
Clemson University
TigerPrints

Publications School of Computing

5-2006

Architectural Tradeoffs for Unifying Campus Grid
Resources
Amy Apon
Clemson University, aapon@clemson.edu

Bart Taylor
Acxiom Corporation

Follow this and additional works at: https://tigerprints.clemson.edu/computing_pubs

Part of the Computer Sciences Commons

This Presentation is brought to you for free and open access by the School of Computing at TigerPrints. It has been accepted for inclusion in
Publications by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Apon, Amy and Taylor, Bart, "Architectural Tradeoffs for Unifying Campus Grid Resources" (2006). Publications . 14.
https://tigerprints.clemson.edu/computing_pubs/14

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268627928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs/14?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Architectural Tradeoffs for Unifying Campus Grid
Resources1

Bart Taylor and Amy Apon

 Acxiom Corporation University of Arkansas
Bart.Taylor@Acxiom.com Amy.Apon@uark.edu

Abstract. Most universities have a powerful collection of computing resources
on campus for use in areas from high performance computing to general access
student labs. However, these resources are rarely used to their full potential.
Grid computing offers a way to unify these resources and to better utilize the
capability they provide. The complexity of some grid tools makes learning to
use them a daunting task for users not familiar with using the command line.
Combining these tools together into a single web portal interface provides cam-
pus faculty and students with an easy way to access the campus resources. This
paper presents some of the grid and portal tools that are currently available and
tradeoffs in their selection and use. The successful implementation of a subset
of these tools at the University of Arkansas and the functionality they provide
are discussed in detail.

1 Introduction

The University of Arkansas has an assortment of resources ranging from small three
or four node heterogeneous test clusters to a 128 node supercomputer. Faculty mem-
bers and research students use several of these resources on a regular basis and would
benefit from an approach to unifying the interfaces. Job submission, for example, is
generally done on the machine where the job will be executed. Allowing jobs to be
submitted to resources remotely in a scriptable way could save time and reduce the
possibility of making errors when submitting them individually. Multiple courses
also use these resources as tools to teach parallel programming and grid computing
concepts. For example, a large class that teaches MPI programming could benefit
from a campus grid by permitting students to determine how busy a resource is and to
submit their jobs to a machine with a smaller load. Centralizing access to these re-
sources and presenting a single web-based interface for common tasks such as sub-
mitting jobs would provide users with easy access to their jobs or data on any of the
systems from a web browser.

Creation of a centralized resource was prompted by desires and requests to make
using campus resources easier for both students and faculty. These desires form the
basis upon which this project was undertaken and have been continually referenced as
design decisions were made. One benefit of the organization at the University of Ar-

1 Support for this project is provided in part by NSF Grant DUE #0410966.

2 Taylor and Apon

kansas is that ownership and administration of most of the cluster resources on cam-
pus is limited to a few individuals. This means that consensus is much easier to ob-
tain as to what can or should be done not only to the structure as a whole but also to
the individual resources. Listed here are some of the requests and any specific design
characteristics that have been agreed upon:
1. Single Sign-On

A user should be able to sign on one time to a centralized environment and submit
any number of jobs to any resource of their choosing without the need to connect to
each resource individually for authentication. For example, a single authentication
could provide access to an environment where resources can be monitored and valid
Grid Security Infrastructure (GSI) credentials [1][2] can be obtained and used to sub-
mit jobs or transfer files.
2. Scheduler Independent

A user should be able to submit a job to a resource without any knowledge of the
local scheduler. A user should, for example, be able to submit a job to a resource us-
ing Load Share Facility (LSF) [1] as its local scheduler and immediately submit the
same job with the same syntax to a different resource using Sun Grid Engine (SGE)
[2] or Portable Batch System (PBS) [3] and never detect a difference in the behavior
of the system.
3. Single Proxy

A user should be able to obtain grid credentials from a proxy server, which will
minimize the annoyance of having to login to particular resource to obtain grid cre-
dentials and submit jobs.
4. Resource Information Available

A user should be able to obtain general and current utilization and job queue in-
formation for any resource connected to this environment that chooses to provide it.
This will allow users to decide which resource is capable of handling a job or will be
able to complete the job first.
5. Maintainable and Extendable

The solution should be approached so that the result is easily maintainable and ex-
tendable internally as well as extendable by eventually allowing non-UA grid mem-
bers. For example, the solution could allow members of the Southeastern Universities
Research Association's test bed grid (SURAgrid) [4] to access the resources.
6. Resource Independent

Each individual resource administrator should make the final decision as to
whether specific users have access to submit jobs or otherwise use the resource.
Simply obtaining credentials for the grid will not grant access to every resource by
default.
7. Metascheduling

A user should be able to submit a job without concern for where the job is exe-
cuted. While this requirement could produce several benefits, it is beyond the scope
of this research. An additional layer can be added later to facilitate this functionality.

The remainder of this paper is organized as follows: Section 2 surveys available
grid tools and the components needed to make them operational. Section 3 surveys
portal frameworks as well as three portlet packages that provide grid functionality.
Section 4 analyzes the tradeoffs of an implementation of a subset of these grid tools at
the University of Arkansas. Section 5 describes the selection and installation of a por-

Architectural Tradeoffs for Unifying Campus Grid Resources 3

tal framework. The three packages of grid portlets are installed and compared for
functionality. Section 6 presents conclusions. The final result is a portal interface to
the University of Arkansas grid resources.

2 Grid Tools

While some grid tools are available for the Windows and Macintosh platforms, Linux
is widely accepted as the standard for grid applications. Tools surveyed here for
building a grid include Linux cluster installation packages, local schedulers, Globus
Toolkit, Condor, and Certificate Authorities.

2.1 Cluster Installation Packages

A popular choice for administrators wanting to add a cluster resource to a grid is
Rocks [5]. Rocks is based on Red Hat Linux. With Rocks, the front-end of the clus-
ter is installed first with the base operating system and any additional rolls, optional
software and its configuration, desired. After the initial setup, rebooting a compute
node reimages the node from the image on the head node.

Open Source Cluster Application Resource (OSCAR) [8] is another cluster instal-
lation tool. OSCAR, however, does not include the operating system by default.
Once the head node is properly installed, all Red Hat Package Manager (RPM) files
from the installation disks need to be copied to a specific folder in the root directory
in order to create the image for the compute nodes. OSCAR is similar to Rocks, but
allows for a little more flexibility in the installation which makes the process more
complex. Rocks provides a very simple single unit installation that takes little effort
to install but provides less flexibility.

There are several application packages that are needed when adding a resource to a
grid and are not directly grid related. The Java SDK [9] is a requirement for virtually
all of the tools since most of the grid software has been developed in Java. JDK 1.4.2
is generally required as opposed to 1.5 for compatibility reasons. Because grid ser-
vices are an extension to web services, a servlet container, specifically Apache Tom-
cat [10], is another requirement. Other basic tools include, but are not limited to,
Apache Ant, Apache Maven, GNU make [11], and a JDBC compliant database like
MySQL [126] or PostGreSQL [137] with its adapter.

Many problems can be avoided by realizing that a specific version of a software
package may be required for a successful installation of a specific tool. For example,
two versions of Ant may be required if an old version of the Globus Toolkit is in-
stalled as well as the GridPort [14] portal package. Multiple installations of these
packages are possible, but careful attention should be paid to how the environment
variables are set.

