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ABSTRACT
The purpose of this case study is to develop a performance
model for an enterprise grid for performance management
and capacity planning1. The target environment includes
grid applications such as health-care and financial services
where the data is located primarily within the resources of a
worldwide corporation. The approach is to build a discrete
event simulation model for a representative work-flow grid.
Five work-flow classes, found using a customized k-means
clustering algorithm characterize the workload of the grid.
Analyzing the gap between the simulation and measure-
ment data validates the model. The case study demon-
strates that the simulation model can be used to predict the
grid system performance given a workload forecast. The
model is also used to evaluate alternative scheduling strate-
gies. The simulation model is flexible and easily incorpo-
rates several system details.

KEYWORDS
grid computing, performance modeling, capacity planning,
discrete-event simulation, JavaSim, case study

1 Introduction

Large scale science is increasingly being conducted us-
ing distributed global computing that is enabled by grid
technologies over the Internet. As companies expand their
physical boundaries worldwide, it is common for a single
corporation to own large scale distributed data resources
that are organized in a single, secure, and coordinated fash-
ion using the grid. Performance management of a grid envi-
ronment is difficult due to its distributed nature and inher-
ent complexity. It is difficult to sustain constant and pre-
dictable performance under varying load conditions. Con-
stant and predictable performance of a grid system is often
more important than its theoretical peak performance for
many practical applications.

Grid benchmarks have been studied in [1] for design
trade-off analysis and how applications and grid infras-

1This research is funded by a grant from the Acxiom Corporation,
Conway, Arkansas, USA and support by the National Science Foundation
under Grant No. 0421099.

tructure interact. Previous work minimizes performance
variability by developing techniques and tools that en-
able the grid to adapt to changing environmental condi-
tions [2]. A more proactive approach is adopted here. Per-
formance models are used to evaluate grid performance
and to conduct capacity planning studies by predicting the
performance under various workload forecast scenarios.
A simulation model makes it possible to test and eval-
uate grid scheduling strategies in a repeatable and con-
trolled environment. Related work includes the Perfor-
mance Prophet [3], which is a performance modeling and
prediction tool for distributed programs. It uses a hybrid
model, a combination of mathematical models and simu-
lation tools, for automatic performance model generation.
The methodology is mainly for performance modeling of
distributed programs during early development. In the tar-
get grid environment, the building blocks (i.e., workload
elements) are not known to capacity planners. The Grid-
Sim [4] toolkit provides capabilities for resource modeling
and scheduling simulation. It simulates time and space-
shared resources with different capabilities and configura-
tions. GridSim is used to improve the effectiveness of re-
source brokers on the global grid.

Acxiom Corporation has provided system perfor-
mance files, job accounting logs, measurement data, pri-
vate communications, and feedback on the modeling re-
sults for this case study. The workload characterization
portion of this research simplifies the workload model by
clustering jobs into job classes. Five job classes are identi-
fied and their characteristics are used as input parameters to
the trace-driven simulation model. Comparing the results
of the simulation against actual measurements validates the
model. After model validation various what-if scenarios of
altering the configuration of the grid are simulated. Using
the simulation results, capacity planners can answer per-
formance questions concerning the current capacity of the
system and have more confidence in the future performance
of the system. Such questions include:

• What are appropriate Service Level Agreements
(SLAs) that the current grid system can achieve?

• What would be the system performance if the work-
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Figure 1. Work-flow Grid Architecture

load intensity increased by 50%?

• How many additional grid service nodes are required
in order to keep the current SLA if the workload in-
creases by 50%?

• What would be the performance impact if workload
class B increased by 50%, but workload class E de-
creased by 50%?

The simulation model provides valuable information to ca-
pacity planners in order to meet future business needs. The
model also helps gain a better understanding of the sys-
tem and the interdependent relationships among the com-
ponents.

The remainder of the paper is organized as follows.
Section 2 gives a description of the target grid environ-
ment and characteristics of typical applications. Section 3
describes the performance measurement data and presents
the workload characterization. Section 4 outlines the sim-
ulation model, its design, implementation, and validation.
Section 6 presents the prediction results of several simula-
tion scenarios. Section 7 concludes the paper and outlines
future work.

