Clemson University

TigerPrints

Clemson Patents

1-21-1997

intended objects represented in STL format and
adaptive slicing thereof

Apparatus and method for li?fered modeling of

Kamesh Tata
Amit Bagchi

Nadim M. Aziz

Follow this and additional works at: https://tigerprints.clemson.edu/clemson_patents

Recommended Citation

Tata, Kamesh; Bagchi, Amit; and Aziz, Nadim M., "Apparatus and method for layered modeling of intended objects represented in
STL format and adaptive slicing thereof" (1997). Clemson Patents. 106.
https://tigerprints.clemson.edu/clemson_patents/106

This Patent is brought to you for free and open access by TigerPrints. It has been accepted for inclusion in Clemson Patents by an authorized

administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fclemson_patents%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/clemson_patents?utm_source=tigerprints.clemson.edu%2Fclemson_patents%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/clemson_patents?utm_source=tigerprints.clemson.edu%2Fclemson_patents%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/clemson_patents/106?utm_source=tigerprints.clemson.edu%2Fclemson_patents%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

IR0 A O

United States Patent [(1) Patent Number: 5,596,504

Tata et al. [45) Date of Patent: Jan. 21, 1997
[54] APPARATUS AND METHOD FOR LAYERED 5,017,753 5/1991 Deckard .
MODELING OF INTENDED OBJECTS 5,053,090 10/1991 Beaman et al. .
REPRESENTED IN STL FORMAT AND 5,432,704 7/1995 Vouzelano et al. 364/468 X
ADAPTIVE SLICING THEREQF OTHER PUBLICATIONS
[75] Inventors: Kamesh Tata, Schaumburg, III.; Amit Vouzelaud et al, “Solid Freeform Fabrication Proceedings”,
Bagchi, Seneca; Nadim M. Aziz, Dec. 1992 pp. 291-300.
Clemson, both of S.C. Dolenc et al, “Slicing Procedures for Layered Manufactur-
ing Techniques,” Mar. 1993, pp. 1-13.
[73] Assignee: Clemson University, Clemson, S.C.
Primary Examiner—Joseph Ruggiero
[21] Appl. No.: 419,711 Attorney, Agent, or Firm—Dority & Manning
(22] Filed: Apr. 10, 1995 [57] ABSTRACT
[51] Int. CL® oo GOGF 19/00; GOGF 17/50, A device for automating operation of a stereolithography
GO6T 17/10 apparatus uses an STL file as an input and includes a
(521 US. CL oo 364/468.27; 364/468.04; Programmable computer, a facet processor that sorts the
395/120: 395/326 facets of the STL file according to a predetermined slice
(58] Field of Search ... 364/468, 474,05, ~ 2Xis. The facel processor also groups the sorted facets
364/474.24, 476, 468.25, 468.26. 468.27, aceording o “[’°S°hha"li.“g common minimum vertex "ala‘;es
468.04; 395/119, 120, 123, 155, 161; 264/401 1" respect (o the slice axis. The facet processor also
subgroups the grouped facet file according to facets having
[56] References Cited common maximum vertex values with respect to the slice
axis. A key characteristic identifier identifies key character-
U.S. PATENT DOCUMENTS istics of the STL file. A thickness calculator determines the
4618924 10/1986 Hinds thickness of each layer of the model according to a geo-
4752352 6/1988 Feygin‘ metrical error of preselected magnitude. A slicer calculates
4:789:931 12/1988 Kuragar;o etal. the intersection of each sliced plane by the calculated
4,837,703 6/1989 Kakazu et al. . thickness. A directional ordering device insures uniformity
4,863,538 9/1989 Deckard . with the direction of each other contour that defines the
4,866,631 9/1989 Kuragano et al. . intersection. A model generator uses the layer thickness and
4,907,164 3/1990 Guyder . intersection information to generate a portion of 2 model. An
4,938,816 7/1990 Beaman et al. . interface device controls the operation of the machine based
jg:gg;g g }ggg g&‘:}‘::t;]- . on the model that is generated.
4,961,041 10/1990 Seki et al. .
4,996,010 2/1991 Modrek . 22 Claims, 20 Drawing Sheets