4 Taylor and Apon

2.2 Local Schedulers

A local scheduler is necessary for the actual queuing and handling of jobs submitted
to any resource. Local schedulers determine the order of execution of jobs in the
queue, the specific nodes on which a job will execute in the case of a cluster, load
balancing, file staging, and other administrative tasks. Choices for a scheduler in-
clude some mentioned above and also PBS, PBS Pro [15], SGE, LSF, LoadLeveler
[16], Computing Center Software (CCS) [17], and Condor [18]. Some grid tools,
such as the Globus Toolkit, interact directly with the underlying local scheduler and
may require a specific scheduler (e.g. PBS, LSF, or Condor in this specific case) for
which adapters have been written. Third party adapters may also be available (e.g.
currently only for SGE in this case). The open source solutions are popular to keep
costs down. The commercial version of some of these local schedulers, such as Plat-
form’s LSF and Altair’s PBS Pro, offer improved and supplemental functionality.

Fig. 1. Comparison of common local scheduler commands

Each scheduler has its own implementation of the features it supports. A grid tool
such as the Globus Toolkit must interface with these various implementations. Ad-
ministrative settings such as the scheduling algorithm do not affect Globus, but differ-
ences such as the name of the command to submit a job to the queue or check the
status of a job are of great importance. Figure 1 shows several of the basic functions
in PBS, LSF, and Condor. Globus uses adapters installed on a resource for a specific
scheduler to translate a generic set of commands into commands for that scheduler.

2.3 Globus Toolkit

The Globus Toolkit [19] has become widely accepted as the standard tool for building
a grid architecture and boasts success stories including GriPhyN [20], Open Science
Grid [21], TeraGrid [22], and NEES grid [23]. The Globus Toolkit provides identifi-
cation, authentication, authorization, and security for connecting the resources of the
grid, as shown in Figure 2. The infrastructure allows for strict local control of a given
resource but still allows users from anywhere to perform a variety of tasks related to
resource and service discovery, file management, system and job monitoring, and job
submission. It maintains security with standard X.509 [23] certificates and offers its

Architectural Tradeoffs for Unifying Campus Grid Resources 5

own certificate authority, SimpleCA, if one is not already provided at the location.
Globus Toolkit also provides a proxy server, MyProxy Server, to reduce the number
of certificate requests for users with accounts on multiple resources. Globus Toolkit
is a toolkit containing many components that provide the necessary functionality for
two or more resources to be connected in a grid scenario. True functionality is
achieved when the toolkit is used as a foundation for a collaborative environment.

Fig. 2. Globus Toolkit Version 4 architecture [20]

The Globus Toolkit supports a standard interface called Grid Resource Allocation
Manager (GRAM) that allows any remote client to submit a job to the local system
without any knowledge of the underlying components. GRAM adapters are config-
ured to the underlying local scheduler. This is a useful tool for allowing access to us-
ers who may not have a way to get information on the scheduler in use otherwise. It
also offers a way to add resources to a centralized interface such as a portal without
making the centralized interface more complicated each time a new resource is added.
WS-GRAM provides reliable job submission and cancellation through web services.

The Globus Toolkit also includes support for data movement operations, including
GridFTP a server called globus-gridftp-server, and a command-line client called
globus-url-copy. GridFTP provides standard file movement to and from remote serv-
ers and the local machine as well as third-party transfers from remote host to remote
host. Grid Security Infrastructure (GSI) is used on both control and data channels for
security. Multiple data channels are used for parallel transfers, and the striping fea-
ture allows multiple endpoints at the sender, receiver, or both to transfer files faster
than a single machine is capable. The provided client tool can translate between the

6 Taylor and Apon

FTP, HTTP, HTTPS, and POSIX file I/O protocols on the client side. The latest
server implementation released with Globus Toolkit 4.0.1 has been shown to support
up to 1800 clients.

Reliable File Transfer (RFT) extends the GridFTP functionality to provide better
recovery from failure, including client-side failure. RFT provides subscription to
changes in state or polling for state information. RFT behaves like a job scheduler for
file transfers. A job description detailing which files need to be transferred with
sources and destinations is submitted by a user. The job is stored in a database in case
of system failure, and the transfers are executed. If the RFT service fails, the jobs are
resumed when RFT is restarted. This is also helpful for users whose connection may
not be maintained for the duration of the transfer, such as laptop users. The job is
handed off to a scheduler that performs the transfers on the user's behalf without the
user being directly involved after the submission. Users can request the status of the
transfers or use the Web Services Resource Framework tools provided with the
Globus Toolkit to subscribe to notifications of state change.

An emerging mechanism for security in the Globus Toolkit is GridShib [25], which
is a blending of the Globus Toolkit and Shibboleth. With Shibboleth [26], all attrib-
utes about a user are stored at the user's home institution and distributed in response
to requests from remote services through interaction with an Identity Provider. Grid-
Shib is comprised of two plugins, one each for Globus and Shibboleth, that allows a
Globus grid service provider to request user attributes from an Identity Provider. The
GridShib approach offers finer grain control of who has access to which resources
while maintaining all the core functionality of a standard Globus installation.

2.4 Condor

Condor is a useful batch processing utility for queuing and handling many serial jobs
that are run simultaneously on many individual computers. These computers can be
dedicated Condor machines or regular workstations that serve as compute nodes when
they are in an idle state. The ability for the Condor Manager to return to the submit
machine only workstations that are not currently being used makes it an attractive so-
lution for scaling an existing resource quickly. Hardware that already exists on the
network can be easily added to a Condor pool. This is useful if a large supply of ma-
chines that get little usage already exists or if the funding for a dedicated resource is
not available. Authentication can be achieved using X.509 certificates just as the
Globus Toolkit does, and a Condor CA is also provided.

Figure 3 shows the structure of Condor job submission. Compute machines ini-
tially alert the Condor Manager to their existence and node information such as proc-
essor speed and available memory. When a user submits a job, the submit machine
advertises the job requirements specified by the user to the Condor Manager, which
returns a set of available machines that meet these requirements. The submit machine
then communicates directly with the compute machines.
Condor also supports a mechanism called flocking that offers another pool of execute
machines if the local pool is busy. If job cannot be run on the local pool it flocks the
job to the remote pool if the remote pool has enough available resources. This is use-
ful in the situation where two institutions or departments each have their own Condor

Architectural Tradeoffs for Unifying Campus Grid Resources 7

pool but agree to share resources. The group with the smaller pool can still execute a
large number of processes.

Fig. 3. Condor job handling Fig. 4. Condor-C job handling

Condor requires many network ports to be open per compute node to communicate
with the manager that passed it the job. Under a normal flocking scenario across a
firewall, the number of ports becomes can become unmanageable before the size of a
Condor pool is really useful. The Condor-C [27] approach reduces the number of re-
quired open network ports of this by sending the entire job to a submit machine on the
remote resource pool and allowing it to handle the interaction with each compute
node. The remote submit machine will return the results to the local submit machine
for retrieval when the job completes. This capability is shown in Figure 4.

Condor-G [28] is an extension of Condor that works with the Globus Toolkit.
Condor blends the benefits of the Globus infrastructure with Condor's approach to
batch processing. Instead of using Globus repeatedly to start many jobs, a single
Condor job request can be sent to a Condor-G server that starts all of the jobs on
Globus resources by translating the Condor job into the GRAM format that Globus
understands. This is accomplished by modifying the Condor job description, called a
ClassAd, to specify the type of Globus resource, the remote job manager, and the lo-
cal scheduler on the remote machine. Globus only needs to be installed on the re-
source targeted for execution. It does not need to be installed on the submission re-
source. The submission machine uses GridFTP for staging files to the Globus
resource. Condor-G does not replace Globus. Condor-G uses Globus for its security
and grid capabilities. It attaches Condor's idea of batching jobs to the Globus frame-
work by translating jobs and passing them to Globus.

