
Clemson University
TigerPrints

Publications School of Computing

9-2007

Shibboleth as a Tool for Authorized Access Control
to the Subversion Repository System
Linh B. Ngo
Clemson University, lngo@clemson.edu

Amy W. Apon
Clemson University, aapon@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/computing_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the School of Computing at TigerPrints. It has been accepted for inclusion in Publications by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Please use publisher's recommended citation.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Clemson University: TigerPrints

https://core.ac.uk/display/268627901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pubs?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fcomputing_pubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Shibboleth as a Tool for Authorized Access

Control to the Subversion Repository System

Linh Ngo
University of Arkansas

lngo@uark.edu

Amy Apon
University of Arkansas

aapon@uark.edu

Abstract—Shibboleth is an architecture and protocol for

allowing users to authenticate and be authorized to use a

remote resource by logging into the identity management

system that is maintained at their home institution. With

Shibboleth, a federation of institutions can share resources

among users and yet allow the administration of both the

user access control to resources and the user identity and

attribute information to be performed at the hosting or

home institution. Subversion is a version control repository

system that allows the creation of fine-grained permissions

to files and directories. In this project an infrastructure,

Shibbolized Subversion, has been created that consists of a

Subversion repository with an Apache web interface that is

protected by a Shibboleth authentication system. The

infrastructure can allow authorized and authenticated data

sharing between institutions yet retains simplicity and

protects privacy for users. In addition, it also relieves local

administrators from the task of having to perform extra

account management for users from other institutions. This

paper describes the Shibboleth and Subversion systems, the

implementation of the file sharing infrastructure, and issues

of attribute maintenance, privacy and security.

Index Terms—Fine-Grained Access Control,

Authentication, Authorization, Shibboleth, Subversion

I. INTRODUCTION

 Educational and research activities are not confined to

a single institution, but are performed collaboratively

among cooperating institutions across the country or even

around the world. As a result, there is a need for the

development of resource sharing infrastructure between

geographically separated institutions under different

administrative domains. For example, it is not

uncommon for a group of scientists from several

institutions to collaborate on a proposal, or for a group of

educators, also from several different institutions, to

collaborate on the development of course or training

materials. The documents that are developed need to be

shared among the project participants in an authorized

and easy-to-use manner. The focus of this project is to

develop a system for sharing documents such as data

files, code, research papers, proposal documents, course

materials, and others, in an authorized manner within a

collaboration group of individuals from two or more

institutions.

 It is relatively easy to allow several users to have

general access to a repository by providing individual

accounts to that repository. It is also relatively easy, given

that accounts have been set up, to provide fine-grained

access for individuals or groups at the directory or file

level using standard Unix or database access permissions.

However, the administration of the system, including the

maintenance of individual user accounts and permissions

for various levels of group access, becomes much more

complex and difficult if the number of users is increased

to several hundred, if these several hundred user accounts

are changing continuously, and if the user accounts are

spread across several institutions. Even the simplest case

typically requires solving a number of non-technical

difficulties. For example, suppose that a group of

researchers at University A need to access data at

University B. In general to allow this access may require

a long distance call, working across different time zones

with different work load and schedules, and navigating

different internal politics. A fine-grained access control

method that allows a certain degree of independence for

both the resource provider and resource users is needed.

 The provision of a system for document sharing must

address issues such as user account management, access

control of the shared data, and ease of usage. The system

must allow a degree of simplicity for both administrators

and users, and must have an authorization system flexible

enough to allow fine-grained access control at the user

and group level.

 To address these issues, a shared repository system has

been created with the following characteristics:

78 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

• The system is a shared repository with open access for

trusted institutions.

• The test of authentication of a user’s identity is

separated from the test of authorization to access with

certain privilege any particular file or directory in the

repository.

• No additional identity provider is required for the

group of cooperating institutions or individuals.

Authentication is done by each individual’s institution

using the login name and password that is provided to

the individual by the home institution.

• Authorization is performed by matching user attributes

with resource properties. User attributes are

administrated at the home institutions along with the

user’s local institution accounts. Resources properties

are maintained by the administrators of the target

repository resources.

• The degree of fine-grained access control can be

manipulated as needed.

• Basic requirements such as security and authenticity

are guaranteed.

• The system also allows a user to access a repository

without revealing personally identifying information, if

this capability is allowed by the resource administrator.

• The system can be run on different platforms and no

extra installation is required on the client side.

 This repository system addresses communication and

administration issues between the resource provider of

the shared repository systems and the administrators in

the authenticating institutions. The constructed document

sharing system utilizes the existing identity providers

from different institutions in order to further understand

the difficulties of working in a federated community.