U.S. Patent Jan. 21, 1997 Sheet 1 of 20 5,596,504

U) o
Ok
4 =5
<L .
L Ox
g =S
S Wwa
o)
w
- vg
(q) _—
i &
Q
S Wwo
—
%) -
5 =t
%{J -
T Og
N~ o
© o

U.S. Patent Jan. 21, 1997 Sheet 2 of 20 5,596,504

F12
A
A
Fo =
Z
F7
F2 Fe
F5 Fa
s
B B
Fi

U.S. Patent Jan. 21, 1997 Sheet 3 of 20 5,596,504

FIG 3

U.S. Patent Jan. 21, 1997 Sheet 4 of 20 5,596,504

66

VISUAL
DISPLAY

FIG.4

U.S. Patent Jan. 21, 1997 Sheet 5 of 20 5,596,504

70

70 3 r\’-n

FIG5

F1G.6(a) F1G.6(b)

U.S. Patent Jan. 21, 1997 Sheet 6 of 20 5,596,504

52

STL FILE
72
FACET-GROUP

N FACET-
) SUB-GROUP

U.S. Patent

Jan. 21, 1997

(1.0,1.0,2.0)

Sheet

5,596,504

7 of 20

78

1

(1.0,1.0,1.0)

FIG.9

Model |

|STL File's Initial State]

Model 2

J AL =
N

AN

VAN

After Sorting

N w s A,

N 7~ Do

After Grouping and Subgrouping

Prefix is group number and

suffix is sub-group number =
3 ﬂZ
e, ~
I3 pav ! ﬂ
IZ §12 =
I
Intended Model

FIG.II

U.S. Patent Jan. 21, 1997 Sheet 8 of 20 5,596,504

STL File
I
l
Facet—Group1 Facet—Group2
Members T toHq Members Ty, Ty2
Zmin10 , Zmax2.0 Zmin 2.0, Zmax2-0
Facet—Sub—Group1 Facet—Sub—Group2
Members |, T, Members T3toTig
Zmaxi -0 Z max 2.0
15
T
T
3 Te
Bottom Face Middle Faces Top Face

FIG. 10

U.S. Patent Jan. 21, 1997 Sheet 9 of 20 5,596,504

15 :
ERROR ' ERROR

1.0 . |

05

00

THICKNESS04 THICKNESS05 THICKNESS 0.6
T INTENDED OBJECT LAYERED MODELS
z FIG. 12

8l
82 82 o5

il 80

83/ L
83
FIG.13
82 E}383 83
2
83
82
83
83
82
82 F1G.14(b)

*FI1G.14(a)

U.S. Patent Jan. 21, 1997 Sheet 10 of 20 5,596,504

FIG. 15(a)
]
FI1G.15(b)
8 g 87 80 84
A;__T 'P | A <5-355 86
Lo ! | A87‘
]
FIG. 16(a)

zT FIG.17(a)

FI1G. 17(b)

U.S. Patent Jan. 21, 1997 Sheet 11 of 20 5,596,504

o 198, 108

107 | 102 /103 105 107 10 03 105
AT (L (09 109

100 F1G.18(b)

hY

FIG.18(a)

(@1

F IG.VIS(a)

l
F1G.19(b)

U.S. Patent

TESSELLATED (a)

Jan. 21, 1997 Sheet 12 of 20 5,596,504
LAYERED (a) AND (D)
~ MODEL(b) OVERLAPPED
2N
55
] A
] B
i \
LAYERED (a) AND (c)
MODEL (c) OVERLAPPED

FIG. 20

U.S. Patent Jan. 21, 1997 Sheet 13 of 20 5,596,504

t4

MIN

i INTENDED
SURFACE

] \
F1G.22

U.S. Patent Jan. 21, 1997 Sheet 14 of 20 5,596,504

0.03

=

0.025

0.02+

0.0i5

CO0I+

CUSP HEIGHT (INCH)

0.005+

C3 —Co
0] :