8 Taylor and Apon

2.5 Certificate Authorities

Certificates are the default method of security in grid computing. They are based on
the Public Key Infrastructure (PKI) with asymmetric public and private keys. A Cer-
tificate Authority (CA) generates these certificates that contain, among other informa-
tion, the public key and unique Distinguished Name for the subject of the certificate.
Many institutions and organizations already have a working Certificate Authority.
For those who do not already have one, but do have a Globus Toolkit installation,
SimpleCA may be used. SimpleCA is a wrapper for the OpenSSL CA. The CA pro-
vides a mechanism for signing grid credentials in the form of X.509 certificates. Re-
sources can be configured to trust certificates from multiple CAs, thus allowing ac-
cess to the resource from as many institutions as are desired. For institutions where
all users will obtain certificates from the same CA, such as a university campus, Sim-
pleCA may be sufficient. For more complex architectures, such as with virtual or-
ganizations, commercial Certificate Authorities are available.

A useful tool to ease the complexity of security for grid users is a grid certificate
proxy server. A proxy certificate is a copy of the credentials that uses a different en-
cryption key and generally has a much shorter life span than the original credentials.
The shorter life span helps ensure that if a third-party manages to decrypt the certifi-
cate and attempts to use the credentials, they will not be valid for long. The Globus
Toolkit provides such a server by default called the MyProxy Server. This allows a
user of the grid who submits jobs from accounts on multiple machines at different
times to keep only one set of valid grid credentials instead of needing credentials on
every machine. Once a valid set of credentials is obtained, the user can easily store
them in the proxy server. When the user needs to update a proxy for any account on
any machine on the grid, it can be done through the proxy server. Figure 5 shows the
steps of proxy management and the life expectancy for the credentials at each step.

Fig. 5. Credential Management with a MyProxy server

For example, a user joins a university and is given accounts on resources A, B, and
C. The user only needs to request one set of credentials for one of these accounts.

Architectural Tradeoffs for Unifying Campus Grid Resources 9

Once these credentials are granted, the user can place them in a MyProxy Server.
When a proxy is required for submitting from any of the resources, A, B, or C, a re-
quest can be made to the MyProxy Server, and a valid proxy will be granted from the
server. This also helps reduce the workload incurred by the Certificate Authority ad-
ministrator. When a user has an account on any given resource the user will only
need to generate a one certificate. The request for a certificate to be signed usually
occurs when the user initially joins the grid.

3 Portal Tools

The idea of web portals has been around for many years. They are used every day by
a wide range of users at enterprise intranets, e-commerce sites like Amazon, and news
and information sites like Yahoo. These sites provide a central location where users
can access a pool of services and information that the portal provides. Grid portals
operate on this same basic principle. The portal just provides the framework in which
these services are housed and accessed. Portlets are designed as pluggable modules
that can be added or removed from the portal framework and provide a desired ser-
vice or functionality to the overall portal environment. Many portlets designed are
freely available for download and can easily be added to a compatible framework.
This section describes both portal frameworks and portlets.

3.1 Portal Frameworks

The trend among most of the available portal packages today is a separation of the
content from the portal framework. Within the last few years, a Java portlet specifica-
tion, JSR-168 [29], has been adopted as the default standard for portlet development.
Because of the development of this standard, co-led by Sun with strong industry back-
ing and support, the portals can be tailored to support a single interface to the content
portlets that they will be used to house. Many portals have chosen to offer this stan-
dard interface in addition to the proprietary interface already implemented in their de-
sign. In many cases, the proprietary interface is more stable and offers more ad-
vanced features to portlet developers. Portal frameworks considered for the UA Portal
include WebSphere [30], Jetspeed [31], GridSphere [32], uPortal [33], and Grid En-
gine Portal (GEP) [34].

3.1.1 WebSphere

WebSphere Portal is an IBM product that provides an out-of-the-box web portal for
enterprise settings. It provides authentication through a Tivoli LDAP server, user
customizable pages stored in a DB2 database, access from desktops and Personal Data
Assistants, single sign-on using encrypted cookies to access WebSphere protected re-
sources with a credential vault for back-end systems, and local and remote portlets.
Administrators can install and interact with remote portlets as if they are installed lo-
cally, and any change or update to the remote portlet is reflected to all users. Many

10 Taylor and Apon

web portlets for enterprise use such as a people finder, document manager, email port-
let, contact list, and search center are supplied. Although the WebSphere framework
is geared toward an enterprise setting and not specifically directed toward grid com-
puting, an existing implementation of WebSphere could be extended to support grid
applications by adding portlets that make use of grid resources and support the Web-
Sphere API or the JSR-168 standard.

3.1.2 Jetspeed

Jetspeed is an open source Apache project built as an Enterprise Information Portal, a
gateway to a business' information, data, and knowledge base for employees or cus-
tomers, and has been in development since 1999. From a web browser a user can ac-
cess content from network resources such as applications and databases that are added
to the portal. Jetspeed also works with templating applications such as WebMacro
and Velocity to help separate content presentation and Java code in portlets. Tem-
plate engines allow simple referencing of objects defined in Java code. Jetspeed-2 in-
troduces improvements such as JSR-168 compliance and multi-threading. Authenti-
cation and authorization are achieved through the Java Authentication and
Authorization Service (JAAS) , which is a Java implementation of the Pluggable Au-
thentication Module (PAM). JAAS and PAM are easy-to-use modules that allow ap-
plications to remain independent of the actual authentication process. Role Based
Access Control (RBAC) is also used to grant access to specific sections of the portal.
RBAC uses the concept of a hierarchy of user permissions where the top level of the
hierarchy has broader permissions, and it is implemented in a markup language.
Apache Ant, Apache Maven, Java SDK 1.4.2, and the Tomcat servlet container are
prerequisites for Jetspeed-2.

3.1.3 GridSphere

GridSphere is an open source project that is part of GridLab [35], a European Union
funded venture into developing application tools and middleware for grid environ-
ments. GridSphere provides compatibility with the JSR-168 standard for portlet API
and near full compatibility with the WebSphere 4.2 API. It also supports portlet de-
velopment using Java Server Faces (JSF). A set of core portlets that handle user au-
thentication, user customization, and administration features such as user, group, and
portlet management are installed by default. It also supports localization, adaptation
of language and content in 10 languages. All portal configurations are done by edit-
ing XML files. RBAC is implemented by default in the portal. It separates user ac-
counts into guests, users, administrators, and super users. GridSphere builds on the
Web Application Repository (WAR) deployment model, so support of third-party
web applications is implicit. Only an empty file whose name corresponds to the
WAR file for the application needs to be created to tell the container to load it. Port-
lets can be dynamically started, stopped, and reloaded without restarting the hosting
container. GridSphere provides an automated file and template generator through an
Ant command to facilitate developing custom JSR-168 portlets. Java SDK 1.4.2,

Architectural Tradeoffs for Unifying Campus Grid Resources 11

Tomcat 4 or 5, and Jakarta Ant 1.6+ are prerequisites for installing the GridSphere
framework. A single Ant call is needed to install and deploy the portal.

