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Initial Starting Point Analysis for K-Means Clustering:                                   

A Case Study 

Abstract— Workload characterization is an important part of systems performance 

modeling.  Clustering is a method used to find classes of jobs within workloads.  K-

Means is one of the most popular clustering algorithms.  Initial starting point values 

are needed as input parameters when performing k-means clustering.  This paper 

shows that the results of the running the k-means algorithm on the same workload 

will vary depending on the values chosen as initial starting points.  Fourteen methods 

of composing initial starting point values are compared in a case study.   The results 

indicate that a synthetic method, scrambled midpoints, is an effective starting point 

method for k-means clustering. 

1. Introduction 
Most companies today rely on information technology (IT) to guide business decisions, 

direct major overseas transactions, and manage their day-to-day activities.  These companies 

have Quality of Service (QoS) requirements that, if not met, negatively impact the business’ 

profitability.  In order to analyze IT systems and to ensure that QoS requirements are met, a 

good understanding of the current and/or projected workload is needed.  This workload 

model should be representative of the actual workload and be able to imitate and accurately 

predict its impact on the performance of the specific IT system.  Workload models, used in 

conjunction with other performance models, including simulation models and analytic 

queuing network models, can be used for capacity planning, forecasting future workloads, 

predicting system performance, and analyzing various “what if” performance scenarios [1]. 

Workload models are described by features that characterize the actual workload, and 

these features become parameters of performance models.  Different systems are 

characterized by different features. Example features include the number of jobs, the job 

type, memory requirements, network bandwidth demands, processor needs, and software 

service requirements, among others.  Choosing which features to include in a representative 

workload model depends on the nature of the specific system, what parameters are actually 



available, and the purpose of the underlying performance study [2].  The features that are 

chosen make up the feature vector.  After the features for the workload model are chosen, 

sample data is collected.  The actual workload is then described by the set of points that 

include all of the selected features for each of the jobs in the system.  That is, each job is 

described by its feature vector. 

Because the number of jobs in a collected data set may be quite large, it is often necessary 

to perform clustering analysis on the sample data.  Clustering analysis is a technique used to 

find representative classes, or homogenous groups, within the raw workload job data set.  

These classes of jobs determine the workload model.   

There are several clustering techniques, including hierarchical clustering, minimum 

spanning tree, and k-means clustering [3].  The k-means clustering algorithm is used in the 

case study described in this paper.  This is one of the simplest and most popular clustering 

algorithms.  The algorithm finds k distinct classes of jobs, or clusters, when given a specific 

workload data set.  The algorithm finds the midpoint, or centroid, of each cluster and assigns 

each job to its nearest centroid.  The algorithm is initialized by providing: 1) the number of 

desired clusters, k, and 2) initial starting point estimates of the k centroids.  There is no 

commonly accepted or standard “best” way to determine either the number of clusters or the 

initial starting point values.  The resulting set of clusters, both their number and their 

centroids, depends on the specified choice of initial starting point values [4].  This case study 

shows that the number of clusters and the final cluster centroid values differ based on the 

initial starting values used when performing k-means clustering. 

One common way of choosing the initial starting point values is to randomly choose k of 

the actual sample data points and use these as the initial starting values.  This method, along 

with 13 other techniques, are proposed and analyzed in this study.  For brevity, six of these 

techniques are presented and analyzed in this paper.  These methods fall into two categories:  

actual sample starting points and synthetic starting points.  In the case study reported here, 

the results indicate that the best synthetic method performs better than the best actual sample 

method.   

The results of this case study indicate that the selection of initial starting point values 

impacts the result of the k-means clustering algorithm.  The results also provide reasonable, 

rule-of-thumb heuristics for selecting initial starting point values for the clustering algorithm. 

The remainder of this paper is organized as follows.  Section 2 overviews the k-means 

clustering algorithm.  Section 3 describes starting point selection.  Section 4 presents the 



details of the experimental case study.  Finally, Section 5 summarizes the impact of the 

results. 

