
Clemson University
TigerPrints

Publications School of Computing

7-2010

Accelerating Image Feature Comparisons using
CUDA on Commodity Hardware
Amy Apon
Clemson University, aapon@clemson.edu

Seth Warn

Wesley Emeneker

John Gauch

Jackson Cothren

Follow this and additional works at: https://tigerprints.clemson.edu/computing_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the School of Computing at TigerPrints. It has been accepted for inclusion in Publications by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Apon, Amy; Warn, Seth; Emeneker, Wesley; Gauch, John; and Cothren, Jackson, "Accelerating Image Feature Comparisons using
CUDA on Commodity Hardware" (2010). Publications . 25.
https://tigerprints.clemson.edu/computing_pubs/25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268627951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs/25?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Accelerating Image Feature Comparisons
using CUDA on Commodity Hardware

Seth Warn, Wesley Emeneker, John Gauch, Jackson Cothren, Amy Apon

I. BACKGROUND

Given multiple images of the same scene, image
registration is the process of determining the correct
transformation to bring the images into a common coor-
dinate system—i.e., how the images fit together. Feature-
based registration applies a transformation function to
the input images before performing the correlation step.
The result of that transformation, also called feature
extraction, is a list of significant points in the images, and
the registration process will attempt to correlate these
points, rather than directly comparing the input images.

The Scale-Invariant Feature Transform [1], or SIFT,
is a popular feature extraction algorithm. After finding
significant points, it generates a descriptor for each
point. These descriptors are a collection of circular
histograms describing the intensity gradients of small
regions surrounding the point. The structure of these
descriptors, combined with multi-scale extraction, makes
SIFT feature descriptors invariant to the rotation and
scale of the input images.

Georeferencing, which locates images in physical
space, is one application of image registration. The
location of an input image, for example an aerial photo,
can be determined by registering it against other aerial
images with known coordinates. When using feature-
based registration, this is implemented by extracting
features from the input image, searching for similar fea-
tures in the existing images, and calculating a coordinate
transformation that correlates the similar features.

Searching for similar features implies the existence
of a function to measure feature dissimilarity. One such
function is the circular earth mover’s distance [2], or
CEMD, which provides excellent feature comparison but
requires more computation than other methods. Georef-
erencing frequently operates on large images, requiring
searches among billions of features, so a method to
quickly perform many CEMD comparisons is prerequi-
site to the use of CEMD in georeferencing applications.

II. IMPLEMENTATION

We present an implementation of CEMD accelerated
with the use of graphical processing units (GPUs).
Specifically, we use Nvidia’s CUDA framework [3] and

MPI to accelerate CEMD calculation with 24 GPUs
spread across 6 nodes. This system is benchmarked per-
forming over 1.2 billion CEMD calculations per second.
A single GPU can perform these calculations 75 times
faster than an optimized CEMD implementation running
on a single CPU core.

We present this work in two parts: First, we discuss
the process of creating a CEMD kernel in CUDA. We
present a simple initial kernel, then show a series of
refinements to the kernel and discuss their efficacy.
Second, we demonstrate the kernel running in stream-
ing/asynchronous mode on a single GPU to hide com-
munication latency, and running across all GPUs and
nodes in a cluster.

Unless otherwise noted, benchmarking results were
obtained on a computer with the following specifications:

• Two Intel Xeon E5520 processors
• 12GBytes 1333Mhz DDR3 RAM
• Two NVIDIA GTX295 graphics cards (compute

capability 1.3)
Note that there are two GPUs on each GTX295 card;
single-GPU results use only one of these two GPUs.

A. Building the CEMD Kernel

The initial GPU implementation (GPU-INITIAL) of
CEMD copies data to and from the GPU device, and one
CUDA thread is launched per result calculated. The code
run by each thread is similar to the CPU implementation.
This version of the GPU kernel shows a 7.96× speedup
compared to the CPU.

Shared memory usage is the first refinement of the
CEMD kernel. CUDA has several available memory
spaces. Shared memory is on-chip and has 100× lower
latency than the off-chip global memory. However,
shared memory is local to a small “blocks” of threads
and is only 16 KB. By fetching feature descriptors into
this shared memory and reusing them, this version of
the kernel (GPU-SHMEM) shows a 3.62× speedup as
compared to the initial GPU implementation.

Global memory performance can vary substantially
based on the access pattern of memory reads. Memory
operations with the right pattern can be coalesced into a
single transaction, and can achieve a bandwidth roughly



TABLE I: MEMD Kernel Performance

kernela totalb kernelc totald
seconds seconds meas/sec meas/sec

CPU-INITIAL - 12.8 - 328 K

CPU-FINAL - 5.82 - 720 K

GPU-INITIAL 1.61 1.69 2.61 M 2.48 M

GPU-SHMEM 0.444 0.527 9.45 M 7.95 M

GPU-MEMOPT 0.429 0.510 9.77 M 8.22 M

GPU-INDEX 0.535 0.619 7.85 M 6.78 M

GPU-UNROLL 0.0843 0.166 49.8 M 25.2 M

GPU-FINAL 0.0771 0.165 54.4 M 25.5 M

a The kernel execution time on the GPU to calculate 4× 220

measurements with the MEMD algorithm
b The wall clock time with all overhead of GPU kernel

execution, including copying input data from the host to the
device, actual kernel run time, and copying the results back to
the host

c The amortized number of measurements made every second,
i.e. 4× 220 divided by column 2

d The amortized number of measurements made every second,
including overhead costs

an order of magnitude faster than non-coalesced opera-
tions. We refine our second kernel to coalesce memory
operations, but only find a 1.03× speedup versus the
previous kernel, because the CEMD algorithm is not
bound by memory bandwidth—we calculate that this
kernel is using less than 1% of the available global
memory bandwidth.