3.1.4 uPortal

The Java in Administration Special Interest Group (JA-SIG) [36] is leading the way in
the development of a university-wide Portal called uPortal, which is free for post-
secondary institutions and targeted specifically at the needs of universities. Five
member universities are working on its development. Currently, uPortal supports the
implementation of channels, not portlets. However, as of version 2.3, portlets can be
used via a conversion mechanism and the Pluto [37] portlet container, which is an
Apache project. Version 3.0 is slated as the version where portlets will become the
default content module and includes support for channels through a Channel-to-
Portlet adapter. The uPortal implementation is beneficial for universities that only de-
sire the framework to provide classes, interfaces, XSL stylesheets, and XML data files
for their Java programmers to utilize when building a custom campus portal.

3.1.5 Grid Engine Portal

Grid Engine Portal (GEP), developed by Sun, was formerly known as Sun Technical
Computing Portal. This portal is built on Sun's Grid Engine and SunONE Portal
Server [38]. Given this specific set of software, Sun is able to provide a variety of
services including single sign-on, fine-grained security policy rules, discovery of
available back-end resources, and load-balancing. GEP is also based on the idea of
channels. By default, it provides channels allowing the ability to create projects, view
applications available from the portal, and submit and monitor jobs with email alerts
of completion. Its downside is the lack of independence from other Sun specific
software packages. Sun does claim, however, that it is only loosely tied to these
packages.

3.2 Portlets

Portlets serve as the content that is plugged in to a portal framework, and this content
can conform to the JSR-168 specification. While the portlets being considered here
are directly related to the field of grid computing, they could just as easily be unre-
lated to grids and more akin to information portlets in popular web portals such as
MSN and Yahoo. Several open source portlets have already been developed for the
purpose of unifying grid resources. Development time can be better spent in creating
portlets that offer new tools to the user since it is not necessary to redevelop existing
code to get the basic functionalities. Discussed here are a few readily available portlet
packages that supply much of the necessities for a useful grid portal such as job sub-
mission and file management.

12 Taylor and Apon

3.2.1 GridPortlets

GridPortlets are released as a supplement to the GridSphere framework. They are
JSR-168 compliant and are therefore compatible with other portals as well. In the
GridPortlets version 1.1.3 support is provided for credential management with a
MyProxy server, remote job execution via GRAM interface, remote file management
via GridFTP, and information on current resources registered with the portal. By de-
fault the portlets are only compatible with Globus Toolkit 2.4. Support for GT3 and
GT4 is under development in the gt3portlets and gt4portlets projects, respectively, but
these projects have not yet been released for general use. They can be checked out of
GridSphere's CVS repository if desired. Configuring the portlets involves editing the
build.properties file in the root directory of the package and the webapp/WEB-
INF/Resources.xml file. The build.properties file contains basic installation informa-
tion such as necessary paths and debugging flags. The Resources.xml file contains
any resources to be used from the portal and supplies sample XML for defining re-
source services. It can also be edited at run-time through a portlet installed with the
package. A single Ant command will install and deploy the portlets.

3.2.2 OGCE

The Open Grid Computing Environment (OGCE) [39] develops open source portlets
with the intention for them to be used under multiple portal frameworks. GridSphere
and uPortal are specifically mentioned with instructions for installation. The version
discussed here is OGCE2-RC5. In addition to the JSR-168 standard, they also sup-
port Velocity and Java Server Pages (JSP) based portlets by providing conversion
tools to the JSR-168 standard. The group of 'Core Grid Portlets' they provide supplies
portlets for proxy management with a MyProxy server, remote command execution
via GRAM interface, remote file management using GridFTP. Grid Portal Informa-
tion Repository (GPIR) [40] information services are provided using a GridPort [41]
portlet which is discussed in the following section. All of these portlets work with
Globus Toolkit 2.4, GT3.0, GT3.2 and GT4 and allow dynamic version selection from
the portal. Basic configuration of the portlets is accomplished by editing the
grid.installation.properties and project.properties files in the root directory of the
package. The grid.installation.properties file defines on which hosts the MyProxy,
GRAM, and GridFTP services are available. The project.properties file defines path
information as well as portal container specific information. After this is completed, a
simple Maven command will install and deploy the portlets automatically.

3.2.3 GridPort

GridPort, short for the Grid Portal Toolkit, is available through the University of
Texas, in conjunction with the Texas Advanced Computing Center (TACC). GridPort
3.5 supports authentication via MyProxy server, command execution and batch jobs
through a GRAM interface, file management through GridFTP, GPIR information
services, job submission through the Community Scheduler Framework (CSF) and

Architectural Tradeoffs for Unifying Campus Grid Resources 13

Job Sequencer, which executes a linear sequence of these tasks that can be performed
by GridPort. Support is only available for Globus Toolkit 3 resources from the Grid-
Port 3 portlets. GridPort 4 was recently released and includes support for the Globus
Toolkit 4 and Condor job submission. GridPort offers a prepackaged demonstration
portal or individual portlets for download. There are configuration files in each of the
portlet root directories and the overall demo portal root directory named pro-
ject.properties that can be used before installation. Maven is used to automate the in-
stall process.

The GridPort Information Repository (GPIR) portlet is a front-end to the actual
service. The system is based on remote providers that gather data about a system on a
set schedule and send this data to an ingester service that collects the information for
multiple resources. The portlet is designed to pull information out of this repository,
a Hypersonic SQL database, and present it in a visual manner that can be adjusted be-
fore the portlet is deployed. To get functionality from this portlet, the remote pro-
vider must be installed on the resources to be monitored, and an ingester needs to be
set up on a machine that is accessible by the portal or on the portal itself. The remote
provider installation also installs SOAPLite by default for the user performing the in-
stall. It is recommended that this user have a separate account.

4 UA Grid

A grid was constructed at the University of Arkansas using Globus Toolkit 4.0.1 as
the base software. Globus Toolkit version 4 was selected as it was the newest release
of Globus available at the time that was compatible with the portlets most of interest.
A tradeoff of this choice is that some portlets are not compatible with GT4. The sin-
gle implementation requirement imposed for each resource that provides job submis-
sion is that it must support a GRAM interface. The only requirement imposed for
availability of file management from the portal is an installation of a GridFTP server
on each resource. Section 4 describes the selection of UA grid components and their
installation, and command line testing.

4.1 UA Grid Component Selection and Installation

The components of the UAGrid that have been installed include security components,
the Prospero cluster, the UAGridPortal host for the portal, and the Kite Condor clus-
ter. The base implementation decisions and process for the security components or
the grid, Prospero and the UAGridPortal computers are described here.

4.1.1 UA Grid Security Components
Obtaining grid credentials in the form of a X.509 certificate is a necessary step to us-
ing default installations of Globus, so SimpleCA was installed on a local Linux ma-
chine, and each resource accepts grid certificates signed by this CA. A MyProxy
server is installed on a local Linux machine for housing these credentials.

14 Taylor and Apon

Figure 6 shows how a user could interact with the UA Grid. From an account on
the Prospero cluster, the user requests credentials from the CA as shown in step 1.
After their return in step 2, the user places them into the MyProxy server as shown in
step 3. From the portal interface, step 4 shows a request that is made for a proxy cer-
tificate, and that certificate is used to execute tasks on the grid resources in step 5.

