
Clemson University
TigerPrints

Publications School of Computing

5-2000

MPI Collective Operations over IP Multicast
Amy Apon
Clemson University, aapon@clemson.edu

H A. Chen
University of Arkansas - Main Campus

Y O. Carrasco
University of Arkansas - Main Campus

Follow this and additional works at: https://tigerprints.clemson.edu/computing_pubs

Part of the Computer Sciences Commons

This is brought to you for free and open access by the School of Computing at TigerPrints. It has been accepted for inclusion in Publications by an
authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Apon, Amy; Chen, H A.; and Carrasco, Y O., "MPI Collective Operations over IP Multicast" (2000). Publications . 11.
https://tigerprints.clemson.edu/computing_pubs/11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268627921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs/11?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

MPI Collective Operations over IP Multicast ?

Hsiang Ann Chen, Yvette O. Carrasco, and Amy W. Apon

Computer Science and Computer Engineering
University of Arkansas

Fayetteville, Arkansas, U.S.A
fhachen,yochoa,aapong@comp.uark.edu

Abstract. Many common implementations of Message Passing Inter-
face (MPI) implement collective operations over point-to-point opera-
tions. This work examines IP multicast as a framework for collective
operations. IP multicast is not reliable. If a receiver is not ready when a
message is sent via IP multicast, the message is lost. Two techniques for
ensuring that a message is not lost due to a slow receiving process are ex-
amined. The techniques are implemented and compared experimentally
over both a shared and a switched Fast Ethernet. The average perfor-
mance of collective operations is improved as a function of the number
of participating processes and message size for both networks.

1 Introduction

Message passing in a cluster of computers has become one of the most popular
paradigms for parallel computing. Message Passing Interface (MPI) has emerged
to be the de facto standard for message passing. In many common implementa-
tions of MPI for clusters, MPI collective operations are implemented over MPI
point-to-point operations. Opportunities for optimization remain.

Multicast is a mode of communication where one sender can send to mul-
tiple receivers by sending only one copy of the message. With multicast, the
message is not duplicated unless it has to travel to di�erent parts of the network
through switches. Many networks support broadcast or multicast. For example,
shared Ethernet, token bus, token ring, FDDI, and reective memory all support
broadcast at the data link layer.

The Internet Protocol (IP) supports multicast over networks that have IP
multicast routing capability at the network layer. The goal of this paper is to
investigate the design issues and performance of implementing MPI collective
operations using multicast. IP multicast is used to optimize the performance of
MPI collective operations, namely the MPI broadcast and MPI barrier synchro-
nization, for this preliminary work. The results are promising and give insight to
work that is planned on a low-latency network. The remainder of this paper de-
scribes IP multicast, design issues in the implementations, experimental results,
conclusions, and future planned work.

? This work was supported by Grant #ESS-9996143 from the National Science Foun-
dation

2 IP Multicast

Multicast in IP is a receiver-directed mode of communication. In IP multicast,
all the receivers form a group, called an IP multicast group. In order to receive
a message a receiving node must explicitly join the group. Radio transmission
is an analogy to this receiver-directed mode of communication. A radio station
broadcasts the message to one frequency channel. Listeners tune to the speci�c
channel to hear that speci�c radio station. In contrast, a sender-directed mode
of communication is like newspaper delivery. Multiple copies of the paper are
delivered door-to-door and the newspaper company must know every individual
address of its subscriber. IP multicast works like radio. The sender only needs
to send one copy of the message to the multicast group, and it is the receiver
who must be aware of its membership in the group.

Membership in an IP multicast group is dynamic. A node can join and leave
an IP multicast group freely. A node can send to a multicast group without
having to join the multicast group. There is a multicast address associated with
each multicast group. IP address ranges from 224.0.0.0 through 239.255.255.255
(class D addresses) are IP multicast addresses. Multicast messages to an IP
multicast group will be forwarded by multicast-aware routers or switches to
branches with nodes that belong to the IP multicast group. IP multicast saves
network bandwidth because it reduces the need for the sender to send extra
copies of its message and therefore lowers the latency of the network.

In theory, IP multicast should be widely applicable to reduce latency. Howev-
er, one drawback of IP multicast is that it is unreliable. The reliable Transmission
Control Protocol(TCP) does not provide multicast communication services. The
User Datagram Protocol (UDP) is used instead to implement IP multicast ap-
plications. UDP is a \best e�ort" protocol that does not guarantee datagram
delivery. This unreliability limits the application of IP multicast as a protocol
for parallel computing.