2. Overview of the K-Means Clustering Algorithm 
Given a data set of workload samples, a desired number of clusters, k, and a set of k initial 

starting points, the k-means clustering algorithm finds the desired number of distinct clusters 

and their centroids.  A centroid is defined as the point whose coordinates are obtained by 

computing the average of each of the coordinates (i.e., feature values) of the points of the 

jobs assigned to the cluster [2].  Formally, the k-means clustering algorithm follows the 

following steps. 

1. Choose a number of desired clusters, k. 

2. Choose k starting points to be used as initial estimates of the cluster centroids. 

These are the initial starting values. 

3. Examine each point (i.e., job) in the workload data set and assign it to the cluster 

whose centroid is nearest to it.   

4. When each point is assigned to a cluster, recalculate the new k centroids. 

5. Repeat steps 3 and 4 until no point changes its cluster assignment, or until a 

maximum number of passes through the data set is performed.  

Before the clustering algorithm can be applied, actual data samples (i.e., jobs) are 

collected from observed workloads.  The features that describe each data sample in the 

workload are required a priori.  The values of these features make up a feature vector (Fi1, 

Fi2, … , FiM), where Fim is the value of the mth feature of the ith job.  Each job is described by 

its M features.  For example, if job 1 requires 3MB of storage and 20 seconds of CPU time, 

then (F11, F12) = (3, 20).  The feature vector can be thought of as a point in M-dimensional 

space.  Like other clustering algorithms, k-means requires that a distance metric between 

points be defined [2].  This distance metric is used in step 3 of the algorithm given above.  A 

common distance metric is the Euclidean distance.  Given two sample points, pi and pj, each 

described by their feature vectors, pi = (Fi1, Fi2, … , FiM) and pj = (Fj1, Fj2, … , FjM), the 

distance, dij, between pi and pj is given by: 

                      ∑ −
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If the different features being used in the feature vector have different relative values and 

ranges, the distance computation may be distorted since features with large absolute values 



tend to dominate the computation [2].  To mitigate this, it is common for the feature values to 

be first scaled in order to minimize distortion.  There are several different methods that can 

be used to scale data.  The method used in this paper is z-score scaling.  Z-score scaling uses 

the number of standard deviations away from the mean that the data point resides [5].  The z-

score equation is 
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where Fim is the value of the mth feature of the ith job (i.e., the data point), μm is the mean 

value of the mth feature, and σm is the standard deviation of the mth feature.  Thus, before the 

algorithm is applied, the original data set is scaled, using the z-score scaling technique, where 

the feature mean is subtracted from the feature value and then divided by the standard 

deviation of that feature (i.e., Fim is replaced by its scaled value F*
im).  This technique has the 

effect of normalizing the workload features so that no single feature dominates in the 

clustering algorithm. 

The number of clusters to be found, along with the initial starting point values are 

specified as input parameters to the clustering algorithm. Given the initial starting values, the 

distance from each (z-scored scaled) sample data point to each initial starting value is found 

using equation (1).  Each data point is then placed in the cluster associated with the nearest 

starting point.  New cluster centroids are calculated after all data points have been assigned to 

a cluster.  Suppose that Cim represents the centroid of the mth feature of the ith cluster.  Then,  
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where F*
i,jm is the mth (scaled) feature value of the jth job assigned to the ith cluster and where 

ni is the number of data points in cluster i.  The new centroid value is calculated for each 

feature in each cluster.  These new cluster centroids are then treated as the new initial starting 

values and steps 3-4 of the algorithm are repeated.  This continues until no data point changes 

clusters or until a maximum number of passes through the data set is performed. 

Given a clustered workload, an error function can be defined that describes how much 

error (or difference) there is between all of the jobs in the workload and their respective 

cluster centroids. In this study, the error function used is the sum of the distances that each 

point is from its cluster’s centroid.  Assuming that there are k clusters, the error function (Ek) 

is defined as: 
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where (F*
i,jm-Cim)2 is the distance measure between a data point and the cluster centroid to 

which it is assigned. 