Fig. 6. User interaction with security components of the UAGrid

4.1.2 Prospero Cluster
 Prospero is a 32 node dual-processor cluster that serves as a research tool for both
faculty and students at the University of Arkansas. The decision was made to install
the operating system and software stack with a fresh installation. The Rocks 4 cluster
installation package is used on most clusters on campus, so it was the best choice for
familiarity of administration. The standard Rocks install was performed with the PBS
roll for the local scheduler and the Condor roll for later use by research students
working with it. Originally, the SGE local scheduler was installed, but this resulted in
a version inconsistency that caused all of the nodes to continually reboot. This in turn
reimaged the node with the same flaw which did not solve the problem. This setup
was eventually discarded and replaced with a reinstallation of the operating system
with PBS as the scheduler. The Jakarta Ant and Java SDK packages required for in-
stalling the Globus Toolkit 4.0.1 were installed with Rocks by default.

A user named 'globus' was created to own the GT4 installation. The source for
GT4 was unpacked and installed following the instructions provided by Globus. A
host certificate was requested, signed by the local CA, and placed in the /etc/grid-
security directory. Copies were made of the hostcert.pem and hostkey.pem files and
saved as containercert.pem and containerkey.pem. The globus user then generated a
request for a user certificate, and the signed certificate files were placed in the .globus
directory of the globus user's home directory. An entry was made in the /etc/grid-
security/grid-mapfile that corresponded to the certificate and username for the globus
user based on the instructions in the Globus installation instructions. The GridFTP
server was also started as a background process. GRAM was installed and configured
with PBS as the local scheduler by following the instructions in Chapter 11 of the
Globus installation guide. The GridFTP server was tested against the UAGridPortal's
GridFTP server once its installation was completed. GRAM was also tested from
UAGridPortal and from the MyProxy server.

Architectural Tradeoffs for Unifying Campus Grid Resources 15

4.1.3 UAGridPortal
The approach to building UAGridPortal was taken in much the same way as the in-
stallation of Prospero. Because it is a single dual-processor machine and not a cluster,
Fedora Core 3 was chosen for the base installation. The necessary prerequisite soft-
ware for the Globus Toolkit was installed, followed by a binary installation of the
toolkit itself.

The decision of which portal framework to choose was influenced by the desire to
utilize previously developed standards-compliant portlets. The effort involved in de-
veloping basic portlets such as a job submission portlet can be redirected toward cre-
ating necessary portlets with new functionality since several job submission portlets
already exist. This meant selecting a JSR-168 compliant portal that could use some of
the more popular portlet packages. GridSphere was chosen as the framework for the
portal for this reason, as well as the demonstrated successful implementation of the
portal for LSU and SURA and its well-developed user interface. The package is also
very simple to install, maintain, and modify. Its prerequisites were obtained, and
GridSphere was then built and deployed to Tomcat. Once the Tomcat startup script
was run, the GridSphere portal was web accessible.

The UAGridPortal Fedora Core 3 installation was a 'custom' installation, which al-
lowed the choice of which packages were preferred at install time. A hostname was
chosen, and a static IP address and entry in the local DNS were obtained for it prior to
starting the install. Several of the basic packages that are necessary for the Globus
Toolkit and GridSphere were obtained from their respective websites. The Java SDK
version 1.4.2 was obtained from Sun, and the JAVA_HOME environment variable
was set after unpacking it in /usr/local/bin/j2sdk1.4.2_09. Apache's Ant 1.5.1 and
Maven 1.0.2 packages were obtained from the Jakarta website and unpacked in the
/usr/local/bin/jakarta-ant-1.5.1 and /usr/local/bin/maven01.0.2 directory as well. The
corresponding ANT_HOME and MAVEN_HOME environment variables were set to
these directories. Apache Tomcat was initially installed in the /usr/local/bin/jakarta-
tomcat-5.5.4 directory as well, but some of the later installations looked for it in the
home directory of the portal user. Since no other user on the system needs access to
Tomcat, the install was moved to the portal user's account, and CATALINA_HOME
was set to the root directory of the package.

At this point, the server was ready for the Globus Toolkit 4.0.1 installation. A user
named 'globus' was created to own the Globus installation. The Fedora Core 3 binary
was downloaded from the Globus site, and installed as the globus user to
/usr/local/globus following the instructions provided on the Globus installation man-
ual. The GLOBUS_LOCATION environment variable was set to point to this loca-
tion. A host certificate was requested by this installation, and the local CA signed the
host certificates which were placed in /etc/grid-security. The files hostcert.pem and
hostkey.pem were copied to containercert.pem and containerkey.pem respectively.
The globus user then requested a user certificate, which was then signed by the CA
and stored in the globus user's ~/.globus directory. An entry was made in the grid-
mapfile according to the instructions in the Globus installation manual. An instance
of the GridFTP server was also started and run in the background.

Before the GridSphere 2.0.4 package was installed, the user 'portal' was created for
the explicit purpose of owning the portal installation. This home directory is where
the Tomcat installation resides. It was also discovered that some of the packages to

16 Taylor and Apon

be installed required a different version of Apache Ant, so version 1.6.1 was obtained
and installed to the portal user's home directory. The portal user’s environment was
configured to use this new installation directory. GridSphere was unpacked, installed
and configured, and the GRIDSPHERE_HOME environment variable was set to
/home/portal/gridsphere-2.0.4. The portlet packages by GridSphere, OGCE, and
GridPort, were installed and configured.

Fig. 7. Prospero and UAGridPortal software stacks

Figure 7 shows the software stacks for Prospero and UAGridPortal from the oper-
ating system at the bottom to the user interface at the top. Prospero offers a GridFTP
and GRAM interface. UAGridPortal offers both of these as well as a portal interface.

4.2 Command Line Testing

All of the grid tools that have been installed on University of Arkansas resources are
designed to be used from a command line. The grid was tested using this command
line interface. The following sections describe tasks such as job submission, third-
party file transfers, and credential management, and how they can be accomplished
using the command line tools provided with the Globus Toolkit 4.0.1.

4.2.1 Credential Management with Proxy Certificates
Regardless of the preferred interface, once a user is given his first account on the grid,
he must perform a certificate request from the new account. This is accomplished by
logging to a grid resource and using the grid-cert-request command. This command
creates three files in a subdirectory of the user’s home directory: usercert.pem, user-
cert_request.pem, and userkey.pem. The command also gives instructions to email
usercert_request.pem to a specified administrator email address for signing by the
CA. The command causes a prompt to appear for a name, which will become the
Common Name in the certificate granted, followed by a request and verification for a
passphrase for the certificate. Once this is complete, information for mailing the cer-
tificate is displayed. The usercert.pem file is a placeholder that will be overwritten
when the requested certificate is signed and returned. The certificate is usually re-
turned with liberal permissions that must be changed to be granted a proxy. The

Architectural Tradeoffs for Unifying Campus Grid Resources 17

maximum allowable permissions are read and write permission for the owner and
read permission for the group and other users. This can be achieved using the “chmod
644 usercert.pem” command. Once an account has valid credentials, there two op-
tions: 1) a proxy can be created using the credentials in this account on this resource,
or 2) the credentials can be placed in a MyProxy Server repository for use from any
resource on the grid that recognizes the CA that signed the certificate.

A user can create a proxy from the certificate by using the grid-proxy-init com-
mand on a resource where the grid credentials are stored. The command displays a
prompt for the passphrase used in the grid-cert-request command, and then the expira-
tion date of the proxy is displayed. If problems occur when using this command, the -
debug option can be specified to provide additional information. The -verify option
will force a check of the certificate for which the proxy is being created. Once this is
accomplished the user is ready to use the grid tools that require valid credentials.