There are three kinds of unreliability problems with implementing paral-
lel collective operations over IP multicast. One comes with unreliability at the
hardware or data link layer. An unreliable network may drop packets, or deliver
corrupted data. In this work, we assume that the hardware is reliable and that
packets are delivered reliably at the data link layer. It is also possible that a set
of fast senders may overrun a single receiver. In our experimental environment
we have not observed these kind of errors. However, a third problem is related
to the software design mismatch between IP multicast and parallel computing
libraries such as MPI. In WAN's, where IP multicast is generally applied, re-
ceivers of a multicast group come and go dynamically, so there is no guarantee
of delivery to all receivers. The sender simply does not know who the receivers
are. However, in parallel computing all receivers must receive.

With IP multicast, only receivers that are ready at the time the message
arrives will receive it. However, the asynchronous nature of cluster computing
makes it impossible for the sender know the receive status of the receiver with-
out some synchronizing mechanism, regardless of how reliable the underlying
hardware is. This is a paradigm mismatch between IP multicast and MPI. This

paper explores two synchronizing techniques to ensure that messages are not lost
because a receiving process is slower than the sender.

This work is related to other e�orts to combine parallel programming and
broadcast or multicast messaging. In work done on the Orca project [8], a tech-
nique was developed for ensuring the reliability of a broadcast message that uses
a special sequencer node. In research done at Oak Ridge National Laboratory,
parallel collective operations in Parallel Virtual Machine (PVM) were imple-
mented over IP multicast[2]. In that work, reliability was ensured by the sender
repeatedly sending the same message until ack's were received from all receivers.
This approach did not produce improvement in performance. One reason for the
lack of performance gain is that the multiple sends of the data cause extra delay.

The goal of this work is to improve the performance of MPI collective calls.
This work focuses on the use of IP multicast in a cluster environment. We e-
valuate the e�ectiveness of constructing MPI collective operations, speci�cally
broadcast and barrier, over IP multicast in a commodity-o�-the-shelf cluster.

3 MPI Collective Operations

The Message Passing Interface (MPI) standard speci�es a set of collective oper-
ations that allows one-to-many, many-to-one, or many-to-many communication
modes. MPI implementations, including LAM[6] and MPICH[7], generally im-
plement MPI collective operations on top of MPI point-to-point operations. We
use MPICH as our reference MPI implementation.

 Operations
MPI Collective

MPI Point-to-Point

The Abstract Device
 Interface

The Channel Interface

The Chameleon

Multicast can be
implemented here

Fig. 1. MPICH Layers

proc1 proc 2

proc 3
proc 5 proc 6

proc 4

proc 0

Fig. 2. MPICH Broadcast mechanism
with 4 nodes

MPICH[3] uses a layered approach to implement MPI. The MPICH layers
include the Abstract Device Interface (ADI) layer, the Channel Interface Layer,
and the Chameleon layer. Portability is achieved from the design of the ADI
layer, which is hardware dependent. The ADI provides an interface to higher
layers that are hardware independent. The MPICH point-to-point operations
are built on top of the ADI layer. To avoid implementing collective operations

over MPICH point-to-point functions, the new implementation has to bypass all
the MPICH layers, as shown in Fig. 1.

proc 4 proc 5 proc 6

proc 1 proc 2

proc 0

proc 0

proc 2

proc 3

proc 0

proc 1 proc 5proc 3 proc 4proc 2 proc 6

time step 1

time step 2

time step 4

 time step 3

Multicast Message

synchronization
(scout messages)

Fig. 3. MPI broadcast using IP multi-
cast (Binary Algorithm)

proc 0

proc 1 proc 2 proc 3 proc 5 proc 6

proc 6proc 5proc 4proc 3proc 2proc 1

proc 4

Fig. 4. MPI broadcast using IP multi-
cast (Linear Algorithm)

3.1 MPI Broadcast

Since the new layer for MPI collective operations using multicast is compared
experimentally with the original MPICH implementation, it is helpful to under-
stand how these functions are implemented in MPICH. MPICH uses a tree struc-
tured algorithm in its implementation of MPI broadcast operation (MPI Bcast).
In the broadcast algorithm, the sender sends separate copies of the message to
some of the receivers. After they receive, the receivers at this level in turn send
separate copies of the message to receivers at the next level. For example, as
illustrated in Fig. 2, in an environment with 7 participating processes, process 0
(the root) sends the message to processes 4, 2, and 1. Process 2 sends to process
3 and process 4 sends to processes 5 and 6. In general, if there are N partici-
pating processes, the message size is M bytes and the maximum network frame
size is T bytes, it takes (M

T
+ 1)� (N � 1) network frames for one broadcast.