II. BACKGROUND

 The system that has been developed is based on

Subversion, a well known open source document

repository system, and on the Shibboleth open source

system for managing federated access to shared

resources. This section gives background on version

control systems, including Subversion in particular, and

Shibboleth. The section also discusses the nature of

access control architectures.

A. Version Control Systems

 Version control systems have been used historically in

the engineering and software development environments

to manage the development of source code and other

engineering documents associated with the development

process. A version control system typically allows a user

to “check out” a document for either read or write access.

If a document is checked out for write access then, at

minimum, other participating members of the group will

be alerted to the possible change and can avoid making

modifications to the document at the same time. Typical

features of a version control system include the ability to

check out documents, synchronize different changes from

different users to a document, and reverse these changes

back to an earlier version of the document.

 A number of version control systems are commonly

used, including Revision Control System (RCS) [1],

Project Revision Control System (PRCS) [2], Concurrent

Version System (CVS) [3], and Subversion [4].

 Subversion is an open source version control system.

Subversion has many features similar to a traditional

version control system and overcomes some limitations

of traditional version control systems. One of the new

features of Subversion is versioned metadata, which plays

an important role in the shared repository system

developed here. Metadata is information about a file such

as file name or access permissions. With versioned

metadata, a set of properties can be assigned for each file

and directory of the repository in the form of keys and

their values. Furthermore, these properties can also be

versioned, which means that access permissions can be

tracked over time to see which groups or users have

historically had access to files and directories. Due to

this characteristic, Subversion was chosen to be the

repository in this storage system.

B. Shibboleth

 Shibboleth is a project of the Middleware Architecture

Committee for Education (MACE) [5] and offers a

powerful, scalable, and easy-to-use solution for

authentication and authorization access control.

Shibboleth has been under development since 2001, is a

stable tool, and has been incorporated into National

Science Foundation's Middleware Initiative (NMI)

Release 9 [6]. The Shibboleth system is able to:

• Utilize existing campus identity and access

management infrastructures to authenticate individuals

and then send information about them to a resource site.

The resource provider can set policy and make an

authorization decision based on the information that is

provided by the campus identity and attribute

information systems.

• Support collaborations between campuses,

organizations, and off-campus vendor systems.

• Authenticate and authorize based on attributes only. It

is possible to allow access without revealing a user’s

identity, which allows the user’s privacy to be protected

if this is desired.

Shibboleth consists of three main components: the

Identity Provider, the WAYF (Where Are You From)

server, and the Service Provider. Also, the system

requires the existence of a certificate authority that is

trusted among all components. The steps of the

Shibboleth protocol are described next, followed by a

more detailed discussion of each of the components of the

Shibboleth architecture.

 B.1. Shibboleth Protocol. The steps of a Shibboleth

session are illustrated in Figure 1. The steps are

numbered and labeled using the underlying HyperText

Transport Protocol (HTTP) commands (e.g., GET,

POST) and proceed as follows: First, the user contacts a

Target Resource that is protected by Shibboleth (Step 1).

In this step the user uses a browser to access a web site

that is has been enabled to use Shibboleth for

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 79

© 2007 ACADEMY PUBLISHER

authentication and authorization. The Target Resource is

illustrated in the box labeled “Server Provider”.

 In the next series of steps, the Service Provider

component redirects the user to the WAYF server so that

the user can select a local institution with which to

authenticate (Steps 2, 3, 4, and 5). The WAYF is

configured with the names of all institutions in the virtual

organization and also the corresponding Internet address

of the Identity Provider of each institution. The user

selects his or her home institution and the underlying

software redirects the user request to the Identity Provider

of the chosen institution (Step 6). The user is prompted

to enter a login name and password for the institution

(Step 7). After authentication, the Single Sign-on Service

(SSO) at the home institution confirms the identity of the

user and returns a handle to the Service Provider that

identifies the user for the remainder of the session (Steps

8 and 9).

 After the user is authenticated, a separate step is

performed to determine if the user is authorized to use the

requested resource. Using the session handle, the Service

Provider requests the required attributes of the user from

an Attribute Repository (not shown in the figure). The

Attribute Repository may be maintained at the user’s

home institution, or may be maintained by a virtual

organization for a group of resources that are shared

within the virtual organization. The request for attributes

is shown in Step 10. The release of particular attributes

can be allowed or denied based on how the user or the

administration has set attribute release policies.

 Finally, the Service Provider receives the attributes

(Step 11). An Assertion Consumer service component of

the Service Provider compares the user’s attributes with

the resource requirements. If the attributes match the

requirements then the user is authorized to use the

resource (Step 12).