2 Target Grid Environment

The target environment is an enterprise production grid at
Acxiom Corporation. In this particular architecture, the
physical location of the grid nodes is transparent to the
clients and to their grid applications. Applications are run
on geographically distributed sites for load balancing and
fault tolerance purposes.

The particular grid under study executes work-flow
jobs which exhibit a variety of characteristics. A typi-
cal work-flow consists of acquiring a large set of records
from a database service, performing a series of record ma-
nipulations, and creating a new persistent record dataset.

Several of the record manipulation steps require stan-
dard grid services such as format transformation, record
cleanup/consolidation, and shared storage. A work-flow
job may be multi-threaded to improve throughput, increase
parallelism, and reduce latency. Each job requires an initial
number of grid nodes, either specified by the user or deter-
mined by the system. The job holds these nodes throughout
its execution and releases them back to the free-node pool
upon job completion. Whenever a job arrives and enough
nodes exist in the free-node pool, the scheduler allocates
the required number of nodes to the job. Otherwise, the job
queues. When new nodes become available, the scheduler
seeks to schedule jobs in the waiting queue according to a
specified queueing discipline.

The work-flow grid environment is modeled as a
three-tier environment, as shown in Figure 1. The outer-
most tier handles job submission and job completion; the
users submit jobs through a job submission service which
monitors the job execution status. In the middle tier, the
scheduler queues the jobs and schedules them according to
the availability of grid resources (i.e., nodes) and the queue-
ing discipline employed. Node allocation to arriving jobs
and node deallocation to departing jobs are treated as grid
services. The innermost tier represents the standard service
layer where many applications share a variety of services,
such as storage, record access, data transformations, per-
sistent archiving, and report generation. Therefore, soft-
ware/service conflicts occur in this tier. The specific ser-
vices in this innermost tier are not explicated modeled in
the current study. Rather, they are treated as simple black
box services and will be modeled in more detail in future
studies.

3 Workload Characterization

In order to predict system performance, a representative
workload is needed as input to the simulation model. The



workload information on the work-flow grid is available
from the job accounting log. For each work-flow job, this
log records the submission time, start time, completion
time, number of execution threads, number of nodes re-
quired, number of records processed, job type, and other
job specific attributes. Other accounting logs record node
level performance data. This data is available for modeling
the innermost tier of the system architecture.

Job characteristics in the accounting log exhibit a
wide range of behaviors. They demonstrate diverse arrival
times, execution times, nodes required, records processed,
and the types of resources used. A preliminary workload
characterization study analyzed various jobs attributes to
obtain a global view of the workload. Figure 2 shows the
number of nodes required by jobs submitted on a typical
day in September, 2005. Most of the jobs are submitted
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Figure 2. Number of Nodes Required byWork-flow Jobs

during daytime hours (8am–8pm), with node requirements
ranging from 1 to 16 nodes. The scatter plot of job lengths
on a log scale is shown in Figure 3. Most jobs execute in

 0.01

 0.1

 1

 10

 100

 1000

 10000

00 02 04 06 08 10 12 14 16 18 20 22 00

Jo
b 

Le
ng

th
 (m

in
ut

es
)

Time (hours of the day) 

Job Durations From Orbiter Job File (9/6/05)

Figure 3. Job Lengths on Log Scale

less than 50 minutes. However, there are also a not insignif-
icant number of long, multi-hour jobs that consume signif-

icant grid resources that are also submitted during daytime
hours. Figure 4 shows the number of active jobs in the sys-
tem as a function of time. The number of free nodes over
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Figure 4. Number of Jobs in the System Over Time

