Clemson University

TigerPrints

Publications School of Computing
9-2009

Accelerating SIFT on Parallel Architectures

AmyApon

Clemson University, aapon@clemson.edu

Seth Warn
University of Arkansas - Main Campus

Wesley Emeneker
University of Arkansas - Main Campus

Jackson Cothren
University of Arkansas - Main Campus

Follow this and additional works at: https://tigerprints.clemson.edu/computing pubs

b Part of the Computer Sciences Commons

Recommended Citation

Apon, Amy; Warn, Seth; Emeneker, Wesley; and Cothren, Jackson, "Accelerating SIFT on Parallel Architectures” (2009). Publications .
21.
https://tigerprints.clemson.edu/computing_pubs/21

This Article is brought to you for free and open access by the School of Computing at TigerPrints. It has been accepted for inclusion in Publications by

an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs/21?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Accelerating SIFT on Parallel Architectures

Seth Warn #!, Wesley Emeneker #2, Jackson Cothren **, Amy Apon #*

Computer Science and Computer Engineering, University of Arkansas
504 JBHT, University of Arkansas, Fayetteville AR, 72701, USA

! swarnQuark.edu

2

ewe@uark.edu

4 aapon@uark.edu

* Center for Advanced Spatial Technologies, University of Arkansas
304 JBHT, University of Arkansas, Fayetteville AR, 72701, USA

3 jcothren@cast.uark.edu

Abstract—SIFT is a widely-used algorithm that extracts fea-
tures from images; using it to extract information from hundreds
of terabytes of aerial and satellite photographs requires paral-
lelization in order to be feasible. We explore accelerating an
existing serial SIFT implementation with OpenMP parallelization
and GPU execution.

I. INTRODUCTION

Computer vision attempts to extract features and discern
information about images. Its use is well-known in near-real-
time applications like robot maneuvering or object tracking,
but extracting information from images is also useful in other
types of problems. For example, photogrammetry uses com-
puter vision algorithms to extract geometric and geographic
information from images. We want to apply some of those
techniques to a large archive of aerial and satellite imagery,
determining if and where those images overlap, and the
correct rotation, translation, and scale to “stitch” those images
together. Because our archive has more than one hundred
terabytes of raw images, we are investigating a number of
avenues to parallelize and accelerate the process.

Matching and stitching images is performed by an appli-
cation with two major, computationally-intensive phases. The
first phase extracts features using David Lowe’s Scale Invariant
Feature Transform (SIFT) algorithm [1]. The second phase
of computation takes combinations of images and uses the
results from the first phase to find any overlapping regions.
Our work focuses on accelerating the SIFT algorithm’s feature
extraction. There are a number of operations in the SIFT
algorithm:

e Scale space construction: The image is repeatedly con-
volved with a Gaussian convolution kernel. This produces
a series of increasingly-blurred versions of the original
image.

« Difference of Gaussian calculation: The difference be-
tween adjacent images in Gaussian scale space is calcu-
lated. This approximates the scale-normalized Laplacian
of Gaussian.

This research was supported in part by the National Science Foundation
under grant MRI #072265 and by a faculty instrument award from Dell
Corporation.

o Keypoint identification: Local extrema in the Lapla-
cian are found by comparing difference-of-Guassian val-
ues with their eight neighbors at the same scale, and
nine neighbors at scales above and below. Extrema are
recorded as possible keypoints.

« Keypoint filtering: Potentially unstable keypoints, such
as those in areas of low contrast or along edges, are
removed.

« Keypoint orientation: The dominant gradient of the neigh-
borhood around the point is determined. The description
of the point is relative to this gradient, making it rotation-
invariant.

« Keypoint descriptor creation: Histograms are calculated
that describe the neighborhood of the point. These his-
tograms form a vector that serves as the descriptor of the
keypoint.

The purpose of this project is to determine the efficacy of
two acceleration techniques, applied to the same code base.
We use an existing implementation of the SIFT algorithm,
SIFT++ [2], as the starting point for our work. To identify
the portions of the application that will benefit most from
parallelization, we use a code profiler to identify compute-
intensive functions within SIFT++. Then, we create two sep-
arate, accelerated versions of original application.

First, we implement a traditional and simple parallelization
with OpenMP. This allows the application to take advantage
of all the CPUs in an SMP architecture, and is a relatively
straightforward method of parallelizing code. Second, we
create a version that executes portions of the SIFT algorithm
on a NVIDIA Graphics Processing Unit (GPU) with CUDA [3]
capabilities. General-purpose processing on GPUs (GPGPU)
is a relatively new technique than can accelerate some appli-
cations by several orders of magnitude, but is typically more
complex to implement.