 The identity provider and attribute repository used in

this project consist of a single server. In particular, the

server is a test LDAP server that mirrors the capabilities

of the local campus LDAP server of the University of

Arkansas. The test Identity Provider is used to avoid

implementing untested attributes into the campus main

authentication server. Trusted communication is

established to other identity providers, including the local

campus LDAP server at the University of Arkansas and

the identity provider at the University of Missouri. The

tradeoffs in using a single server for both the identity

provider and the attribute repository will become more

clear in the section on the EduPerson schema. While not

using a separate attribute repository reduces many of the

technical tasks of administration and configuration, this

strategy creates several difficulties in communicating and

agreeing about unique attribute settings between the

service provider and the identity providers.

Figure 1: Overview of Shibboleth Architecture [5]

B.2. Server Certification. The Shibboleth protocol

depends on the existence of a trust relationship between

the various components of the Shibboleth architecture,

including each Service Provider and each Identity

Provider. In Shibboleth this trust is typically guaranteed

through the use of a common Certificate Authority (CA).

Each component acquires a certificate that is signed by

the common CA The Bossie Certificate Authority created

by the University of Wisconsin is used in this project [7].

 The Bossie CA provides a very minimal level of trust,

but this level of trust is sufficient for the prototype testing

for the components in this project. A Bossie certificate

was installed at the Identity Provider at the University of

Missouri. However, the Identity Provider at the

University of Arkansas, which is based on the local

campus LDAP server, uses commercial Verisign

certificates. With only these installed certificates the

Arkansas Identity Provider did not trust the Missouri

Service Provider and queries from it failed. This

problem was resolved for the prototype testing by

manually adding the Bossie server certificate of the

Missouri Service Provider into the key store of the local

campus LDAP server.

B.3. Shibboleth Service Provider. The Subversion

Repository is configured as a Shibboleth Service

Provider. When a user contacts the repository, the request

is forwarded to the Identity Provider for authentication

purposes. After being authenticated, the Service Provider

C

L

I

E

N

T

Identity Provider

WAYF

Authentication

Authority

Service Provider

SSO Service

Assertion Consumer

Service

Target

Resource

1

2

3

4

5

6

7

8

9

10

11

12

80 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

processes the attributes returned by the Identity Provider

for authorization/access control. A Service Provider

contains three components: Target Resource, Assertion

Consumer Service, and Attribute Requester.

 Target Resource: The Target resource is the resource

that is protected by Shibboleth. As of the current release,

Shibboleth only supports web-based applications. That is,

the resource has to be accessible through an Internet

browser. However, a bridge connection can be created to

map between a web browser and a command line based

resource.

 Assertion Consumer Service: The Assertion Consumer

Service is the counterpart of the Single-Sign On (SSO)

Service on the Identity Provider side, except that it is

located on the Service Provider side. This service

processes the authentication assertion from the Identity

Provider’s SSO Service. After the authentication between

the two sites has been established, it continues with

issuing the optional attribute request and then proceeds to

authenticate and authorize the users based on the result of

this attribute request.

Attribute Requester: The Attribute requester is a SAML

based attribute request mechanism that queries the

Identity Provider for the attributes needed in order for the

user to be authorized and authenticated. Once mutual

authentication has been established between the Service

Provider and the Identity Provider, this communication

can be done with a back-channel attribute exchange. This

request is optional depending on the security level of the

target resource.

 The installations of the Shibboleth Service Provider

and its prerequisites are straightforward. However,

configuration between the Service Provider and the

Identity Provider is complicated and may require several

emails and telephone conversations between

implementers and administrators among the participating

sites. The advantage of Shibboleth is that once the

installation is complete and the attributes have been

agreed upon, then continued user maintenance and

resource configuration can be done independently by

local administrators.

B.4. WAYF (Where Are You From). A WAYF server is a

server listing the Identity Providers that the Service

Provider trusts. After contacting the Service Provider, the

user’s request is forwarded to a WAYF server. Here, the

user must choose an associated Identity Provider. After

selecting an Identity Provider, the request is forwarded

again to the chosen Identity Provider in order to perform

authentication. Two WAYFs are used in this project,

including a local WAYF created previously for the

WebMPI project [8], and a federated WAYF created by

the Shibboleth MACE for the InQueue Federation, a

public federation for testing purpose [9].

B.5. Shibboleth Identity Provider. The Identity Provider

is the located at the user’s local institution. Without

revealing to the Service Provider the identity of a user,

the Identity Provider will guarantee to the Service

Provider that the user is legitimate. Upon request, the

Identity Provider forwards a list of user attributes to the

Service Provider. These attributes have been previously

approved by the users for authorization purposes only.

The Service Provider determines, based on these

attributes, whether the user is authorized to access

selected data in the repository. The Identity Provider of

Shibboleth consists of four components: the

Authentication Authority, the Attribute Authority, the

Single-Sign-On (SSO) Service, and the Artifact

Resolution Service.