time in the grid node pool is shown in Figure 5. Together,
these figures provide an overview of the systems workload
and its utilization. The workload of the system consists of
jobs of different sizes in terms of number of records pro-
cessed, number of nodes required, and execution time. The
workload is too diverse to be modeled effectively with a
single job class. Five features from the job accounting log
are selected and used to categorize the jobs into homoge-
neous job classes. The five features include: 1) number
of processors, 2) number of records processed, 3) elapsed
time, 4) total processor time, and 5) resource type. The
k-means clustering technique [5] is used to place the in-
dividual jobs into job classes. The number of clusters is
determined by plotting a tightness of fit value as a func-
tion of the number of clusters and observing the knee of
the curve. That is, k-means clustering is used to find k job
classes for various values of k. Each clustering also yields
a measure of how good the k classes matches the observed
data. By looking at various values of k, the one that best
describes the data is selected. Since the k-means cluster-
ing algorithm is sensitive to the initial starting point val-
ues, a detailed analysis is conducted by comparing a total
of 14 starting point methods. The 14 methods are cate-
gorized into two groups: actual sample data initial start-
ing points and synthetic initial starting points. The best
and most robust technique is found to be the one that uses
synthetic starting points with scrambled midpoints of the
five job features. Details are given in [5]. Using this tech-
nique, five job classes are identified as best describing the
actual workload. Based on this workload characterization,
a workload model is built with five job classes and is used
as input for the simulation model. The job classes are in-
dependent of each other and each job class has three at-
tributes: arrival rate, service rates, and average number of
required nodes. The individual job class arrival rates and
service rates are represented by their mean values and their



Figure 5. Peak Hour Average Inter-arrival Time Calculation

distributions. The arrival rate of a job class can be approxi-
mated by its measured system throughput over a relatively
long measurement interval [6]. However, since we are pri-
marily interested in heavy loading situations, peak hour ar-
rival rates and service rates are used to parameterize the
workload model. The average arrival rate is the inverse of
the average inter-arrival time. Figure 5 illustrates the inter-
arrival time calculation for peak hours where only intervals
1, 2, and 3 are counted. Each down pointing arrow repre-
sents a job arrival. For each job class, arrivals during peak
hours from the measurement data are selected and intervals
within the peak-hour period are averaged. The resulting
arrival rate is then assumed to be negative exponentially
distributed, based on actual measurement observations as
seen in Figure 7. (However, as described in Section 4, if
other distribution functions are found to better describe the
workload, they can easily be inserted.) The average service
rate is the inverse of the average service time and is directly
available from the measured elapsed-time of the peak-hour
jobs. To summarize, Table 1 shows the five job classes
identified, their inter-arrival rates, service rate, and nodes
required.

For simulating various what-if scenarios, an intensity
factor is associated with each job class. The base-line av-
erage arrival rates shown in Table 1 are multiplied by the
intensity factor to yield the average arrival rate used by the
simulation. For example, if twice as many job class A ar-
rivals are to be simulated, the intensity factor of job class A
is set to 2.
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Classes Arrival rate Service Rate Nodes
jobs/hour jobs/hour Required

class A 23.72 12.63 2.07
class B 5.66 7.03 14.16
class C 8.01 4.83 6.23
class D 1.41 0.792 11.06
class E 0.0907 0.0707 16.0

Table 1. Five job classes during peak hours (8am - 6pm)