To store a credential in a MyProxy Server repository the user runs the myproxy-
init command from a computer where the grid credentials are stored. The server must
be set up and running, and either the MYPROXY_SERVER environment variable
must be set or a fully qualified address of a grid resource that holds the user’s certifi-
cates must be known. The -s option allows the name of the server to be specified in
the command, and the -l option states the username for the proxy in the repository.
The myproxy-init command needs to be run every time the credentials in the reposi-
tory expire. By default the expiration time of the credential in the repository is seven
days and this can be set with the myproxy-init command’s -c option, in increments of
an hour. Once a credential is stored in the MyProxy repository, the myproxy-logon
command can be used to obtain a proxy credential.

4.2.2 Running Remote Commands with GRAM
Jobs are submitted to Web Services GRAM (WS-GRAM) with the globusrun-ws
command. Once a proxy certificate is created, a user can specify the executable and
arguments as well as the resource that should be used and many other job specific op-
tions. A simple job can be run with all of the options specified on the command line.

Specifying the -F option tells GRAM exactly which factory should be used for
executing the specified job. An example of this is shown in Figure 8. The Hello
World program is submitted to the ManagedJobFactoryService on the specified ma-
chine using port 8443. Leaving off the -F option will default to the localhost on the
same port using the same factory for submission.

Fig. 8. Job submission with globusrun-ws using the –F flag

The length of these commands can grow very quickly and become burdensome to
the submitter, so an alternative is provided in the form of a job description file. This
is an XML based file specified with the -f option on the command line.

18 Taylor and Apon

This is only a subset of what can be done using GRAM, but it services the needs
for most of the users on the University of Arkansas campus. Any testing or usage
outside of these basic submission examples should work as described in the WS-
GRAM user's guide.

The standard file management tool provided with GT4 is GridFTP. GridFTP al-
lows not only normal transfers from remote hosts to the local machine and vice versa
but also third-part transfers from one remote machine to another remote machine. A
server is provided as well as a client, and the command-line client is suitable for
scripting. However, no interactive client is provided. GridFTP operates on the same
principle as FTP in regard to using both a command and data channel, but security is
used on both. Multiple data channels can be opened for parallel transfers. Other fea-
tures include reusable data channels to reduce the overhead associated with closing
and reopening channels for many small files and partial file transfers.

The server is started by the globus-gridftp-server command. Typical options in-
clude -p for setting the port and –S to run the server runs as a detached background
process. Many of the command-line options can be applied in a configuration file
specified in the command or located in the $GLOBUS_LOCATION/etc/gridftp.conf
file or /etc/grid-security/gridftp.conf. Only the first of these three options found was
used in the University of Arkansas implementation.

The transfers are generally accomplished using the globus-copy-url command. Its
arguments are in the order of source then destination. A multitude of options are
available including recursive copying, specifying a list of files to transfer in a file, and
the size and rate of the current transfer. Figure 9 shows a third-party transfer of a file
from one remote machine to another.

Fig. 9. Globus-url-copy from remote host to remote host

4.2.3 Example Use Case
The amount of functionality available presents many different possibilities for how
users might interact with the grid. A typical usage will begin with the user logging
into one of the Globus resources. If the credentials in the MyProxy Server have ex-
pired, which is displayed when running the myproxy-logon command, then the grid-
proxy-init -debug -verify command must be run on the resource holding the creden-
tials the user requested from the CA, and the myproxy-init command should be run to
put the credentials back into the MyProxy Server. On the original resource the user
logged into, the myproxy-logon command will grant a valid proxy certificate.

Suppose the user needs to run a simulation based on the data files in the home di-
rectory on the current machine, but the current machine is not capable of running the
simulation. The data files need to be moved to the target resource. The user may
move all of the files in the datafiles directory on the local machine to the same direc-
tory on the supercomputer and start the simulation as:
% globus-url-copy
file:///home/user/simulation/datafiles/gsiftp://campus.supercomputer.edu/home/user/simulation/datafiles/
%globusrun-ws -submit -F
https://campus.supercomputer.edu:8443/wsrf/services/ManagedJobFactoryService
/home/user/simulation/simulation-binary

Architectural Tradeoffs for Unifying Campus Grid Resources 19

The simulation may run for several hours and terminate. The globus-url-copy com-
mand can also be used to copy the results back to the original host if desired.

5 UA Portal Design

Usage of the command line interface can quickly become complicated and almost
burdensome, hence the desire of some users for a portal type interface. There is a
tradeoff in using a portal, however. Since the simplicity of a graphical interface often
removes the advanced functionalities of shell based commands, many users still de-
sire the increased power that the command line offers, or simply prefer the interface
to which they are accustomed.

Once the University of Arkansas’ baseline resources had been installed and tested
using the command line interface, three packages of portlets were installed to test the
system and compare functionality. GridPortlets, developed by the GridSphere team,
was a natural choice. With the portal framework chosen it was likely to install prop-
erly and also provides essential features such as obtaining proxy grid credentials, job
submission, and file management. The OGCE portlet package was also installed and
tested because it offers the same functionality with its own implementations as well as
some other functions such as a queue viewer and resource monitoring. GridPort 3
was installed and tested because it supplies a demo portal that contains a few portlets
as well. Its installation was a little less straightforward and is explained in detail
along with the installation details of the rest of the portlets in this section. The release
of GridPort 4 resolved these issues and was much easier to install. The portlet pack-
ages rely on a MyProxy server for obtaining credentials. The portlets were config-
ured to use the MyProxy server and Prospero for job submission and GridFTP usage.

5.1 GridSphere and GridPortlets

GridSphere distributes GridPortlets along with the portal framework to provide grid
functionality. GridSphere was extracted in the portal user’s home directory, and the
“ant install” command was run in the extracted folder to complete its installation. The
GridPortlets package was extracted in the $GRIDSPHERE_HOME/projects folder.
All that was left to have a functioning grid portal was to run the command “ant in-
stall” from the $GRIDSPHERE_HOME/projects/gridportlets directory and to start the
Tomcat server. Starting the Tomcat server was done by running the script startup.sh in
the $CATALINA_HOME/bin directory. If the Tomcat server had been running, it
would have been restarted by running the shutdown.sh script in the same folder, fol-
lowed by the startup.sh script. A web browser was then pointed to the URL
http://uagridportal.csce.uark.edu:8080/gridsphere where the portal is deployed. The
default password for the root account was used to log into the portal.

The basic configuration of the GridPortlets involved editing a file located in the
$GRIDSPHERE_HOME/projects/gridportlets/webapps/WEB-INF directory. In order
for local resources to be added to the portal, the Resources.xml file was modified to
include them. Samples of GRAM, MyProxy, and GridFTP resources available in this
file were used as examples. The file can also be edited through the portal. If changes

20 Taylor and Apon

are made through the portal they will be lost if a reinstall of the portal is done without
first backing up the file. The MyProxy server requires credentials to use, so a proxy
file was specified in its entry in the Resources.xml file. Once the configurations were
made, the %ant deploy command was executed from the
$GRIDSPHERE_HOME/projects/gridportlets directory. This updated the files de-
ployed to the Tomcat server. Tomcat was restarted once again.

5.2 OGCE portlets

The OGCE set of portlets supports a few more options in addition to the same func-
tionality that GridPortlets provides. The package was extracted in the same
$GRIDSPHERE_HOME/projects directory as the GridPortlets. Inside the ogce2 sub-
directory that this creates, the grid.installation.properties file was updated to include
the resources that needed to be added. The project.properties file was also updated to
contain the proper Tomcat directory, deployed GridSphere directory in Tomcat, and
the IP address of the portal machine. It should be noted here that the default OGCE
settings require Tomcat to be installed in the same account to which the portal is be-
ing built and deployed. This can be changed by further editing of these same files.