GPU shared memory is divided into banks. Operations
on different banks can be serviced simultaneously, as
can multiple reads of the same data in a single bank.
However, reads from multiple locations within a single
bank are referred to as a bank conflict and must be
served sequentially, increasing shared memory latency.
Profiling shows that the CEMD kernel generates many
bank conflicts. We create a kernel (GPU-INDEX) which
offsets the memory reads of each thread to avoid these
conflicts. Profiling shows an 80% reduction in shared
memory conflicts, but this modification results in slightly
slower performance.

This result indicates that the CUDA architecture is
successfully hiding the shared memory latency in the
previous kernel. The GPU hides these latencies through
zero-overhead switching between groups of threads:
while a group of threads is waiting on a memory opera-
tion, other threads continue to execute. The additional
indexing required to avoid conflicts adds instruction
overhead, slowing kernel execution, so this kernel re-
finement is discarded.

105

106

107

108

0 20 40 60 80 100 120 140 160

Th
ro

ug
hp

ut
(c

om
pa

ris
on

s/
se

co
nd

)

Number of Comparisons (Millions)

GPU
GPU with overhead

CPU

Fig. 1: Throughput of N Measurements

Eliminating instruction overhead is a potential opti-
mization target. The simple processing cores in GPUs
can benefit greatly from loop unrolling. The maximum
size of a CUDA kernel is 2 million instructions, enough
capacity for significant loop unrolling. We use a combi-
nation of C++ template and preprocessor metaprogram-
ming to manually unroll the CEMD algorithm, flattening
several levels of loops. This approach (GPU-UNROLL)
proved very effective, producing a 5.10× speedup as
compared to the previous kernel. By examining the
GPU kernel assembly code, this kernel is shown to
operate at roughly 85% of the theoretical maximum
based only on the time required to issue instructions;
i.e., ignoring all instruction latency. This means that
the GPU architecture is hiding most of that latency
and this algorithm is unlikely to see substantial further
speedups, though a final refinement—an improvement to
the CEMD calculation algorithm—demonstrates a small
performance gain (GPU-FINAL).

Loop unrolling and the improved algorithm can be
profitably used in the CPU implementation of the
MEMD kernel as well, doubling the throughput of
comparison calculations. The final optimized version of
the GPU kernel is 75.6× faster than the final optimized
version of the CPU kernel.

B. Performance Comparison

Figure 1 shows the performance of both our final GPU
kernel and the optimized CPU code. The algorithm is
deterministic, and both implementations show a constant
throughput regardless of the number of comparisons be-
ing performed. An additional performance curve, “GPU
with overhead,” is shown, which includes the cost of
kernel launch, copying input data to the GPU, and output
data from the GPU. For small input sizes, all three affect

2



the throughput, but as input size grows, only the size of
the output data grows at the same rate as the amount of
work done. For larger input sizes, copying the output
from device to host results in a 13% communication
overhead.

This overhead can be partially hidden by using multi-
ple streams of execution to overlap asynchronous kernel
launches. The GPU is capable of performing 54.7 million
comparisons per second. Without overlapping streams
of execution, the GPU can only sustain 47.5 million
comparisons per second, due primarily to the overhead
of copying the results back to the host memory. By
overlapping execution and copies, a sustained rate of
51.2 million comparisons per second was achieved.

Nvidia’s new “Fermi” architecture products became
available after these experiments were run. Benchmark-
ing on a single GTX 480 shows the MEMD kernel
is capable of performing 114 million comparisons per
second on the new Fermi-based devices.

C. Cluster Implementation

The cluster application distributes the comparison of
an input set of features to a larger set of known features.
Each node (represented by a single MPI process) is
responsible for comparing the complete set of input
features to a subset of the known features. The nodes
use OpenMP to create a management thread for each
GPU. The comparisons to be performed by the node
are divided among the GPUs, then further divided into
a number of kernel launches, and dispatched in two
overlapping streams to each GPU. Because there are no
dependencies between CEMD calculations, the through-
put of those calculations scales linearly with the number
of GPUs in the cluster. With 24 GPUs in 6 nodes, the
test cluster performed over 1.2 billion comparisons per
second.

REFERENCES

[1] D. G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” International Journal of Computer Vision, vol. 60, pp.
91–110, 2004.

[2] J. Rabin, J. Delon, and Y. Gousseau, “Circular Earth Movers
Distance for the Comparison of Local Features,” in International
Conference on Pattern Recognition, Dec. 2008.

[3] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
Parallel Programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–
53, 2008.

3


	Clemson University
	TigerPrints
	7-2010

	Accelerating Image Feature Comparisons using CUDA on Commodity Hardware
	Amy Apon
	Seth Warn
	Wesley Emeneker
	John Gauch
	Jackson Cothren
	Recommended Citation


	tmp.1406734643.pdf.zki7z