Typically, to determine the most descriptive number of clusters in a particular workload, 

the k-means clustering algorithm is run on the sample data set for a range of possible clusters, 

say, from k =1 to 10.  At the end of each run, the error value Ek is calculated using equation 

(4).  These error values are then plotted on a graph against the possible number of clusters.  

As the number of clusters k increases, it is reasonable to expect that the value of Ek 

decreases, since with more possible cluster centroids to choose from, it is more likely that 

any given job will be assigned to a potentially closer cluster.   The final number of clusters in 

the data set is chosen by examining and selecting the “knee” of the Ek curve.  For example, 

consider the generic Ek curve shown in Figure 1.  Here the “knee” occurs when k = 4.  

Significant reduction in Ek occurs when going from k=1 to k=4.  However, reducing Ek 

further by increasing the number of clusters beyond 4 is minimal.  To summarize, the 

algorithm is executed with different numbers of potential clusters, k.  The Ek curve is 

constructed and the value of k at the curve’s knee determines the number of final clusters 

found in the data set. 
 

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Number of Clusters (k)

Su
m

 o
f D

is
ta

nc
es

 
   

   
to

 C
en

tr
oi

ds
 (E

   
   

 
k ) 

   
   

   
   

   
   

   
   

   
   

  

 
Figure 1. Generic Ek Curve 

3. Overview of Starting Point Selection 
In this section, two motivational examples illustrate the fact that choosing different 

starting point values lead to different clusters with different error values.  First, consider a 
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   Figure 2. Starting Points Example 1a                                     Figure 3. Starting Points Example 1b    

 
 
workload with a single feature.  Suppose that the feature values range from 1.0 to 5.0 and that 

there are seven samples at 1.0, one sample at 3.0, and one at 5.0.  Figures 2 and 3 show the 

results of running the clustering algorithm on the data set when trying to find two clusters.  

Figure 2 shows the two clusters that are found when the initial starting points are 1.7 and 5.1.  

Eight data points are placed in the first cluster, with a centroid value of 1.25.  The second 

cluster consists of one data point, with a centroid value of 5.0.  The error function value is 

E1=3.5.  Figure 3 shows the two clusters that are found when the initial starting points are 1.5 

and 3.5.  With these starting points, one cluster consists of the seven data points with a 

centroid value of 1.0 and the other cluster consists of two data points with a centroid value of 

4.0.  This clustering leads to an error function value or E2=2.0.  This simple example 

illustrates that the selection of starting point values is important when trying to determine the 

best representation of a workload.  In comparing figures 1 and 2 to determine which of the 

two clusterings is “better”, a case can be made that a tight cluster is centered on 1.0, with the 

other two data points being outliers.  This is captured in the second (i.e., Figure 3) clustering 

and also results in a lower E2 value.  Thus, lower values of Ek are taken as better clustering 

representations. 

A second motivational example is illustrated in Figures 4-9, which show the clusters 

resulting from clustering on a workload with two features and 11 sample data points.  When 

finding a single cluster, the initial starting point value does not matter because all data points 

will be assigned to the same cluster.  Figure 4 shows the result of clustering when 

determining one cluster.  The error function value is E1=15.2.  There are an infinite number 

of alternatives for initial starting values when trying to find more than one cluster.  Figure 5 

shows the best (i.e., lowest E2 value) result for this example when determining two clusters.  