We benchmark each version and compare the results. Be-
cause GPGPU requires a GPU and extra programming effort,
we are interested in whether OpenMP is “good enough,” i.e., if
SIFT++ accelerated with OpenMP scales well enough for the
purposes of the larger project. Additionally, we are interested
in the return on investment of a GPGPU solution; is a GPU-
enhanced SIFT++ accelerated enough to justify the extra effort

and expense required to implement it?

II. METHODOLOGY
A. SIFT++

As mentioned above, we use an existing application,
SIFT++, as a starting point for our work. It is an imple-
mentation of SIFT in C++ with a single binary sift. Our
tests use it with the default command line options, reading
a single image and generating a list of keypoint descriptors.
Given the existing code, our desire is to reduce the runtime
while generating identical results.

Though SIFT++ is considered superseded by the VLFeat
suite of computer vision algorithms [4], a brief test found that
SIFT++ is both faster and uses less memory than the VLFeat
implementation of SIFT for the large images typically used in
our workloads.

B. Profiling

We used code profiling to to identify the most computation-
ally intense portions of SIFT++. Accelerating these portions of
the code will presumably show the greatest effect on runtime.
We used the GNU gprof utility to perform the profiling;
abbreviated profile output from is shown in Table I on the
following page. The results in this table were generated from
an image paris.pgm with dimensions 4136x1424; SIFT++
generates 42605 keypoints for paris.pgm.

The results of the profiling show that three functions con-
sume more than ninety percent of the computation time, and
are the best candidates for parallelization:

1) prepareGrad performs the keypoint orientation.

2) econvolve is used for scale space construction.

3) computeKeypointDescriptor generates keypoint

descriptors for detected features.

We chose the function econvolve to parallelize first. It
consumes 40% of the application runtime. It implements a
simple, one-dimensional convolution pass; it is used twice with
Guassian kernel values to accomplish the Gaussian smooth-
ing required for scale space construction. The convolution
is straightforward to parallelize, consisting primarily of a
multiply-accumulate operation inside a nested loop.

C. OpenMP

OpenMP is an established way of modifying serial code to
take advantage of parallelism on an SMP system. Essentially,
OpenMP works by transforming sections of serial code into
regions that can execute in parallel. The programmer specifies
which regions of code are to be parallelized, and tells OpenMP
which variables are private, public, shared between threads,
etc. With this knowledge, the compiler can take loops (for
example), and split iterations among threads. With proper
separation, the end result of an OpenMP loop is the same as
the serialized loop. In OpenMP, any variable that is dependent
upon the results of previous iterations must be removed or
computed independently. Additionally, any parallelized loops
must have stopping conditions not dependent on functions.
(OpenMP 3.0 can support iterators and function calls for loop

conditions, but at the time of implementation and writing, the
gcc compiler did not support the new functionality.)

Adding OpenMP parallelism to each of the three func-
tions econvolve, computeKeypointDescriptor, and
prepareGrad requires less than 20 new or changed lines of
code in total. That amounts to a less than one percent differ-
ence between the original and the OpenMP parallelized code.
Additionally, the changes implemented required approximately
12 hours to implement and test for correctness.

D. GPU

Accelerating an application with CUDA is a more com-
plex process. NVIDIA describes to their device architecture
as “Single-Instruction, Multiple Thread,” or SIMT, referring
to how it is programmed with multiple, instruction-locked
threads. Additionally, the device has a complex memory
hierarchy, with multiple disjoint memories and special require-
ments to maximize memory bandwidth. Unlike with OpenMP,
serial code can not be extended to make efficient use of
GPGPU capabilities; it must be rewritten to take advantage
of the GPU architecture.

There are two types of code in a CUDA application. First,
there is the “host” code, which is essentially unmodified
C/C++ that runs on the CPU. Second is the “device” code,
written in a subset of C with a number of CUDA-specific
extensions. Typically, the host code will copy input data into
the devices memory, then make a call to a function specified
in the device code. The CUDA runtime translates this call,
downloading the device code to the GPU as a compiled kernel
and executing it, then returning execution to the host code
when the kernel has completed. Then, the host will copy the
output data from the device into system memory.

Of the two most time-consuming functions, econvolve is
best-suited to acceleration on the GPU. It uses memory buffers
for the input image and resulting output images, making it easy
to match with the typical operation described above. Also,
it is called relatively few times, incurring the overhead of
the host/device transition less often.The descriptor computa-
tion (computeKeypointDescriptor) requires access to
more, less cleanly-separated input data, and is called many
more times, making it less suited to GPU acceleration.

Our accelerated convolution kernel is based on code avail-
able in the CUDA SDK. The kernel addresses the two major
issues that arise from the architectural features described
above: using the GPU at maximum efficiency, and coalesced
memory access.