0% 10 20 20 40 50 &0 70 80
e

FIG. 23

U.S. Patent Jan. 21, 1997 Sheet 15 of 20 5,596,504

4
f
, 5)
ZT INTENDED
SURFACE
FIG.25
. INTENDED
T SURFACE
I %
{
T 7 \¢ TESSELLATED
Y4 LAYERED SURFACE
SURFACE
FIG. 26
e\ 04

FI1G.27

U.S. Patent Jan. 21, 1997 Sheet 16 of 20 5,596,504

P2 P3
el e 2 o

A N

A :
~6n-1 é2

F1G.28(b)
Ce I (LAYER
(o i Tmn [THICKNESS)

FI1G.28(c)

[
1
=]

FIG. 29

U.S. Patent Jan. 21, 1997 Sheet 17 of 20 5,596,504

AT A
N e Y A U
[° ;
‘ F1G.30
l/lO 10, /ERROR
T =S
ZtmpT \, Zye
l'gﬂ-REF-,':’I-‘.%EEZD Zeurr Zeurr-]
| F16.31a) F1G.31(b)
I}O |
—|
ZnexLZkC ~ r{ e Zeurr

FI1G.3I(c)

U.S. Patent Jan. 21, 1997 Sheet 18 of 20 5,596,504

U.S. Patent Jan. 21, 1997

Read STL file

Get process parameters
max. and min. layer thickness etc.

Y

Get criteria to vary layer thickness
1. Cusp height,
2. Max devigtion
3. Chord length,
4. Volumetric error per unit length

Sheet 19 of 20

¥

Identify facet groups
using facet processor

(]

Identify key characteristics
using key characteristic identifier

L set Zo,r = Object bottom face

v

No

Get facet group

curr< group Z

?

group zmin<—z max

No

L Merge with new group T

Any more facet groups

No

Eliminate horizontal triangles from
new group and obtain facet chain

y

Determine controlling normal
from the facet chain

LCompute layer thickness 1

(]
thmp= Zeurr +ﬂ

|

I

5,596,504

ZCU‘T= Object qux ?

[Zourr = Zke] I;Zcurr= Ltmp

Is there a key characteristic
between 7, and Zyo, 2

Compute new 1
Z1rnp= Zoyrr + 1

Back tracking
required ?

FIG. 35

Increase of complexity
between 7., and Ztmp?

U.S. Patent Jan, 21, 1997 Sheet 20 of 20 5,596,504
121
120 !Zmax
SLICE PLAN N ™
T SLICE PLANE 122
] “ y
T
lZmin F I G 37
FIG.36
2y 1w
& /.
SLICE PLANE. NW " 134
T LTI_A/M T
A T3 e — 2
FI1G.38
3 5
4 ° 4 13
2 6 6 2
"N ,
X
F1G.39(a) F1G.39(b)
127 126
i-1 A26 P+1 i+] i-1
127
e
1 05 82 o
128 158
FIG.39(c)

F1G.39(d)

5,596,504

1
APPARATUS AND METHOD FOR LAYERED
MODELING OF INTENDED OBJECTS
REPRESENTED IN STL FORMAT AND
ADAPTIVE SLICING THEREOF

BACKGROUND OF THE INVENTION

The present invention relates to a method of modeling an
intended object’s three-dimensional surface and more par-
ticularly to a method of generating and employing a two-
dimensional slice from a cross-section of a three-dimen-
sional tesselated model of the intended object’s three-
dimensional surface.

The advent of Solid Freeform Fabrication (SFF) technolo-
gies (a.k.a. Rapid Prototyping technologies) has reduced the
cycle time for prototyping. Typically, an SFF process starts
with a solid model of an intended object, such as a part to
be machined for example, in a Computer-Aided Design
(CAD) system. The model of the intended object in the CAD
system is then converted into a computer file in the stere-
olithographic (STL) format. The STL file defines the three-
dimensional exterior surface of the intended object in a
tesselated form as: (1) a plurality of flat planar sections
known as facets and (2) the outward pointing normals to
these planar sections.