 Authentication Authority: The authentication authority

is used to issue authentication statements for the parties

participating in the communication process. This

component is integrated with the local authentication

system and depends on the setup of the local system.

 Attribute Authority: The attribute authority processes

attribute requests [5]. That is, it receives attribute requests

from the Service Provider and processes these requests

based on the release permissions given by users. All the

requests are in the form of Security Assertion Markup

Language (SAML) messages and utilize Secure Socket

Layer (SSL)/Transport Layer Security (TLS) or SAML

message signatures for mutual authentication [5].

 Single-Sign-On (SSO) Service: The SSO Service is the

location to which users are directed by the Service

Provider. This module performs authentication between

the users and their local institutions. After this process,

users are directed through a transfer service back to the

Service Provider or to an error page depending on the

authentication. This service is not a SAML service but an

HTTP resource [5].

 Artifact Resolution Service: Artifact Resolution

Service is a SAML protocol [5] that binds the end-point

controlled by the Identity Provider in order to resolve a

SAML authentication assertion into corresponding

assertions from the requests of the Service Provider.

 In this project, the Identity Providers are hosted by the

member institutions of the Great Plain Network (GPN)

[10].

C. Fine-grained access control

C.1. Access control methods. An access control system

consists of an access control policy and an access control

mechanism. Normally, these two components both

belong to the central administration under the form of an

access control list for policy and a mechanism to match

users with this list. However, this practice also carries

several serious shortcomings:

• Scalability is an issue when the number of users

increases.

• There is extra administrative burden in maintaining

attributes for users from other institutions.

• Adding and removing users can be slow due to the

communication delay between institutions, which can

lead to reduced productivity as well as security leaks.

• Privacy of users can be compromised when attributes

are released to Resource Providers.

 Shibbolized Subversion is based on Attribute Based

Access Control (ABAC) [11]. Shibboleth allows the

exchange of attributes between its identity provider and

target provider, and these attributes are from the user’s

account on the identity provider side. In this method, the

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 81

© 2007 ACADEMY PUBLISHER

Subversion directories are marked with specific

properties. Only users whose attributes match with these

properties can access the directories. While still

maintaining the same level of security as traditional

access control methods, this method divides the burden of

controlling authorization evenly between user side and

repository side. Also, this method gives administrators on

the repository side the ability to approve or deny specific

access by users or by specific types of users to their own

resources. Since Subversion allows the creators of the

data in the repository to actively modify the properties of

these data, access to these data can be controlled by the

creators down to the file or directory level. Hence,

besides providing fine grain access control, ABAC also

encourages an equal participation of both sides, the

Resource Provider and the Identity Provider in the access

control process.

C.2. EduPerson. For resources that are being shared to a

large community, it is also to the benefit of the resource

provider to have a set of common attributes that can be

easily categorized and distinguished. Among the

Shibboleth participants, the most popular attribute

scheme is EduPerson, which is the default scheme in

Shibboleth’s AAP.xml file. It defines a series of fields

that are most relevant to the academic environment, and

these fields are object class definitions for LDAP servers.

Several fields in the EduPerson schema are used for

authorization purposes in this project:

 eduPersonPrimaryAffiliation: This field provides the

name of the identity provider that the user is associated

with. .

 eduPersonScopedAffiliation: This field identifies the

role of the user within the identity provider. Such role can

be staff, student, or administrators, etc.

 eduPersonEntitlement: This field contains the access-

control attributes. As described in EduPerson

specification, this field accepts attributes with multiple

values. Consequently, attributes to describe different

levels of access control can be applied.

 eduPersonTargetedId: This field contains a unique ID

that represents the user, instead of the normal login name.

This is to satisfy the requirement of protecting the

identity of the user, yet provide means for the service

provider to backtrack and report to the identity provider

in the case of malicious usage. Usually, this ID can be an

encrypted combination of several attributes of the user.

 The fields discussed above are the ones recommended

by the InQueue [12] and InCommon [13] federations.

Depending on the institutions, more fields can be added

to further describe the personal attributes of the users.

However, the more information is required from the

users, the better the security and privacy policy has to be

in order to prevent legal complications.

III. DESIGN AND IMPLEMENTATION

 Shibbolized Subversion has been implemented with

three main separate modules: the browser interface, the

connection scripts, and the repository. These modules are

loosely connected by function calls among themselves,

and the infrastructure can change without affecting the

whole system as long as the interfaces are kept the same.

Figure 2 illustrates the overall structure of the

Shibbolized Subversion system.