Nine data points are in one cluster and two data points in the other cluster.  The resulting  
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 Figure 4. Starting Points Example 2: One Cluster                Figure 5. Starting Points Example 2: Two Clusters 

 
error function value is E2=2.6.  When finding three clusters, two starting point alternatives 

are evaluated.  The results from these two alternatives are shown in figures 6 and 7.  In 

Figure 6, the starting points are:  (1.8, 1.0), (1.0, 2.7), and (2.0, 2.7).  The figure shows that 

the algorithm places seven data points in one cluster and two data points in each of the other 

clusters.  The error function value is E3,alt1=4.0.  In Figure 7, the starting points are:  (1.8, 

1.0), (1.4, 2.0), and (1.4, 4.0).  The algorithm again places seven data points in one cluster 

and two data points in each of the other clusters, but the error function value is E3,alt2=1.0, 

indicating an improved clustering.  Figure 8 shows the clustering result when finding four 

clusters, using (1.8, 1.0), (0.8, 2.0), (2.3, 2.0), and (1.3, 4.0) as the starting values.  In this 

case, the error function value E4=0.5.  

Figure 9 shows the plot of the error function value Ek as a function of the number of 

clusters, k.  As shown, the two starting point alternatives give different error function values.  

Intuitively, as more clusters are added, the error function value should decrease.  Alternative 

1 shows anomalous behavior, where E2 < E3,alt1, indicating that adding an extra cluster 

actually hurts the error measure. Identifying the knee of the curve for Alternative 1 in Figure 

9, one could conclude that two clusters (i.e., Figure 5) best represents this data set.  Better, 

more reasonable, methods for determining the initial starting points should not exhibit such 

anomalous behavior.   
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Figure 6. Starting Points Example 2: Three Clusters Alt 1   Figure 7. Starting Points Example 2: Three Clusters Alt 2 
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       Figure 8. Starting Points Example 2: Four Clusters               Figure 9. Starting Points Example 2: Ek Analysis 

4. Experimental Case Study 
For this case study, over 4200 data points, spanning the workload observed across several 

days, were collected and analyzed.  The data collected was from a large data processing 

center from one of their grid computing environments. Five features were identified as being 

descriptive of each job (i.e., data point): number of records processed, number of processors 

used, response time, processor time consumed, and job resource type.  Each of these features 

for each of the jobs was scaled using the z-score method.   

A total of fourteen methods for choosing initial starting point values for the k-means 

clustering algorithm were evaluated.  These methods fall into two main categories:  actual 

sample starting points and synthetic starting points.  Ten synthetic methods and four actual 

sample methods were compared. 

Synthetic Initial Starting Points 

A synthetic initial starting point is a point (i.e., a synthetic feature vector) that does not 

correlate to any specific observation in the actual workload.  There are several different ways 

of coming up with these synthetic starting point values.  A total of ten were identified and 



evaluated. However, for brevity, only three synthetic methods are presented in detail: 

scrambled midpoints, unscrambled midpoints, and scrambled medians. 

Several choices can be made when choosing synthetic initial starting values.  This study 

considers: 1) dividing the range of feature values into different numbers of partitions, 2) 

picking initial starting points for each feature within these partitions, and 3) combining the 

different starting points of the features to create initial starting points.   Before giving the 

detailed algorithms of the three synthetic starting point methods mentioned above, a 

discussion of each of these choices follows. 

In nine of the ten synthetic methods studied, the range of feature values is divided into 

partitions.  The number of partitions is k-1, k, or k+1, depending on the specific method.  It 

was found that the number of partitions selected does not significantly affect the results of the 

k-means clustering algorithm.     

After dividing the workload into partitions, values for each feature in each partition are 

chosen as initial starting values.  Both the median and the midpoint values for each feature in 

the partitions are evaluated.  For example consider a workload with a single feature.  Suppose 

there are five sample data points in a particular partition:  1.0, 1.0, 1.0, 4.0, and 5.0.  If using 

the median value, 1.0 would be chosen as the initial starting value for this partition.  If using 

the midpoint value, 2.5 would be chosen as the initial starting value for this partition.  

Without presenting all the details, it was found that using the midpoint values is more 

effective in general than using median values when choosing synthetic initial starting points.   