In general, a “facet model” represents a three-dimensional
surface of an intended object by spatial boundaries, which
are defined by a set of planar faces. The facet model is a
special case of the more general boundary representation,
which does not require the boundaries of the object to be
planar. The term “facet” can be considered to denote a planar
region being used to define a model boundary wherein the
outline of the planar region is defined by any polygonal
shape. However, in the Solid Freeform Fabrication (SFF)
community, the term “facet” is typically understood to have
an outline shaped as a triangle, and that is the understanding
followed in the present application.

In a typical Rapid Prototyping (RP) application for an
STL. file, the faceted representation of the intended object is
processed by a so-called “slicing engine,” which produces a
two dimensional representation of the cross-section of the
intended object. The slicing engine provides the two-dimen-
sional representation in the form of 2-D layers (a.k.a. slices).
Each layer is bounded top and bottom by a so-called “slicing
plane,” and the edge of the layer disposed between the top
and bottom slicing planes represents to a varying degree of
accuracy, the commensurate cross-section of the surface of
the intended object. The intended object is then “built” by
stacking these layers one on top of the other layer-by-layer
from botiom to top. Some slicing engines have difficulty
dealing with certain key characteristics in the surface of the
intended object and sudden changes in the complexity of the
surface of the intended object. Moreover, providing the
slicing engine with a data file in the Stereolithographic
format (an STL file} as the input, negatively impacts the
performance of the slicing engine in rapid prototyping
systems.

As shown in FIGS. 1A-1C, a typical CAD software
package (e.g., 3-D Systems, 1988) models a solid object,
such as a sphere, as a set of triangular facets. Unfortunately,
the typical CAD package independently stores the data
representing each of these facets, as if each facet were
created and tossed into a bucket with no particular ordering
and without information relating a given facet to any other
facet in the bucket.

In stereolithography, about 60% of the total time spent
preparing the model is devoted to generating the slice data,

10

20

25

30

35

40

45

55

60

65

2

i.e., slicing. Moreover, far more of the time devoted to
slicing is consumed by searching for the facets that will have
an intersection with a particular slice plane, than is con-
sumed in performing the plane-facet intersection calcula-
tions required to generate the slice data.

To reduce the time required to generate the slice data,
sorting of triangles is recommended by 3-D Systems. How-
ever, this does not fully alleviate the problem because
triangle sorting is uni-directional, either descending or
ascending, The benefits of sorting are often diminished
because of the sheer complexity of the model and because
there are 100 many variations in the sizes of triangies.

Moreover, under certain circumstances such as shown in
an E-shaped block in FIG. 2, sorting may even increase the
computation time. Ignoring the front and rear faces of the
block for the sake of convenience, each of the 12 faces F,
through F,, of the block will be represented in the STL
format by at least two triangular facets. When the faces of
the block are sorted in ascending order, with the minimum
Z coordinate (Z-min) of each facet F, as the sorting criterion,
faces of the block will be ordered in the following First
Sequence: Fy, Fy, Fy, F,, Fs, Fy, F,, By, Fy, Fi, Fyy, Fio. In
this FIG. 2 example, only faces F, and F,, intersect the slice
plane A—A. Since these two faces are separated by eight
other faces (assuming that each face is composed of two
facets in the STL format), sixteen failed searches will occur
before the correct facets that intersect the slice plane A—A
can be found. If the sorting criterion is changed to the
maximum Z coordinate (Z-max) of each facet, then this
Second Sequence will be given by: F,, F,, F,, Fs, Fg, F;, Fg,
Fo, F10, F 1, Fs, Fy5. The Second Sequence is the same as the
First Sequence except for the new position of F,. Since slice
plane B—B intersects only facets F, and F, in the FIG. 2
example, there will be again sixteen failed searches. As is
evident from this example, as the complexily of the STL
model increases, the computational cost of searching for
facets that intersect the slice plane, quickly becomes pro-
hibitive.

In addition, STL files contain a significant amount of
redundant information, which can waste processing time.
For example, vertex coordinates are stated explicitly for
each facet. Since a veriex is always shared by a minimum of
three facets, this results in each vertex being stored in the
STL file data at least three times.