A. Browser Interface and Security

 The browser interface for Shibbolized Subversion is

created using Perl CGI and HTML. The main purpose of

this module is to provide a simple and easy-to-use

interface for users while still retaining most of the

important commands of Subversion. There are currently

five basic Subversion commands implemented in this

interface: check out, add, update, status, and commit.

Figure 2: Shibbolized Repository System

A.1. Browser interface structure. The websites of the

Shibbolized Subversion user interface are designed using

Perl CGI. However, most of the HTML code is embedded

in the local scripts called by the CGI programs so that the

system can display HTML as well as perform local

functions seamlessly. Although these CGI programs carry

the initial HTML web page, most of the internal displays

of the pages are controlled by the local scripts.

Furthermore, the CGI programs have the responsibility of

maintaining many default inputs for the local scripts such

as name and path of the repository and access control

attributes.

A.2. External security. The browser interface performs

the function of providing external security of the system.

External security provides the access control and

authentication for the repository. The primary

responsibilities of external security are:

• Authenticate the users with their Identity Provider,

• Provide the users with secured connection for the

exchange of password and attributes, and

• Pass the users’ attributes to internal security for access

control decisions.

 These responsibilities are implemented using

Shibboleth as an Apache security module for the website.

The Shibboleth structure provides identification,

authentication, authorization, and accountability [14].

Authentication

Browser

Attribute

Assertion

Local System

IdP

Origin
User

SP

(Shibbolized Interface)

Repository

Script

82 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

With Shibboleth, identification and authentication are

guaranteed by the Identity Provider to make sure that the

users are indeed members of the campus organizations

and that they are who they say that they are as provided

by the users’ password. Furthermore, attributes of the

users that are passed by the Identity Provider to the

Service Provider allow access control decisions to be

made. Finally, since these attributes are permitted to be

impersonal, the privacy of the users may be protected if

that information is not required by the resource.

B. Local Scripts and Internal Access Control

 The version of Shibboleth’s attribute assertion system

used in this project only functions with Web applications

[15]. Subversion repository content can be displayed on

web pages using Apache’s WebDAV. However, only

read access can be performed on the web-based

Subversion repository. Subversion can only achieve its

fullest potential when being accessed with the command

line interface. As a result, a mechanism to connect the

functionalities of Shibboleth and Subversion is needed. In

order to solve this problem, a series of local shell scripts

have been used to perform the following functions:

• Receive the attributes passed from Shibboleth

• Perform Subversion commands based on the policies

dictated by these attributes

• Display the results of the Subversion commands to a

web page

B.1. Attribute passing. The attributes are acquired from

the Identity Provider and passed to HTML in the form of

HTML headers. For example, the attribute

eduPersonScopedAffiliation can be accessed by the

header of HTTP_SHIB_EP_AFFILIATION. For the

prototype system, there are three eduPerson attributes that

are requested from the Identity Provider:

ScopedAffiliation, Entitlement, and TargetedID. While

ScopedAffiliation and TargetedID are used to help create

a unique workspace for the user, Entitlement contains all

the information concerning the authorization level of the

user. After being authenticated, a workspace is created

for the user by creating a directory whose name is the

concatenation of the values returned for ScopedAffiliation

and Entitlement. From then on, every command and data

access related to the user is performed within this

directory only. This information is written into a

temporary policy file for later use by the local scripts. A

system call from the CGI program passes the values of

ScopedAffiliation and Entitlement, and the directory to be

checked, out to the scripts.

B.2. Performance of Subversion commands. In processing

a Subversion command from the users, the local scripts

go through three steps: 1) check out the directory, 2)

match user attributes with directory’s properties, and 3)

process the Subversion command.

 All of these Subversion commands require an existing

checked out version of the data. Therefore, a “svn

checkout” call is needed initially. Immediately after this

call, although the data files and directories are now

available, the user has no knowledge of the data. One of

the limitations of this method is that, if the users do not

specify a single directory, the check out script will check

out a complete repository database. This will affect the

speed of the attributes matching process and take up a

larger than normal amount of disk space. The first

disadvantage of this method can be reduced by having a

large server disk (the checking out process is done

completely on the server side). The second disadvantage

can be limited by allowing the user to delete the extra

data after the copy of the needed document to the local

machines is finished. After the data is checked out

initially, the authorization process with attribute matching

is started.

B.3. Attribute matching. In Shibbolized Subversion, the

attribute matching process is divided into two steps:

match-attribute and authorize-attribute. Also, in order to

simplify the matching process, the following assumptions

are made:

• If a user has read access to a folder, he automatically

has read access to all the recursive folders and files

within that main folder.

• If a user has write access to a folder, it does not mean

that he has read access to that folder. In short, read and

write access capabilities are two different attributes with

equal importance and are granted independently from

each other.

• Read access is checked on files and folders, while

write access is only checked on folders.