Using the GPU efficiently — by keeping all of its resources
productively working — is more difficult on the GPU than a
multi-CPU system, because of its SIMT architecture. CUDA
uses “threads” to program the many scalar processors on the
GPU (240 on the FX 5800). These threads do not execute
independently, like POSIX threads. Instead, they execute the
instructions of a thread in lockstep. Threads can take different
branches; in practice, this divides the pool of processors into
several sets, one set per branch. The processors from only
one set at a time will be executing instructions, while the

% time | cum. seconds | self seconds calls | name

41.90 12.56 12.56 | 42605 | computeKeypointDescriptor (doublex,

40.13 24.59 12.03 82 | void econvolve<float> (floatx,

10.48 27.73 3.14 | 76770 | prepareGrad (int)
3.50 28.78 1.05 1 detectKeypoints (double, double)
2.27 29.46 0.68 | 34165 | computeKeypointOrientations (doublex,
1.50 29.91 0.45 1 | process(float const=*, int, int)
0.20 29.97 0.06 1 extractPgm(std::istream&, VL::PgmBuffers&)
0.03 29.98 0.01 42605 insertDescriptor (std::ostream\g,

TABLE I

SIFTPP PROFILING DATA

others idle. To maximize efficiency, the convolution code must
minimize divergent thread behavior.

Compared to a CPU, the GPU has relatively little on-chip
memory (i.e., cache), while it has much greater bandwidth
to off-chip DRAM. This bandwidth is only available when
“coalescing” memory reads. Threads are executed in groups of
32, called “warps”. If the threads access consecutive address,
and the first address is aligned to 64 bytes, then 16 memory
accesses (a “half-warp” of threads) will be coalesced into a
single operation. This can change the execution time of device
code by over an order of magnitude, so the convolution code
is carefully written to ensure the correct alignment of memory
operations.

E. Testing Setup

The OpenMP code was tested on a machine with dual quad-
core Intel Xeon “Gainestown” processors running at 2.66 GHz.
These processors have a 8 MB L3 cache shared by all four
cores, and private 256 KB L2 caches for each core.

The GPU device used for the CUDA benchmarking is an
Nvidia FX 5800, which has 4GB of GDDR memory. The
execution time of the CUDA code is compared to execution
on an Intel E6550 “Conroe” processor running at 2.33 GHz.

III. RESULTS
A. OpenMP

Figure 1 shows the runtime of our OpenMP-enhanced
SIFT++, as measured by time command, running with be-
tween one and eight threads. The lines represent the original
image, and three additional images obtained by scaling the
original down to half, quarter, and eighth size. This is done to
illustrate the homogeneity of the work done by the code, and
show how speedup changes relative to problem size.

Figure 2 shows the speedup gained with the OpenMP, based
on the execution times in Figure 1. An ideal linear speedup is
also shown. Our results fall well below this, with a speedup
just over 2x when running threads on all eight processors.

B. CUDA

Convolution on the CPU and GPU demonstrated the behav-
ior shown in Table IT on the next page. The “Compute Time”
column describes how long it takes to complete a convolution
with a kernel width of 15 on an 8272 x 2848 image. The
“GPU” row describes execution time on a FX 5800 graphics
card, and the “CPU” is an Intel E6550 running at 2.33 GHz.

Runtime (s)

Speedup Factor

180

160

140

120

100

80

60

Actual Runtime

i

40
\j v

20'\._ 3

0
1

-

— |

2 4 8
Nurmber of Threads

Fig. 1. SIFT++ runtime as measured by “time”

Fig. 2.

Runtime Speedup

Number of Threads

Speedup of sift++ with OpenMP parallelization

"W2555x1919
3614x2714
7 5110x3838
= 7226x5428

FLinear

4 2555x1919
736142714
5110x3838
722815428

[[[Compute Time | Comm. Time | Total Time |

GPU 10.4 ms 158 ms 168 ms
CPU 2180 ms - 2180 ms

TABLE II
CONVOLUTION ON GPU AND CPU

This result demonstrates more than just the floating-point
power of the FX 5800 GPU. The theoretical (single-precision)
peak performance of the FX 5800 is 933 GFlops, while a
single core of the E6550 can do four floating point operations
per clock cycle, for a theoretical peak performance of 9.32
GFlops. With 100x the theoretical FPU power of the CPU,
the GPU achieves 200x the performance; this is due to the
novel architecture and high on-device memory bandwidth of
the FX 5800.

The second column describes the overhead incurred in the
CUDA implementation. It includes the communication time
required to transfer the input image to the card and copy
the output image from the card, as well as other overhead,
such as the time required to allocate memory on the GPU
device before memory transfers. This overhead far exceeds
the computation time, so the total execution time of the
convolution is 168 ms, only 13x faster than the CPU execution
time.