As shown in FIGS. 1A-1C, another of the limitations of
an STL file is its inability to represent curved surfaces
accurately. This results from the unavoidable error that
arises whenever a three-dimensional surface of an object
featuring curved surfaces is approximated by planar trian-
gular facets. As illustrated in FIG. 1, choosing smaller and
smaller triangles can reduce the error, but cannot eliminate
the error.

In a 1991 article, Chalasani et al, have proposed two
approaches for layered modeling of 3-D objects. In the first
approach, each of the slice planes defining the layers is
determined as the geometric intersection between the
intended object and a plane horizontal to the platform of a
stereolithography apparaws. Each facet that intersects the
slice plane will form a directed line segment (vector) on the
slice plane. Since intersections are not found in any particu-
lar order, the vectors must be sorted in head-to-tail fashion
in order to derive a closed contour on that slice plane. This
makes the process slow and inefficient.

Chalasani et al’s second approach uses a scan-line-type
search to find an intersection between the slice plane and a
facet, and the search starts at the global origin. When the

5,596,504

3

search point reaches the boundary of the faceted intended
object for the first time since the search began, the first
intersection is recorded. This first intersection will trigger a
contour-tracing procedure in which the “search point
becomes a draw point” and follows the plane of the facet
until it reaches another edge. An adjacency list is consulied
for the facet that shares this second edge of the first facet.
Then the draw point will move along the plane of this facet.
The process is repeated until the draw point comes back to
the first intersection.

However, because Chalasani et al’s methods produce
many failed searches before an intersection (match) is found,
it is slow. It is not clear how Chalasani et al’s search point
is incremented. Also, apart from stating that the layer
thickness should be varied according to the local curvatre
of the object, Chalasani et al fails to demonstrate or suggest
how this can be achieved.

In a December 1992 article, Vouzelaud and Bagchi
reported their use of slices to obtain 2-D contours from a 3-D
CAD model in a way that varies the slice thickness to better
represent the surface of the intended object. A user defined
“Quality Index,” ®, which is the maximum peak to valley
height of the profile in the assessment length, was used by
Loney and Ozsoy (1987) to calculate the side step or step
size for parametric cubic patches and therefore yield a
constant surface attribute. However, by obtaining the 2-D
contours from the CAD systems themselves, Vouzelaud and
Bagchi eliminated the need to have an STL file and the
limitations associated with the STL file. Also, unlike the
contours obtained from the tesselated model represented by
the STL file, the contours obtained from the CAD system are
more accurate representations of the original model. Despite
their limitations, STL files are widely used by the Rapid
Prototyping industry because of the easy availability of STL
translators and the simplicity of the STL format.

In a 1993 anicle, Dolenc and Makela suggested imple-
menting back-tracking as part of a procedure for varying the
thickness of the layers used to represent different portions of
the surface of the intended object. However, the details of
their implementation are not known, and the robustness of
their back-tracking procedure is suspect.

OBIJECTS AND SUMMARY OF THE
INVENTION

It is a principal aim of the present invention to reduce the
time needed to employ an STL file in any process employing
a profile or cross-section of the boundary of an intended
object wherein such profile is decomposed by incremental
parallel planes of iniersection.

It is another principal aim of the present invention to
increase the accuracy in any process employing an STL file
that must be decomposed by incremental parallel planes of
intersection.

It is a further principal aim of the present invention to
reduce the time needed to employ an STL file in any process
employing a profile or cross-section of the boundary of an
intended object wherein the profile is decomposed by incre-
mental parallel planes of intersection without losing key
characteristics in the surface of the intended object.

It is still another principal aim of the present invention to
employ an STL file in any process employing a profile or
cross-section of the boundary an intended object wherein the
profile includes multiple shapes that are simultaneously
decomposed by incremental parallel planes of intersection

20

25

30

35

40

45

50

55

60

65

4

separated by thicknesses determined by the most complex
shape of the profile of the boundary of the intended object.

It is an additional principal aim of the present invention to
reduce the time needed to employ an STL file in any process
employing a profile or cross-section of the boundary of an
intended object wherein though the profile includes sudden
changes in the complexity of the boundary of the intended
object, the profile is decomposed by incremental parallel
planes of intersection without losing accuracy in modeling
the boundary of the intended object.