After coming up with the initial starting point values for each feature, a choice is made of 

how to combine the different feature values to construct an initial starting point value.  Two 

methods are considered:  scrambled and unscrambled.  The unscrambled method selects 

partition #1 of each feature to construct starting point #1, selects partition #2 of each feature 

to construct starting point #2, … , and selects partition #k of each feature to construct starting 

point #k.  For example, if a workload with three features is divided into two partitions (i.e., 

k=2), the values of the three features in the first partition forms one initial starting point, and 

the three feature values in the second partition forms the other initial starting point.  The 

scrambled method combines the different partitions of the feature values randomly to create 

the initial starting points.  For example, consider a workload with three features, (f1, f2, f3), 

that is divided into two partitions.  Since the features are combined randomly, one initial 

starting point might be the first partition’s f1 value, the second partition’s f2 value, and the 

second partition’s f3 value.   The other start point might be the second partition’s f1 value, the 



second partition’s f2 value, and the first partition’s f3 value.  Again, without presenting all the 

details, it was found that using scrambled methods is more effective in general than using 

unscrambled methods.  

One method for composing synthetic initial starting points is scrambled midpoints.  The 

algorithm for scrambled midpoints follows: 

1. Divide the range of (scaled) feature values into k equal sized partitions.  For 

example, if a feature takes on values from –1.0 to 5.0 and k=3, then the three 

partitions are [-1.0, 1.0], [1.0, 3.0] and [3.0, 5.0].  This partitioning is done for 

each feature.  

2. Take the midpoint of each partition for each feature as a potential initial starting 

feature value. 

3. For each feature, randomly select one of the partition’s midpoints to include in 

the starting point.  Do this k times to construct the needed k starting points. 

Since different combinations of the different feature values lead to a different error values, 

the k-means clustering algorithm is run multiple times for each k.  The lowest error value for 

each k is used when constructing the Ek curve.  For the results reported below, the algorithm 

was run 25 times for each k. 

A second method of composing synthetic initial starting points is unscrambled midpoints.  

The unscrambled midpoints method is the same as the scrambled midpoints method with one 

exception.  In step 3, features are combined based on the partition they are in.  All of the 

feature values in the same partition are combined to create k sample data points.  That is, the 

midpoints in partition #1 of each feature form starting point #1, … , and the midpoints in 

partition #k of each feature form starting point #k.  There is no need to run the algorithm 

multiple times when using this method. 

The third method of composing synthetic initial starting points is scrambled medians.  The 

scrambled medians algorithm is the same as the scrambled midpoints algorithm with one 

exception.  In step 2, the median value of each partition for each feature is used as a potential 

initial starting feature value.  As in the scrambled midpoints method, the clustering algorithm 

is run multiple times for each k and the smallest error value for each k should be used when 

constructing the Ek curve.  For the results reported below, the algorithm was run 25 times for 

each k. 



Seven other synthetic methods were evaluated, but their results are not reported here.  

None of these seven offer any particular novel insight nor do they outperform the three 

considered here. 

Figure 10 shows the Ek curve for the three synthetic methods.  This figure indicates that 

the scrambled midpoints method outperforms the other two.  It consistently gives low error 

values.  In general, from Figure 10 and from other unreported results, scrambled methods 

outperform unscrambled methods and using midpoints outperforms using medians.  From 

viewing the scrambled midpoints curve, the knee of the curve indicates 6 clusters are present 

in the workload data.  This case study shows that the scrambled midpoints method is the 

preferred synthetic method. 
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Figure 10. Synthetic Starting Point Analysis 

Actual Sample Data Initial Starting Points  

In contrast to constructing a synthetic starting point, an actual sample starting point is one 

that comes directly from the workload data.  There are several different methods of selecting 

actual samples and using them as starting point values.  A total of four were examined, three 

of which are reported here:  random, breakup, and feature value sums. 

The random method is a popular way of choosing the initial starting point values.  It 

randomly chooses k of the sample data points and uses these as initial starting values.  There 

are variations in the way that random sample data points are chosen.  The algorithm for the 

random method follows: 

1. Determine the maximum number of clusters, n, to be found by the k-means 

clustering algorithm.   A value of n=10 is used here. 