The entire execution time of SIFT++, including file I/O, is
33.9 seconds for the original siftpp binary, and 17.8 seconds
for the accelerated version. This is a 1.9x speedup is on a 4136
by 1424 image that generates over forty thousand keypoints.
The convolution time and runtime overhead of CUDA are
dependent only on the size of the input image; the results
shown in Table II will not vary with image content.

IV. RELATED WORK

A number of authors have previous explored accelerating
SIFT. This previous work has been in a different domain than
work presented in this paper: these authors have focused on
real-time computer vision applications, typically processing
640x480 images as quickly as possible. At four bytes per pixel,
these images occupy roughly 1.2 MB of memory and may fit
entirely in the cache of a modern CPU. Processing the larger
images we are using will be more affected by system memory
performance.

Previous work on accelerating SIFT with a GPU typically
measures performance in Hz, the number of 640x480 frames
per second that SIFT feature extraction can process. Sinha,
et. al. [5] built “GPU-SIFT” and benchmarked it running
at 10 Hz on an GeForce 7800 GTX, roughly 10x faster
than a CPU implementation. Heymann, et. al. [6] presented
a GPU-accelerated SIFT implementation that achieved an
approximately 5x speedup over an SSE-optimized CPU im-
plementation using a QuadroFX 3400. These video cards,
released in 2005 and 2004 respectively, were less-suited to
GPGPU and were programmed without the benefit of CUDA.

Feng, Zhang, et. al. published several papers [7], [8] on
implementing and measuring SIFT on SMP systems. They

explore three different optimizations: OpenMP paralleliza-
tion, cache optimizations, and SIMD operations (via Intel
SSE instructions). In [8], they show a 6.2x speedup from
parallelization on an 8-core machine; in [7] they show a
10x to 11x speedup on a 16 core machine. Their analysis
shows that memory bandwidth is a determining factor of SIFT
performance.

V. CONCLUSIONS

Using OpenMP, it is straightforward to accelerate existing
serial code on SMP hardware. Our implementation required
minimal changes to the original code in order see a speedup
from parallel hardware. However, the performance of SIFT is
very dependent on the target machine’s memory performance,
and a more careful (and time-consuming) approach is neces-
sary to make optimal use of SMP hardware.

GPGPU can offer immense performance gains, but at the
cost of programmer effort. Attempting a direct port of existing
code is a suboptimal approach. The device code must be
written with the architectural features mentioned above, SIMT
and memory coalescence, firmly in mind. Also, because of the
comparatively slow communication between the device and the
host, a GPU-based applications as a whole must be written
from the beginning to minimize host-device communication.
If there is a relatively discrete portion of the existing code
that is computationally intensive and requires little input or
output from the rest of the application, then it may successfully
moved to the GPU.

In SIFT++, only the convolution function matched that
description, and the data transfer time to and from the device
was still an order of magnitude higher than the computation
time for each call to the function. Part of our planned future
work is a from-scratch implementation of SIFT targeted at the
GPU. By copying only the original image (or tiles thereof)
into the device memory, performing most work there, and
copying only the resulting keypoint descriptors back into
system memory, performance gains up to 100x faster than the
a single-CPU implementation are possible.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.

[2] A. Vedaldi. (2009) Sift++ source code and documentation. [Online].
Available: http://www.vlfeat.org/~vedaldi/code/siftpp.html

[3] NVIDIA, “CUDA technology,” http://http://www.nvidia.com/CUDA,
2009.

[4] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of
computer vision algorithms,” http://www.vlfeat.org/, 2008.

[5] S. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “Feature tracking
and matching in video using programmable graphics hardware,” Machine
Vision and Applications, March 2007.

[6] S. Heymann, K. Muller, A. Smolic, B. Froehlich, and T. Wiegand, “SIFT
implementation and optimization for general-purpose GPU,” in WSCG’07,
2007.

[71 H. Feng, E. Li, Y. Chen, and Y. Zhang, “Parallelization and
characterization of sift on multi-core systems.” in IISWC, D. Christie,
A. Lee, O. Mutlu, and B. G. Zorn, Eds. IEEE, 2008, pp. 14—
23. [Online]. Available: http://dblp.uni-trier.de/db/conf/iiswc/iiswc2008.
html#Fengl.CZ08

[8] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu, “Sift implementation and opti-
mization for multi-core systems,” in Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, 2008, pp. 1-8.

	Clemson University
	TigerPrints
	9-2009

	Accelerating SIFT on Parallel Architectures
	Amy Apon
	Seth Warn
	Wesley Emeneker
	Jackson Cothren
	Recommended Citation

	tmp.1406740218.pdf.lNNgK