 Using a system of hooks implemented within

Subversion, a repository’s files and folders can each be

attached with multiple attributes. During the matching

process, these attributes will be recorded in a temporary

policy control file to determine read/write access.

 When a user’s attributes are passed to the script, they

are first compared against the attributes attached to the

checked out directory. If a match is found, the appropriate

HTML code is generated to grant the user access right to

the directory. After the attribute matching is completed,

the scripts process the appropriate Subversion command

based on the choice of the user.

B.4. Display of results. The commands and parameters

for Subversion are embedded in the information that the

browser transfers to the local scripts. At this step, the

local scripts call the Subversion command and return the

result to the browser. Here, HTML tags are embedded

within the script itself in order to display the contents of

the result on a browser.

C. Repository

 The repository is designed as a local repository using

the Subversion repository system. This is also where the

local properties are set up. Depending on the level of

security, the owner of the repository can assign properties

along different directory tree levels down to the lowest

level, the file level. The checked out files are placed in a

directory whose name is created as combination of the

user's eduPersonTargetedID and eduPersonAffiliation.

This allows a unique storage space for each individual

user in the system.

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 83

© 2007 ACADEMY PUBLISHER

IV. DISCUSSION

 The Shibbolized Subversion system satisfies the goals

set out for the project. The use of Shibboleth as the

authentication service provides:

• Shared repository with access open for trusted

institutions. The repository has been shared with the

University of Missouri and the local campus directory.

• Authentication done by each individual’s institution

and no extra login name or password needed.

 In addition, using the combination of Shibboleth

attributes transfer and Subversion’s repository

properties, we also satisfy:

• Authorization is done by a series of attributes and

matching properties set on the users’ local institution

accounts and directories in target repositories,

respectively

• The degree of fine-grained access control can be

manipulated as needed.

• Basic requirements such as security, authenticity, and

privacy are guaranteed.

Also, the system can be run on different operating

systems with web browsers, and no extra installation is

required on the client side.

A. Security

 The security of a Shibbolized system depends heavily

on the level of the trust relationship between the Identity

Provider and the Service Provider. This trust is

guaranteed by the SAML protocols and the certificates

assigned to the participants by a common trusted CA. If

the participants are using different CAs, then all the CAs

have to be trusted by all parties. In this setting the

compromise of a single CA will lead to the compromise

of the whole system.

 In production federation, the maintenance of a CA is

very strict. For example, the InCommon Federation has a

legal contract that requires participant to maintain certain

security practices such as separation of the machine

containing the CA from the public network and single

authority. As a result, the process of getting a certificate

can be long and troublesome.

 For testing and experimenting purposes, the Bossie

certificate allows participants to quickly acquire the

certificates. However, since the keypass to acquire a

Bossie certificate is publicly broadcast online, it is not a

secure method to protect the IdP and Service Provider

servers. A production implementation of Shibbolized

Subversion would have to address this problem by

requiring that a CA with a high level of security be used

by all participants in the federation.

B. Privacy

Release of personal attributes is no simple matter. It

touches complicated issues related to personal privacy,

and it also raises many who-what-when-why-how

questions about campus security. These issues can be

summarized as [16]:

• Concern from participating institution’s compliance

and audit offices regarding security and privacy of

identity data hosted remotely (UT)

• Demonstrated experience dealing with system-wide

projects containing sensitive and non-sensitive

information

• Completed security questionnaire detailing security

policies and procedures in place

• Required Provider-campus staff to sign security policy

authorization of client campus (CSU).

C. Technology

 The installation of the Shibboleth service provider is

straightforward. However, there are several challenges to

setting up the communication between the identity

provider and the service provider from different

institutions.

 The first challenge comes from the differences in the

infrastructure between the two institutions. As described

in section B.2, even within the local campus

infrastructure, the certificates may not match.

 Another challenge also arises from the lack of campus

attribute infrastructure. Some institutions just do not have

the required security infrastructure that is LDAP-

compatible, and it is difficult for them to upgrade their

facilities to one.

 It is difficult for institutions with incompatible

infrastructures to overcome administrative difficulties in

seeking approval for a new infrastructure. Even in

institutions with infrastructure that supports Shibboleth’s

attribute release scheme, it is a struggle to have the

infrastructure set up correctly without interfering with

existing regulations. Often, it is the story of “the chicken

and the egg,” where the institution requires the users to

really “want” to use the Shibboleth system before the

infrastructure is changed, while the users desire to see the

Shibboleth system in action first before they “want” to

use it.

V. RELATED WORK

 Grid computing is fast becoming a useful technology

for large scale research collaborations. For example, the

Open Science Grid (OSG) [17] has more 50 participating

institutions from inside and outside of the United States.

