� compares the throughput of actual fork
join systems against both the load dependent
circulating processor model and the circulating task model� Fully parallel scheduling is assumed�
The curves in Figure �� were generated via simulation� The number of processors varies from � to
�� and the number of parallel application varies from � to ���

Figure �� shows that the load dependent circulating processor model tends to overestimate
throughput� while the circulating task model tends to underestimate throughput� Both models
give results which are comparable to the actual system�

�� An Image Processing Application

A case study to measure the performance of a real parallel application was performed in order to
show the potential usefulness of the circulating processor model� An image processing application
was selected� Figure �� shows the task graph of the image processing application� The application
	rst receives a data image� and the data image is split �via task AS� into a number of equal sized
components� Each of these components �tasks A�� A�� and A�� is passed to a �usually unique�

�In the simplest model� MT is a single number and generally non�integral� When MT is non�integral� interpolation
is used to calculate the performance measures� For example�

MT � bMT c� �� where � � � � �

TPUTMT � � �� ��TPUTbMT c� � �TPUTdMT e�
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Service Service Rate

splitter�merger tasks �AS � AM � ������
processing tasks �A�� A�� A�� ������

communications �C�� C�� C�� C�� ������

Table �� Service Rates for Image Processing Application

processor� where processing takes place� The 	nal phase �task AM � of the application merges the
resultant components back into a single image�

This image processing application was executed on a network of workstations connected by
an Ethernet LAN� In the version illustrated in Figure ��� tasks AS and A� were assigned to
workstation �� task A� was assigned to workstation �� and tasks A� and AM were assigned to
workstation �� Communication was required between tasks assigned to di�erent workstations� The
communications between workstations are illustrated in Figure �� as C�� C�� C�� and C�� Each
of the communications sends the same amount of data� so that the mean service rates for all
communications are equal� Also� each of the tasks A�� A�� and A� are identical� since they process
equal sized datasets� The tasks AM and AS are known to have approximately the same service
rates� The measured rates of service are shown in Table ��

In the image processing system� a set of data arrives and is processed� As soon as the processing
of one set of data is completed� a image �i�e�� new set of data� arrives to the system� Thus� the
system can be modeled as a closed queueing network with three processors� Communication is
modeled by a delay server �e�g�� Figure ��� since task processing is blocked during the time that
communication occurs between processors� Time at the delay server includes contention which may
occur for communication�

Figure �� shows the Markov diagram for the image processing application when scheduled and
executed on a network of three workstations� The states are divided into partitions according to the
number of tasks �processors� which are active in that state� Since the initiation of tasks on separate
workstations requires an interleaving communication� the tasks initiated on remote workstations
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do not all begin at the same time� Rather� the state transitions occur only between neighboring
state partitions�

A sample execution path is illustrated by the thick arrows� The application begins executing
in state hASi� near the bottom of Figure ��� In state hASi one processor is busy� Task A� and

communications C� and C� are initiated� and execution proceeds to state

�
A�

C�

C�

�
� where again one

processor is busy� If it happens that communication C� completes 	rst� then task A� will begin�

and execution will proceed to state

�
A�

A�

C�

�
� and two processors will be busy� If communication C�

completes next� then execution will proceed to state

�
A�

A�

A�

�
�where all three processors are busy��

and so on� In each state transition� exactly one communication or one task completes� After task
AM completes �in state hAMi�� a new copy of the application is initiated� and execution begins
again in state hASi�

The image processing application can be modeled using the load dependent circulating processor
model� using three circulating processors and an idle server� as shown in Figure ��� The measured
service rates in Table � parameterize the Markov model in Figure ��� As before� the load dependent
demands for the circulating processor model can be measured directly from the system or calculated
from mean service time for each set of states of the Markov model� The mean load dependent
demand for each number of processors is the mean service time weighted by the relative throughput
�i�e�� visit ratios� of each state� The mean load dependent demands are illustrated in Figure ���

The circulating processor model yields an application throughput of ������� The measured
system throughput is ������� As expected� since this application has multiprogramming level equal
to one� the model matches the observed performance�

	� Conclusions and Future Work

The circulating processor model is a novel approach to the modeling of parallel systems� In general�
models of parallel systems do not have e�cient solution techniques� Product form queueing network
models have e�cient solution techniques� However� due to task forking and joining� gang scheduling�
and barrier synchronization� many parallel applications violate the product form assumptions� The
circulating processor model is an approximate product form model that can be applied to parallel
systems captures certain parallel behavior accurately� The model is exact in certain cases and the
approximation is good in other cases�

The equivalences that have been shown are useful from both a theoretical and a practical
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viewpoint� From a theoretical viewpoint� the comparison of the circulating processor model to the
traditional circulating task model is promising and requires further study� The use of the parallelism
shape to parameterize the circulating processor model is a direct application of a practical workload
characterization of a parallel program� Traditional queueing network models are parameterized by
low level measurements of system devices� These parameters do not correspond to any particular
characterization of parallel applications�

From a practical viewpoint� the circulating processor model is exact for a single parallel appli

cation in the system� In this case� the model is easy to parameterize� since the parallelism shape is
generally easy to obtain for an individual parallel application� Thus� the model serves as a good de

scriptive tool for the parallel system and its application� When the multiprogramming level greater
than one� the greatest error between the load dependent circulating processor model and the actual
system occurs at low multiprogramming levels� The smallest errors occur �i�e�� the approximation
is most accurate� when the multiprocessor is heavily loaded and demands at the multiprocessor are
balanced�

There are certain disadvantages to the circulating processor model� First� the metrics obtained
are not guaranteed to be either an upper or a lower bound� Second� the relative error can be
as high as ���� in cases where the multiprocessor is lightly loaded or not balanced� A third
disadvantage is the di�culty in using the model to make predictions� For example� suppose that
the model for a system with multiprogramming level one is constructed using the parallelism shape
of the application� If the communication medium �modeled as the idle server in the circulating
processor model� is made faster� then the predicted e�ect on the load dependent demands is not
clear� Not only will the idle time be a�ected� but the load dependent demands may be a�ected
as well� Similarly� if the multiprogramming level is increased� the e�ects on the load dependent
demands are not clear� Other modi	cations to the system also have unpredictable e�ects on the
load dependent loadings� Thus� predicted interdependencies between the model parameters remains
a di�cult issue�

Future research includes�

�� Investigation of the e�ect of non
product form service disciplines on the accuracy of the model�
Preliminary work indicates that the model has error in this case� but that the error is about
��� less than that obtained for the traditional circulating task model�

�� Investigation of the e�ectiveness of the circulating processor model for arbitrary task graphs�
Only variations of fork
join behavior have been investigated in this paper�

�� Investigation of alternate processor allocation policies on the e�ectiveness of the basic model�
Only fully sequential and fully parallel policies have been analyzed� Many other policies are
possible� beginning with simple state policies in which each application is always allocated n

processors� where � � n � N � �N is the total number of available processors��

�� Investigation of special cases in the which the model provides an upper bound on system
performance� Preliminary results show that the model tends to be an upper bound in cases
where the system is heavily loaded and balanced�

�� Investigation into the e�ective use of the model for prediction�

�� Experimental validation of the circulating processor model on a variety of parallel platforms�
including both shared memory and distributed memory platforms�

��
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