The “maven gridSphereDeployAll” command was executed in the same directory
that these files are located. This deployed all of the portlets to the Tomcat server.
Tomcat was then restarted again. To use the new portlets, an administrator account
was used to create a new group using the provided interface under the Administration
tab and 'Groups' pane. After clicking 'Create new group', the administrator gave the
group the name OGCE and a description, and then selected all of the OGCE portlets
that were just deployed. The layout was then given a name, and 'Create Template
Layout' was selected. An OGCE tab containing all of the portlets that were added ap-
peared next to the GridSphere tab. If this had not occurred automatically, the user
would have been added to the new group manually.

5.3 GridPort 3 and GridPort 4

The final set of portlets installed was developed by GridPort. A demonstration portal
is provided as well as individual downloads for each portlet. The demo portal for
GridPort 3 was extracted in the $GRIDSPHERE_HOME/projects folder as were the
first two packages. This is a variance from the GridPort instructions. Several instal-
lation issues arose with the individual portlets, so it was simpler to install the demo
portal. GridPort by default deploys the GridSphere framework and its own portlets.
Since GridSphere had already been deployed, this was undesirable. Instead of run-
ning the “maven deploy” command the “maven deploy-portlets” command was cho-
sen to only install the portlets. A problem still arose with the installation of the gp-
common portlet, so the prerequisite to install it was removed in the maven.xml file.
Once the “maven deploy-portlets” command was run, all of the portlets defined in the
project.properties file on the first line are installed. The installation of the Proxy
Manager portlet was the same as the OGCE portlet, so a new portlet was not listed.

Architectural Tradeoffs for Unifying Campus Grid Resources 21

Tomcat was again restarted, and a new group was created to include these new port-
lets.

The release of GridPort 4 fixed many of the issues in the previous version. The
latest release was extracted in the portal user’s home directory, and the “maven
gp:deploy” command deployed the demonstration portal to Tomcat. If GridSphere
had not yet been installed, the “maven gp:install” command would have installed and
deployed it first and then completed the GridPort install.

Fig. 10. GridPort ProxyManager Portlet

Figure 10 shows the Proxy Manager Portlet. Figure 11 shows the File Manage-
ment Portal. Files can be uploaded or downloaded through the browser, or moved be-
tween machines that are registered with the portal. Figure 12 shows the Job Submis-
sion Portal and the fields available. The resource to which the job is submitted must
be entered as a GRAM resource in a configuration file in order to show up in the Host
list. A GPIR Browser Portlet was also configured but not shown here.

6 Conclusions

Since grids are by nature complex with varying architectures, software stacks, owner-
ships, and administrators, it is difficult to foresee an out-of-the-box grid solution that
can simply be switched on. The installation and administration of these tools will al-
ways maintain some degree of complexity since no two grids are likely to be identical
without some planning. However, grid tools are becoming widely used, and the sup-
port supplied by documentation and the user community is adequate for most cases.
The increasing amount of effort devoted to research in the area of grid computing and
development of tools to facilitate it have produced amazing results in the latest gen-
eration of grid tools.

With many of the major functionality holes filled and the overall stability of grid
tools such as Condor, Globus Toolkit, and Shibboleth, many administrators are find-
ing grids to be a reasonable part of their architecture. The Globus Toolkit now offers
a wide variety of tools including credential management with SimpleCA and

22 Taylor and Apon

Fig. 11. GridPort File Management Portlet

Fig. 12. GridPort GRAM Job Submission Portlet

MyProxy, file management with GridFTP, job submission and management with
GRAM, resource monitoring with WSRF tools, and more all within a single installa-
tion. The volume of documentation for the installation and management of Globus is
growing, and many administrators are finding it fairly understandable. Condor is also
an attractive solution for creating a sizable grid from idle machines already in exis-
tence on a network. The addition of Condor-C has improved the prospect of collabo-
ration between institutions with Condor pools by greatly reducing network congestion
problems. Condor-G has begun unifying Condor and Globus grids in order to in-
crease collaboration and computing power. GridShib has done the same with Shibbo-
leth and Globus, and their approach of fine-grain security is appealing to campuses

Architectural Tradeoffs for Unifying Campus Grid Resources 23

since faculty and students can be granted access by updating the attributes in an Iden-
tity Provider. With the functionality, stability, and availability of current tools, build-
ing and maintaining working grids has become a viable option for many organiza-
tions.

Web portals have been around for quite some time, but the idea of a framework
that allows content to be plugged-in is relatively new. Many of the well known portal
frameworks have moved toward a pluggable framework from the original design of
integrated content and subsequently redesigned their framework with this in mind.
This move left the design of the module to be plugged-in up to the developers of each
portal and led to several different implementations. The recent creation of the JSR-
168 standard for Java portlets has greatly simplified the process of portlet develop-
ment since there is no longer the concern of which portals will support the portlet. As
the portals integrate support for this standard, portlet developers can write quality
portlets and determine which framework best supports their needs. If, at a later time,
this decision is no longer valid and another framework is more suitable, the change to
a new framework will not be devastating in terms of a complete redesign.

Also new is the concept of accessing grid resources from portal interfaces. Some
work has already been done in this area by groups such as OGCE, GridPort, and
GridSphere, but the field is still in the process of developing. As grid technology im-
proves and more grids are developed, this field will become more important to simply
interfacing with the grid for users. At the moment, many grid tools are still in devel-
opment with drastic implementation changes occurring at each release. This can
make development of the corresponding portal interfaces an enormous challenge
since each new interface can mean a total redesign of a previously working tool. De-
velopers of these interfaces have a significant amount of work to do after each release,
and this will continue as long as significant updates continue to the underlying grid
tools.

University campuses generally have several computing resources. These can range
from a supercomputer down to a simple lab of networks personal computers, but re-
sources are generally available for the research that takes place on campus. The
emergence of grid computing as a mechanism to unite all of these resources and har-
ness their computing power effectively has brought many universities into the grid
computing field. The ability of the Globus Toolkit to provide the necessary glue to
pull the resources together and of Condor to utilize idle time on machines in the gen-
eral access labs on campus that are not in use at all times gives universities new high-
performance computing resources without any additional cost. Collaboration with
other institutions, educational or otherwise, is now available at a scale previously only
possible with significant financial investment. While many universities are undoubt-
edly testing and adopting these new tools, relatively few have advertised working por-
tal interfaces to these resources for students or faculty, but the field is still new. As
the technology improves and universities make their grids available to students, fac-
ulty, and researchers, usage of grid portals will increase accordingly.

Many of the computing resources at the University of Arkansas either had no grid
tools installed or had grid tools installed on them, but these had not been used to-
gether in the sense of grid computing. The main goal of this research was to pull
these resources together so that they could be better utilized. The installation of the
Globus Toolkit on several resources including security components, Prospero, UA-

24 Taylor and Apon

GridPortal, and others allows this connection in a nonintrusive way. Since the instal-
lation of Globus is done using a separate user and interfaces to the local scheduler, the
resource can continue to be used as it always has been as well as through the inter-
faces that Globus provides. This high level interface layer that Globus provides has
proven that it is possible to install the toolkit on virtually every resource on campus
without ill effect if the administrator wishes to add the resource to the campus grid.
This installation in no way removes an administrator's ability to control who has ac-
cess to the resource since access control is ultimately controlled with the grid-mapfile.