In order to provide adequate access control, the Open

Science Grid package uses the Virtual Organization

Membership Service (VOMS) [18] and the Grid User

Management System (GUMS) [19] for authentication and

authorization.

 VOMS is part of the European project Enabling Grid

for E-SciencE (EGEE). GUMS is developed by the

Brookhaven National Laboratory. Figure 3 describes the

working relationship between VOMS and GUMS in the

OSG software stack. In this procedure, the user first

requests a proxy certificate from the VOMS server (Step

1). After authentication, the VOMS server returns a proxy

certificate containing the encrypted information of the

user (Steps 2 and 3). Next, the user contacts the Job

Execution Site and sends the recently acquired proxy

certificate (Step 4). The GUMS server decodes this

certificate and performs the authorization step (Steps 5

and 6). If the user is authorized, a local ID associate with

84 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

the user is returned to the Gatekeeper to start executing

the user’s job under this ID (Steps 7 and 8).

 The relationship between VOMS and GUMS can be

compared and contrasted to the relationship between the

Identity Provider and the Service Provider of Shibboleth.

For example, VOMS holds user identity information. In

order to use the grid, the user authenticates to the VOMS

server by providing a userid and password that has been

previously registered with the server. However, unlike

the authentication that takes place with the Shibboleth

Identity Provider, this userid is typically unrelated to any

userid that may be maintained at the user’s home

institution and the password is kept separately on the

VOMS server. GUMS is a server that matches user

proxy information to an access control list associated

with a particular service, in a manner that is similar to the

Assertion Consumer Service component of the

Shibboleth Service Provider.. However, communication

between the Shibboleth Identity Provider and Service

Provider is in the form of Security Assertion Markup

Language (SAML) assertions [5], while the

communication from VOMS to GUMS is the exchange of

a user proxy certificate [20]. Furthermore, while

Shibboleth focuses primarily on user’s attributes, VOMS

and GUMS usually use user assigned roles for access

control [20], which may not provide the same level of

fine-grained access control that is available in the

Shibboleth architecture.

Figure 3: How VOMS and GUMS work together [21]

VI. FUTURE WORK

 Although the system specified here works well in a

testing environment, there are some limitations and a

number of challenges and opportunities for improvement

and future work.

 Currently, the attributes being used for matching are

placed in the field eduPersonEntitlement, as this field

allows multiple values. However, there is a limit within

the EduPerson scheme definition on the length in

characters of the eduPersonEntitlement field. It is clear

that the dependence upon a single field for attribute

storage does not scale as the number of resources and

attributes in the federation increases. In order to avoid

this problem, there are several possible approaches. If the

approach using the single identity and attribute server

using the eduPerson schema is maintained, then it is

possible to either implement new eduPerson fields instead

of putting all the attributes into eduPersonEntitlement, or

to encode attributes in order to reduce the length yet still

maintain the versatility of the attributes. Another,

perhaps more scalable, alternative is to implement a

separate attribute repository, perhaps at the federation

level [21].

 An additional limitation of the current implementation

is the location of ownership permissions of the

directories. With the current implementation, the

administrator of the Shibboleth Service Provider is also

the owner of the repository. In a production environemnt,

the directories of a repository may be owned by different

people, and each of them would want to have a more

active control on his or her data. It is necessary to provide

an implementation in which the directory owners can set

access permissions to users and groups on their own

directories and files without any action on the part of the

Service Provider administrator. In additional to giving

control to the owners, an implementation of this type

would free the administrators from some of the mundane

tasks such as setting up properties for the directories. This

can be done by implementing the commands svn propset

of Subversion and making the commands available only

for the owner of the repository.

 The current design of Shibbolized Subversion allows a

convenient and quick access to a small shared data

repository. Anytime a user wants to check out a file or set

of files, a copy of that data is created on the Subversion

server. This technique will not scale to very large data

repositories. The problem can be alleviated by

transferring the checked out data to the user’s local site.

However, a stub of the checked out directory still needs

to remain at the repository. The stub can be used to

guarantee that the Subversion hooks are in place so that

the check in process can be done later.

 Currently, this system is set up for users to personally

access data. However, it is possible in the future to

further enhance the system of trust so that we can not

only trust people but also other services. For example,

user A wants to use the WebMPI service located at

institution B to process the data located at institution C.

This model would require a more complicated trust

relationship between the institutions and would lead to

more cooperation opportunities.

 The source code for this project is available at

http://archie.csce.uark.edu/gpn/ [22] [23].

ACKNOWLEDGMENT

This work has been supported in part by Grant #0410966

from the National Science Foundation. This work has

also been supported by the Great Plains Network

Consortium Middleware Project through the Extending

the Reach (ETR) project. ETR funding is provided on

behalf of the NMI-EDIT consortium of Internet2,

Educause, and SURA, and with support from several

statewide university systems and regional networks.