When IP multicast is used to re-implement MPI broadcast, the software must
ensure that all receivers have a chance to receive. Two synchronization mecha-
nisms have been implemented, a binary tree algorithm and a linear algorithm. In
the binary tree algorithm, the sender gathers small scout messages with no data
from all receivers in a binary tree fashion before it sends. With K processes each
executing on a separate computer, the height of the binary tree is log2K + 1.
In the synchronization stage at time step 1, all processes at the leaves of binary
tree send. Scout messages propagate up the binary tree until all the messages
are �nally received at the root of the broadcast. After that, the root broadcasts
the data to all processes via a single send using IP multicast. For example, as
illustrated in Fig. 3 in an environment with 7 participating processes, processes
4, 5, and 6 send to processes 0, 1, and 2, respectively. Next, process 1 and pro-
cess 3 send to processes 0 and 2, respectively. Then process 2 sends to process

0. Finally, process 0 sends the message to all processes using IP multicast. In
general, with N processes, a total of N � 1 scout messages are sent. With a
message size of M , and a maximum network frame size of T , M

T
+ 1 network

frames need to be sent to complete one message transmission. Adding the N �1
scout messages, it takes a total of (N �1)+ M

T
+1 frames to send one broadcast

message.
The linear algorithm makes the sender wait for scout messages from all re-

ceivers, as illustrated in Fig. 4. Then the message with data is sent via multicast.
With K processes in the environment, it takes K�1 steps for the root to receive
all the scout messages since the root can only receive one message at a time. As
illustrated in Fig. 4 with N processes, the root receivesN�1 point-to-point scout
messages before it sends the data. With 7 nodes, the multicast implementation
only requires one-third of actual data frames compared to current MPICH im-
plementation. Since the binary tree algorithm takes less time steps to complete,
we anticipate it to perform better than the linear algorithm.

proc 0 proc 1 proc 2 proc 3

proc 0 proc 1 proc 2 proc 3

proc 0 proc 1 proc 2 proc 3

proc 0 proc 1 proc 2 proc 3

proc 0 proc 1 proc 2 proc 3

proc 4 proc 5 proc 6

proc 4 proc 5 proc 6

Fig. 5. MPICH barrier synchroniza-
tion with 7 processes

FDDI Backbone

Campus LAN eagle

eagle1

eagle8

100 BaseT Ethernet

Hub or Switch

eagle5

Fig. 6. The Eagle Cluster

3.2 MPI Barrier Synchronization

Another MPI collective operation re-implemented was MPI Barrier. MPI Barrier
is an operation that synchronizes processes. All processes come to a common
stopping point before proceeding. The MPICH algorithm for barrier synchro-
nization can be divided into three phases. In the �rst phase, processes that
cannot be included in sending pair-wise point-to-point operations send messages
to processes who can. In the second phase, point-to-point sends and receives
are performed in pairs. In the third phase, messages are sent from the processes
in the second phase to processes from the third phase to release them. Figure
5 illustrates MPICH send and receive messages for synchronization between 7

processes. In this example, processes 4, 5, and 6 send messages to processes 0, 1
and 2. In the second phase, point-to-point message are sent between processes
0, 1, 2, and 3. In the third phase, process 0, 1, and 2, send messages to 4, 5, and
6 to release them. If there are N participating processes, and K is the biggest
power of 2 less than N , a total of 2� (N �K) + log2K �K messages need to
be sent.

By incorporating IP multicast into the barrier algorithm, we were able to
reduce the number of phases by two. The binary algorithm described above is
used to implement MPI Barrier. First, point-to-point messages are reduced to
process 0 in a binary tree fashion. After that, a message with no data is sent using
multicast to release all processes from the barrier. In general, with N processes
in the system, a total of N � 1 point-to-point messages are sent. One multicast
message with no data is sent.