The command-line interface to these tools has been shown to work without inci-
dent. Many tasks involved in effective use of the grid were discussed with example
executions for most. Among these were credential management by requesting cre-
dentials with grid-cert-request, creating proxy credentials with grid-proxy-init, and us-
ing the MyProxy Server with myproxy-init and myproxy-logon. File management
was shown through GridFTP using the globus-url-copy command for standard and
third-party transfers. Job submission to the GRAM interface using the globusrun-ws
command was also demonstrated. The basic functionality that these commands pro-
vide make the grid interface a useful tool for utilizing many of the resources on cam-
pus.

While the command-line interface works well, the portal interface to these tools
does not quite reach the same level. Many portal frameworks were discussed, and the
installation of the GridSphere framework with the many components it requires works
quite well. The web interface to the portal also works flawlessly. Deployment of the
GridPort, GridPortlets, and OGCE portlets were also deployed with the varying de-
grees of success. With the final deployment of GridSphere and GridPort 4, proxy
management, file management, and the resource monitoring services work without a
problem. Although job submission to Prospero was successful from the command
line, it was never achieved through any of the portlet packages. As the portlet devel-
opers work out the final details of these portlets, these issues will be resolved, and the
University of Arkansas will have a fully functional portal interface to its campus grid.

Several campus resources have been discussed, but many more resources are still
available on campus. Integrating these resources into the campus grid will help to
further unite the campus' computing power and give researchers a stronger system
with which to work. Adding these resources to the portal and eventually granting ac-
cess to students will give the university a more robust environment for teaching stu-
dents about grid concepts and facilitating this research. Upgrades should be made to
the grid portlets when made available to help solve the issues with job submission.
Another area of improvement is to integrate the portal authentication with the campus
LDAP server. The portal was designed with this in mind, but no implementation is
currently available. As soon as the issues related to job submission have been re-
solved, the portal will be ready for testing. This could be done in a classroom setting
to help discover any remaining issues or needs that have not been met. After a suc-
cessful testing period, the campus’ Computing Services department will need to be
contacted about implementing the solution on a production quality machine. A cam-
pus-wide Certificate Authority and MyProxy server will also be needed.

Architectural Tradeoffs for Unifying Campus Grid Resources 25

Bibliography

[1] I. Foster, "Globus Toolkit Version 4: Software for Service-Oriented Systems," presented at
IFIP International Conference on Network and Parallel Computing, 2005.

[2] The Globus Security Teams, Globus Toolkit Version 4 Grid Security Infrastructure: A
Standards Perspective, The Globus Alliance, 2005.

[3] Platform Computing, October 2005,
http://www.platform.com/Products/Platform.LSF.Family/Platform.LSF.

[4] Sun N1 Grid Engine 6, October 2005, http://www.sun.com/software/gridware/index.xml.
[5] OpenPBS, October 2005, http://www.openpbs.org.
[6] SURAgrid, October 2005, http://www1.sura.org/SURAgrid.html.
[7] P. M. Papadopoulos, M. J. Katz, and G. Bruno, "NPACI Rocks: Tools and Techniques for

Easily Deploying Manageable Linux Clusters," presented at Cluster 2001: IEEE Interna-
tional Conference on Cluster Computing, Newport Beach, California, 2001.

[8] T. Naughton and S. L. Scott, "The Penguin in the Pail - OSCAR Cluster Installation Tool,"
presented at 6th World Multi Conference on Systemic, Cybernetics and Informatics, Or-
lando, Florida, 2002.

[9] Java 2 Platform, Standard Edition (J2SE), October, 2005, http://java.sun.com/j2se.
[10] Apache, October 2005, http://tomcat.apache.org.
[11] GNU Project, October 2005, http://www.gnu.org/software/make.
[12] MySQL, October 2005, http://www.mysql.com.
[13] PostGreSQL, October 2005, http://www.postgresql.org.
[14] The GridPort Toolkit, October 2005, http://gridport.net.
[15] Altair PBS Professional, October 2005, http://www.altair.com/software/pbspro.htm.
[16] IBM LoadLeveler, October 2005, http://www-

03.ibm.com/servers/eserver/clusters/software/loadleveler.html.
[17] Computing Center Software, October 2005, http://wwwcs.upb.de/pc2/projects/ccs.
[18] D. Thain, T. Tannenbaum, and M. Livny, "Distributed Computing in Practice: The Condor

Experience," Concurrency and Computation: Practice and Experience, vol. 17, pp. 323-356,
February 2004.

[19] The Globus Toolkit, October 2005, http://globus.org/toolkit/about.html.
[20] Grid Physics Network, October 2005, http://www.griphyn.org.
[21] Open Science Grid, October 2005, http://www.opensciencegrid.org.
[22] TeraGrid, October 2005, http://www.teragrid.org.
[23] NEESgrid, October 2005, http://www.neesgrid.org.
[24] R. Housely, W. Ford, W. Polk, and D. Solo, "Internet X.509 Public Key Infrastructure

Certificate and CRL Profile," RFC 2459, 1999.
[25] V. Welch, T. Barton, K. Keahey, and F. Siebenlist, "Attributes, Anonymity, and Access:

Shibboleth and Globus Integration to Facilitate Grid Collaboration," presented at 4th Annual
PKI R&D Workshop, Gaithersburg, MD, 2005.

[26] M. Erdos and S. Cantor, "Shibboleth-Architecture DRAFT v05," Internet2/MACE Draft
Specification, 2002.

[27] Condor-C, October 2005, http://cs.wisc.edu/condor/manual/v6.7.8/5_4Condor_C.html.
[28] D. Thain, T. Tannenbaum, and M. Livny, "Condor and the Grid," in F. Berman, G. Fox,

and A. J. G. Hey, editors, Grid Computing: Making the Global Infrastructure a Reality, John
Wiley, 2003, pp. 299-336.

[29] A. Abdelnur and S. Hepper, "Java Portlet Specification Version 1.0," JSR-168, 2003.
[30] WebSphere, October 2005, http://www-306.ibm.com/software/websphere.
[31] Jetspeed-2, October 2005, http://portals.apache.org/jetspeed-2.
[32] J. Novotny, M. Russell, and O. Wehrens, "GridSphere: A Portal Framework for Building

Collaborations," in Proceedings of 1st International Workshop on Middleware in Grid Com-
puting, 2003.

26 Taylor and Apon

[33] uPortal, October 2005, http://www.uportal.org.
[34] Grid Engine Portal, October 2005, http://gridengine.sunsource.net/gep/GEP_Intro.html.
[35] GridLab: A Grid Application Toolkit and Testbed, October 2005, http://gridlab.org.
[36] Java in Administration Special Interest Group, October 2005, http://www.ja-sig.org.
[37] Pluto, October 2005, http://portals.apache.org/pluto.
[38] Sun ONE Portal Server, November 2005,

http://docs.sun.com/app/docs/coll/S1_PortalServer_61.
[39] Open Grid Computing Environment, October 2005, http://www.collab-

ogce.org/nmi/index.html.
[40] GridPort Information Repository, November 2005, http://gridport.net/services/gpir.
[41] J. Novotny, "The Grid Portal Development Kit," Concurrency and Computation: Practice

and Experience, vol. 14, pp. 1129-1144, February 2004. http://gridport.net.
[42] B. Taylor, “Architectural Tradeoffs for Unifying Campus Grid Resources,” M.S. Thesis,

University of Arkansas, December, 2005.

	Clemson University
	TigerPrints
	5-2006

	Architectural Tradeoffs for Unifying Campus Grid Resources
	Amy Apon
	Bart Taylor
	Recommended Citation

	ABSTRACT