2. Choose n random sample data points. 



3. For k=1 to k=n, run the k-means clustering algorithm, using k of the n sample data 

points chosen in step 2 as initial starting values.  Each time k is increased, another 

one of the n random sample starting points is added as an initial starting point. 

To prevent the anomaly described in Section 3, the set of data points that are used when 

running the algorithm to find k clusters is a subset of the data points that are used when 

running the algorithm to find k+1 clusters.  For example, if k=2, using the same sample data 

point that that is used when k=1 (and simply adding another one of the pre-selected random 

sample data points as the other initial starting value) prevents anomalous behavior.  Also, 

since combinations of the different jobs in the workload lead to a different error values, the k-

means clustering algorithm is run multiple times, selecting different random jobs as starting 

points.  The lowest error values are used in the Ek curve.  For the results reported below, the 

clustering algorithm was run 25 times. 

The second method for selecting actual sample data points as starting points is breakup.  

The algorithm for breakup follows: 

1. Determine the maximum number of clusters, n, to be found by the k-means 

clustering algorithm. 

2. Run the k-means clustering algorithm for k=1.  (When finding a single cluster the 

initial starting point does not matter.) 

3. For k=2 to k=n 

a. From running the algorithm for k-1, determine the most populous cluster. 

b. Within this most populous cluster, find the two data samples that are the 

farthest away from each other. 

c. Using these two points, together with the k-2 other data points that formed 

the clusters that were not most populous, the set of k starting points are 

determined.  

This method is reasonable since it seeks to break up the most populous cluster into two 

smaller clusters.  It is hoped that a decreased error value Ek results. 

The third method for selecting actual sample data points is feature value sums.  The 

algorithm for feature value sums follows: 

1. Each data sample’s feature vector is added together to give a single value for 

each job.   

2. The entire workload is sorted based on these feature vector sums. 

3. For each k, the workload is divided into k equal sized regions.   



4. The set of k median sample data points, one from each region, is used as the k 

initial starting points. 

Figure 11 shows the Ek curve for the three actual data sample methods.  This figure 

indicates that the breakup method generally outperforms the other two.  It consistently gives 

low error values.  From viewing Figure 11, it again appears that 6 clusters are present in the 

workload data.  Thus, the synthetic methods and the actual sample methods reinforce each 

other.  This case study indicates that the breakup method is the preferred actual sample 

method. 
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Figure 11. Actual Sample Starting Point Analysis 

Figure 12 presents a summary comparison between the preferred actual sample method 

(breakup), the preferred synthetic method (scrambled midpoints), and the “best” overall error 

values found at each k when all fourteen different methods are considered.  For example, 

scrambled medians could have found the lowest error value for k=3 clusters, breakup could 

have found the lowest error value for k=4 clusters, and random could have found the lowest 

error value for k=5 clusters.  Based on Figure 12, scrambled midpoints (marginally) 

outperforms breakup and never seems to deviate far from the best curve.  Therefore, the 

overall conclusion of this case study is that scrambled midpoints method is the preferred 

method to find initial starting point values.   
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Figure 12. Synthetic/Actual Sample Comparison 



5. Summary 
This paper presents an overview of the k-means clustering algorithm.  K-means clustering 

is a common way to define classes of jobs within a workload.  Simple examples show that the 

initial starting point selection may have a significant effect on the results of the algorithm, 

both in the number of clusters found and their centroids.  A case study is described where 

different methods of choosing initial starting points are evaluated. 

A total of fourteen methods for choosing initial starting points are investigated for the case 

study.  These methods fall into two categories:  synthetic starting points and actual sample 

starting points.  Six of these methods, three from each category, are presented.  The 

conclusion is that the best synthetic method, scrambled midpoints, performs better than the 

best actual sample method, breakup.  Thus, for the case study presented in this paper, 

scrambled midpoints is the preferred method for choosing initial starting values for the k-

means clustering algorithm.   
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