4 Simulation Model

A dynamic, discrete-time, discrete-state simulation model
is used to model the target grid environment. Figure 8
shows a conceptual diagram of the simulator. The model is
implemented using a Java simulation package JavaSim [8].
Interested readers are referred to [7] and the JavaSim user
manual for detailed description of the simulation model
components. In the model, each job represents a work-
flow job in the real system. Each job has an arrival time,
a required number of nodes, and an execution time. An
arrival process representing each particular job class gener-
ates each job. These processes create jobs according to the
average arrival rate and arrival rate distribution described
by the job class. Each job requires a specified number of
nodes which is unique for each job class. The scheduler
is represented by a separate simulation process that is re-
sponsible for scheduling jobs in job queue. Based on the
available nodes in the work-flow grid and the scheduling
policy, a decision is made on each job. If the system has
enough available nodes, the job is started on the required
number of nodes. Otherwise, the job will queue. Whenever
the system state changes (i.e., upon job termination) , the
scheduler seeks to schedule as many jobs as possible. The
scheduling discipline is specified as a parameter of the sys-
tem model in the simulator. First Come First Served with
back-fill (FCFS-fillin) was demonstrated to give lower wait
and response time than first fit or shortest job first [9]. Two
scheduling discipline are simulated and compared in this
study, Strict First Come First Served (SFCFS) and FCFS-
fillin. Under SFCFS, if job X arrives to the system before
job Y, job X is granted its required number of nodes first
and begins execution before job Y, regardless of the number
of free nodes that are available at job arrival time. Under
FCFS-fillin, if job X cannot be initiated due to an insuffi-
cient number of free nodes, but job Y requires fewer nodes
and can be initiated, then job Y is initiated before job X.
Thus, improved node utilization is possible under FCFS-
fillin, but starvation is a risk. Each node is also modeled as
a separate simulation process. If a node has a job assigned
to it, it remains dedicated to the job for an amount of time
equal to the service time specification of the job. Other-
wise, if a node is not assigned to a job, it idles awaiting
allocation by the scheduler process. When a node finishes
processing a job, it disassociates itself with the job and re-
leases itself back to the free node pool. During the simu-
lation, system state information and performance statistics
are collected. For example, the number of free nodes, the
number of jobs in the system, the average queueing delay of
each job class, the average response time of each job class,
the 95th percentile queueing delay of each job class, the
95th percentile response time of each job class, the overall
average queueing delay/response time, and 95th percentile
queueing delay/response time are recorded.

An XML schema defines the input and output file for-
mats. The file is used to provide input parameters to the
simulator, and to specify the desired output simulation re-

sults (i.e., performance metrics). The input parameters to
the simulator include parameters to configure the simula-
tor:

• simulation time: amount of simulated time

• node pool size: number of nodes in the grid

• queueing discipline: job scheduling policy, either
SFCFS or FCFS-fillin

The input parameters also provide the workload model
specifications for each job class (i.e., average arrival rate,
arrival rate distribution, average service time, service time
distribution, and average number of nodes required). The
output metrics include the average and 95th percentiles of
queue lengths and response times. In addition to the output
metrics for each individual job class, overall output metrics
are also reported.

The XML schema not only makes the interface to the
simulation model clean, it also provides a flexible input and
output description. For example, the number of job classes
can be changed easily by editing the file. Individual, or
an entire suite of, simulations can be specified in the input
XML file. With this XML schema, the simulator is eas-
ily linked with other software components. For example a
customized XML graphical user interface can easily import
the XML schema and extract the desired simulation outputs
for display to the user.

5 Model Validation

The simulation program is designed to run using either a
trace file as input or statistically generated workload. Com-
paring the simulated results against actual measurements
validates the system simulation model. The event traces
used are the job arrival times in the job accounting table.
The wall-clock time of job arrivals is mapped to simulation
time so that the simulation results can be compared against
the measurements.

As shown in Figure 9, the simulated number of ex-
ecuting jobs in the system approximates the measurement
data. The simulation closely matches the measurements
before 8:00am and after 8:00pm, and reasonably matches
the spike at 4:00pm. The discrepancies before and after the
4:00pm spike expose the unmodeled time required by the
node allocation/deallocation grid service. The cause and
the length of these overhead delays are still under investi-
gation.

6 Prediction Study

The goal of the simulation study is to predict the mini-
mum number of nodes necessary to meet certain perfor-
mance SLAs, given a specified workload. The parameters
for making the predictions are the workload parameters, the
queueing discipline, and the SLAs. Two queueing disci-
plines, SFCFS and FCFS-fillin are studied in detail.
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Simulation experiments are conducted using the five
job classes from the workload characterization. First, the
simulation is run using the baseline workload parameters.
Figure 10 shows the average queueing delay in minutes of
the five jobs classes as the node pool size changes from
60 to 130 nodes when SFCFS is employed. With SFCFS,
all job classes incur similar average queueing delay be-
cause when a job cannot be scheduled, all subsequent ar-
riving jobs must wait. Figure 11 reproduces the results in
Figure 10, but under FCFS-fillin. As shown, and as ex-
pected, FCFS-fillin improves system performance signifi-
cantly. Although a slight performance penalty is experi-
enced by Class E jobs (i.e., those jobs requiring 16 nodes),
all other job classes benefit from FCFS-fillin.