4 Experimental Results

The platform for this experiment consists of four Compaq PentiumIII 500MHZ
computers and �ve Gateway PentiumIII 450 MHZ computers. The nine work-
stations are connected via either a 3Com SuperStack II Ethernet Hub or an HP
ProCurve Switch. Both the hub and the switch provide 100 Mbps connectivity.
The switch is a managed switch that supports IP multicast. Each Compaq work-
station is equipped with 256 MB of memory and an EtherExpress Pro 10/100
Ethernet card. Each Gateway computer has 128MB of memory and a 3Com
10/100 Ethernet card.

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000

la
te

nc
y

in
 u

se
c

size of message (in byte)

mpich over hub

mcast linear

mcast (binary) over hub

Fig. 7. MPI Bcast with 4 processes over Fast Ethernet Hub

The performance of the MPI collective operations is measured as the longest
completion time of the collective operation. among all processes. For each mes-
sage size, 20 to 30 di�erent experiments were run. The graphs show the measured

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000

la
te

nc
y

in
 u

se
c

size of message (in byte)

mpich over switch

mcast linear

mcast (binary) over switch

Fig. 8. MPI Bcast with 4 processes over Fast Ethernet Switch

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000

la
te

nc
y

in
 u

se
c

size of message (in byte)

mpich over switch

mcast linear

mcast (binary) over switch

Fig. 9. MPI Bcast with 6 processes over Fast Ethernet Switch

time for all experiments with a line through the median of the times. The graphs
illustrate the sample distribution of measured times.

Figure 7 shows the performance of MPI Bcast of both implementations over
the hub with 4 processes. The �gure shows that the average performance for both
the linear and the binary multicast implementation is better for message sizes
greater than 1000 bytes. With small messages, the cost of the scout messages
causes the multicast performance to be worse than MPICH performance. The
�gure also shows variations in performance for all implementations due to col-
lisions on the Fast Ethernet network. The variation in performance for MPICH
is generally higher than the variation in performance for either multicast imple-
mentation.

Figures 8, 9,and 10 describe the performance with the switch for 4, 6, and 9
processes respectively. Both the linear and the binary algorithm using multicast
show better average performance for a large enough message size. The crossover
point of average MPICH performance and the average performance of using

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000

la
te

nc
y

in
 u

se
c

size of message (in byte)

mpich over switch

mcast linear

mcast (binary) over switch

Fig. 10. MPI Bcast with 9 processes over Fast Ethernet Switch

0

200

400

600

800

1000

1200

1400

1600

1800

0 1000 2000 3000 4000 5000

us
ec

size of message (in byte)

mpich over hub
mpich over switch

mcast (binary) over switch
mcast (binary) over hub

Fig. 11. Performance Comparison with MPI Bcast over hub and switch for 4 processes

multicast is where the extra latency of sending scout messages becomes less
than the latency from sending extra packets of data when the data is large. For
some numbers of nodes, collisions also caused larger variance in performance
with the multicast implementations. For example, this is observed for 6 nodes
as shown in Fig. 9. With 6 nodes using the binary algorithm, both node 2 and
node 1 attempt to send to node 0 at the same time, which causes extra delay.

Figure 11 compares the average performance of the switch and the hub for
4 processes. When using IP multicast, the average performance of the hub is
better than the switch for all measured message sizes. As for the original MPICH
implementation, the average performance of hub becomes worse than the switch
when the size of the message is bigger than 3000. The MPICH implementation
puts more messages into the network. As the load of the network gets larger, the
extra latency of the switch become less signi�cant than the improvement gained
with more bandwidth. The multicast implementation is better than MPICH for
message sizes greater than one Ethernet frame.

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000

la
te

n
c
y

 i
n

 u
se

c

size of message (in byte)

mpich (9 proc)
mpich (6 proc)
mpich (3 proc)
linear (9 proc)
linear (6 proc)
linear (3 proc)

Fig. 12. Performance Comparison
with MPI Bcast over 3, 6, and 9
processes over Fast Ethernet switch

100

200

300

400

500

600

700

800

2 3 4 5 6 7 8 9

la
te

n
c
y
 i

n
 u

se
c

Number of Processes

multicast
MPICH

Fig. 13. Comparison of MPI Barrier
over Fast Ethernet hub

Figure 12 compares MPICH and the linear multicast implementation for 3,
6, and 9 processes over the switch. The results show that the linear multicast
algorithm scales well up to 9 processes and better than MPICH. With the linear
implementation, the extra cost for additional processes is nearly constant with
respect to message size. This is not true for MPICH.