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 85

© 2007 ACADEMY PUBLISHER

REFERENCES

[1] Revision Control System,

 http://www.gnu.org/software/rcs/rcs.html

[2] Project Revision Control System, http://prcs.sourceforge.net/

[3] Concurrent Versions System,

 http://www.nongnu.org/cvs/

[4] Collins-Sussman, B., Fritzpatrick, B., and Pilato, M.

 “Version Control with Subversion.” O’Reilly 2005.

 http://svnbook.red-bean.com/.

[5] Scavo, T., S. Cantor. Shibboleth Architecture Technical

 Overview. http://shibboleth.internet2.edu/shibboleth-

 documents.html

[6] Enterprise and Desktop Integration Technologies (EDIT)

 Consortium (2006), http://www.nmi-edit.org/index.cfm

[7] Bossie Certificate Server.

 http://bossie.doit.wisc.edu/cert/i2server

[8] Landrus, K. “WebMPI – A Secure Cluster Web Interface

 Using Shibboleth” Master’s thesis, University of Arkansas,

 Fayetteville, Arkansas, May 2005.

[9] InQueue's Testbed. http://inqueue.internet2.edu/test.html

[10] Great Plains Network Consortium (2006),

 http://www.greatplains.net/

[11] Yuan, E., J. Tong, "Attribute based access control

 (ABAC) for Web services," Web Services, 2005. ICWS

 2005 Proceedings. 2005 IEEE International Conference on

 Web Services, no. 569, pp. 11-15 July 2005.

[12] InQueue Home (2006), http://inqueue.internet2.edu/

[13] InCommon Federation (2006),

 http://www.incommonfederation.org/.

[14] Bruhn, M. Gettes, M. West, A. “Identity and Access

 Management and Security in Higher Education.” EduCause

 Quarterly. No 4. pp. 14-16. 2003.

[15] Welch, Von, Tom Barton, Kate Keahey, Frank Siebenlist.

 “Attributes, Anonymity, and Access: Shibboleth and

 Globus Integration to Facilitate Grid Collaboration.”

 Proceedings of the 4th Annual PKI R&D Workshop, 2005.

[16] Apon, Amy, David Bantz, Mark Crase, Greg Monaco,

 Miguel Soldi, Ann West. “From Bright Idea to Actual

 Implementation: A Lifecycle Perspective to Build Trust in

 Core Middleware Services.” Internet2 Member Meeting

 Spring 2005.

[17] Open Science Grid, http://www.opensciencegrid.org

[18] Virtual Organization Membership Service, http://edg-

 p2.web.cern.ch/edg-wp2/security/voms/

[19] Grid User Managenent System,

 http://grid.racf.bnl.gov/GUMS/

[20] An Introduction to Privilege (Authorization) in OSG,

 https://twiki.grid.iu.edu/twiki/bin/view/Integration/

 PrivilegeOSG

[21] Ionut O. Ciordas, Fine-Grained Authorization in the Great

 Plains Network Virtual Organization, MS Thesis,

 University of Missouri-Columbia, August 2007.

[22] Ngo, L. “Shibbolized Subversion.” Master’s thesis,

 University of Arkansas, Fayetteville, Arkansas, December

 2005.

[23] Great Plains Network Extending the Reach Project

 Homepage. http://archie.csce.uark.edu/gpn/

 Linh Ngo is currently a Ph.D. student at the Department of

Computer Science Computer Engineering of the University of

Arkansas at Fayetteville.

 Amy Apon received a Ph.D. in Computer Science at

Vanderbilt University and is currently a Professor at the

University of Arkansas. Dr. Apon was the PI on the Extending

the Reach (ETR) Project funded to the Great Plains Network

(GPN) Consortium by Educause on behalf of the NMI-EDIT

Consortium of Internet2, Educause, and SURA, with the goal of

building regional middleware infrastructure across the GPN

region. Dr. Apon is also the PI on an MRI grant from the

National Science Foundation that funds the supercomputing

resource at the University of Arkansas, and grants and funded

projects from other agency and industrial sources. Dr. Apon is

working on a collaborative project funded by NSF with Dr.

Thomas Sterling of Louisiana State University to teach High

Performance Computing, and teaches other courses at the

University of Arkansas. Her research interests include cluster

and grid computing systems, performance evaluation of

distributed and parallel systems, and the architecture of

middleware systems.

86 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

	Clemson University
	TigerPrints
	9-2007

	Shibboleth as a Tool for Authorized Access Control to the Subversion Repository System
	Linh B. Ngo
	Amy W. Apon
	Recommended Citation

	jsw02037886.pdf