Second, the effect of increasing the job intensity (i.e.,
more frequent job arrivals) on queuing delays is tested.
Figure 12 shows the average queueing delays of the five
jobs classes when their intensity factors increases at the
same time from 10% to 100% using FCFS-fillin. The av-
erage queueing delays of all job classes increase uniformly
and dramatically as their intensities increase. An average
queueing delay SLA of 15 minutes is achievable even when
all job arrival rates increase by 100%.

However, average queueing delays can be misleading.
Many short queueing delays can skew the results by con-
cealing long queueing delays when averages are computed.
Since abnormally long queueing delays are significant, the
95th percentile of queueing delays are also studied under
varying workloads. Figure 13 shows the 95th percentiles
as the job intensities increase under FCFS-fillin. As ex-
pected, this graph predicts much longer delays, up to 100



minutes for class B and class E jobs, when the load inten-
sity doubles.

In the above simulations, the node pool size is given
as a system parameter. In order to find the minimum pool
size required to achieve a given SLA, the simulation is ex-
ecuted iteratively, varying the node pool size. Two types
of SLA are considered. One is defined in terms of average
queueing delay and the other is defined in terms of 95th
percentile queueing delay. Figure 14 shows the number of
nodes required to achieve an SLA requirement of 10 min-
utes for the average queueing delay and to achieve an SLA
requirement of 10 minutes for the 95th percentile for all job
classes. As indicated, approximately 10 to 20 additional
nodes are required to satisfy an SLA for 95% of the jobs
instead of for the average job. Figure 15 indicates similar
results when the SLA target is reduced to 5 minutes. Such
results give the capacity planners a good idea on the size of
the node pool required for certain loading conditions.

Individual job class intensities are also varied to study
their effects on overall system performance. Figures 16-
20 show the average queueing delay of each job classes
while individual job class intensities increase. Figures 16
and 18 show that intensity increases on small jobs has min-
imal effect on larger job classes. The smaller jobs require
relatively fewer nodes and require less time to execute as
shown in Table 1. They are easily scheduled and finish
quickly. Therefore the intensity increase of smaller jobs
has little impact on the performance of larger jobs. Thus,
smaller jobs can be accommodated without significantly af-
fecting overall system performance. However, as the inten-
sity factor of the larger jobs (i.e., job classes B, D, and E)
increases, the performance impact on all jobs is more sig-
nificant. This is indicated in Figures 17, 19, and 20.
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7 Conclusions and Future Work

In this study, simulation based performance models are
constructed for an enterprise grid. The simulation model
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Figure 17. Average Queueing Delay While Increasing
Job Class B Intensity, 120 Nodes
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Figure 18. Average Queueing Delay While Increasing
Job Class C Intensity, 120 Nodes
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Figure 19. Average Queueing Delay While Increasing
Job Class D Intensity, 120 Nodes
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Figure 20. Average Queueing Delay While Increasing
Job Class E Intensity, 120 Nodes

is validated against measurement data. The system work-
load is analyzed in detail by examining the job accounting
logs spanning several months of data. The jobs are charac-
terized into five workload classes using k-means analysis.
Based on this workload characterization, various prediction
scenarios are studied via simulation. The simulations indi-
cate that the intensity increase of larger jobs has a signifi-
cant impact on performance (i.e., queueing delay) of all job
classes. This is true even when the larger jobs comprise a
relatively small fraction of the overall workload. Alterna-
tively, smaller jobs can pass through the system relatively
unaffected, even as their intensity levels and as the num-
ber of system nodes change significantly. The simulator
can also be used effectively to find the necessary minimum
number of grid nodes required to satisfy a specified target
SLA. Such tools are useful to system analysts and capacity
planners.

Many aspects of the simulation can be expanded. The
workload characterization can be improved to better reflect
more diverse real world workloads. Node allocation and
deallocation delays can be incorporated to make the trace-
driven simulation better mimic the real measurement ob-
servations. Modeling the shared services aspect of the grid
(i.e., the innermost standard service tier) will improve the
overall simulation model. Application of the simulation
tool to other grid environments is also under investigation.
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