Figure 13 describes the results of MPI Barrier operation over the hub. The
results for MPI Barrier show that IP multicast performs better on the aver-
age than the original MPICH implementation. The performance improvement
increases as the size of the message gets bigger.

In a Single Program Multiple Data (SPMD) environment, message passing
using either the linear algorithm or the binary algorithm is correct even when
there are multiple multicast groups. However, since the IP multicast implemen-
tation requires the receive call to be posted before the message is sent, it is
required that each process execute the multicast calls in the same order. This
restriction is equivalent to requiring that the MPI code be safe[5]. If several pro-
cesses broadcast to the same multicast group (in MPI terms, this is the same
process group of same context), the order of broadcast will be correctly pre-
served. For example, suppose in an environment including the 4 processes with
ids 4, 6, 7 and 8, processes 6, 7, and 8 all belong to the same multicast group
and the broadcast is called in the following order.

MPI Bcast(&bu�er, count, MPI INT, 6, MPI COMM WORLD);
MPI Bcast(&bu�er, count, MPI INT, 7, MPI COMM WORLD);
MPI Bcast(&bu�er, count, MPI INT, 8, MPI COMM WORLD);

Using either the binary algorithm or the linear algorithm, process 7 cannot
proceed to send the the second broadcast until it has received the broadcast
message from process 6, and process 8 cannot send in the third broadcast until
it has received the broadcast message from process 7. The order of the three

broadcasts is carried out correctly. Using a similar argument, when there are two
or more multicast groups that a process receives from, the order of broadcast
will be correct as long as the MPI code is safe.

5 Conclusions and Future Work

Multicast reduces the number of messages required and improves the perfor-
mance of MPI collective operations by doing so. Its receiver-directed message
passing mode allows the sender to address all the receivers as a group. This
experiment focused on a particular implementation using IP multicast.

Future work is planned in several areas. Improvements are possible to the bi-
nary tree and linear communication patterns. While we have not observed bu�er
overow due to a set of fast senders overrunning a single receiver, it is possi-
ble this may occur in many-to-many communications and needs to be examined
further. Additional experimentation using parallel applications is planned. Al-
so, low latency protocols such as the Virtual Interface Architecture[9] standard
typically require a receive descriptor to be posted before a mesage arrives. This
is similar to the requirement in IP multicast that the receiver be ready. Future
work is planned to examine how multicast may be applied to MPI collective
operations in combination with low latency protocols.

References

[1] D. E. Comer. Internetworking with TCP/IP Vol. I: Principles, Protocols, and
Architecture . Prentice Hall, 1995.

[2] T. H. Dunigan and K. A. Hall. PVM and IP Multicast. Technical Report
ORNL/TM-13030, Oak Ridge National Laboratory, 1996.

[3] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard. Technical Report
Preprint MCS-P567-0296, Argonne National Laboratory, March 1996.

[4] N. Nupairoj and L. M. Ni. Performance Evaluation of Some MPI Implementations
on Workstation Clusters. In Proceedings of the 1994 Scalable Parallel Libraties
Conference, pages 98{105. IEEE Computer Society Press, October 1994.

[5] P. Pacheo. Parallel Programming with MPI . Morgan Kaufmann, 1997.
[6] The LAM source code. http://www.mpi.nd.edu/lam.
[7] The MPICH source code. www-unix.mcs.anl.gov/mpi/index.html.
[8] A. S. Tannenbaum, M. F. Kaashoek, and H. E. Bal. Parallel Programming Using

Shared Objects and Broadcasting. Computer, 25(8), 1992.
[9] The Virtual Interface Architecture Standard. http://www.viarch.org.
[10] D. Towsley, J. Kurose, and S. Pingali. A Comparison of Sender-Initiated and

Receiver-Initiated Reliable Multicast Protocols. IEEE JSAC, 15(3), April 1997.

	Clemson University
	TigerPrints
	5-2000

	MPI Collective Operations over IP Multicast
	Amy Apon
	H A. Chen
	Y O. Carrasco
	Recommended Citation

	MPI Collective Operations over IP Multicast