It is yet another principal aim of the present invention to
provide a method of modeling the boundary of an intended
object from an STL file that must be decomposed into a
plurality of layers stacked alop one another wherein the
thickness of the layers is uniform except in portions of the
model where the thickness of each layer is adapted by being
increased or decreased by an amount that depends on the
knowledge of the local geometry and the constraint of
keeping the geometrical error between the object and the
model from exceeding a predetermined value.

It is a further principal aim of the present invention to
reduce the time needed to employ an STL file in any process
employing a profile or cross-section of the boundary of an
intended object wherein the profile is decomposed by incre-
mental parallel planes of intersection separated by thick-
nesses falling within a range of thicknesses between a
maximum and minimum which can be selected by the
operaltor.

It is another principal aim of the present invention to
employ an STL file in any process employing a profile or
cross-section that is decomposed by incremental parallel
planes of intersection to produce a model that can be viewed
by the operator either before or after being subjected by the
operator to various transformations such as scaling and
rotation.

Additional aims and advantages of the invention will be
set forth in part in the description which follows, and in part
will be obvious from the description, or may be learned by
practice of the invention. The aims and advantages of the
invention may be realized and attained by means of the
instrumentalities and combinations particularly pointed out
in the appended claims.

To achieve the aims and in accordance with the purpose
of the invention, as embodied and broadly described herein,
an apparatus and method is provided for effecting automatic
operation of a machine with respect to an intended object
having a desired profile characterized by at least one key
characteristic and at least two local complexity levels,
wherein the operation of the machine is controlled based on
a two-dimensional sliced model of the local profile of the
cross-section of the intended object with each slice plane
disposed transversely with respect to and along a slice axis
of the intended object, which is represented by a tesselated
model of the intended object and provided as an input to the
apparatus in the form of an STL file specifying triangular
facets obeying the vertex-to-vertex rule. The present inven-
tion can include a slicing engine, either alone or in combi-
nation with a model generating means and an interface
means as well as a variety of machines being controlled with
respect to a boundary of an intended object.

In accordance with the present invention, the slicing
engine of the present invention can include four main
constituents: (1) a facet processor means, (2) a key charac-
teristic identifier (KCI) means, (3) a thickness calculator
means, and (4) a slicer means.

The facet processor means can include a facet sorting
means, a facet grouping means and in a preferred embodi-

5,596,504

5

ment, a facet subgrouping means. The facet sorting means is
configured to produce a sorted facet file by sorting the facets
of the STL file according to the slice axis. The facet grouping
means is configured to produce a grouped facet file by
grouping the facets of the sorted facet file according to facets
having one of the following characteristics: common mini-
mum vertex values with respect to the slice axis and com-
mon maximum vertex values with respect to the slice axis.
The facet subgrouping means is configured to produce a
subgrouped facet file by subgrouping the facets of the
grouped facet file according to facets having the other of the
following characteristics: common minimum vertex values
with respect to the slice axis and common maximum vertex
values with respect to the slice axis.

The key characteristic identifier (KCI) means is provided
to ensure retention of the intended object’s asymmetries and
to deal more effectively with the complexities of the surface
of the intended object. The key characteristic identifier
means is configured to identify key characteristics of the
profile represented by the STL file and to produce a key
characteristic data file from the key characteristics of the
profile represented by the STL file.

The thickness calculator means computes the thickness of
the slice (a.k.a. layer) between adjacent slice planes accord-
ing 1o a user defined criterion relating to the complexity in
the shape of the boundary defining the model. Examples of
the user defined criterion include the volumetric error per
unit of perimeter, the maximum deviation, the chord length,
and the cusp height. The thickness calculator means can
include a simple back tracking means for determining the
thickness of the next layer while retaining a single change in
complexity level in the local profile. The thickness calcula-
tor means can include a repeated back tracking means for
determining the thickness of the next layer while retaining
more than a single change in the complexity level of the
local profile.

The user supplies to the slicing engine the maximum and
minimum values of the layer thickness. The thickness cal-
culator means of the present invention is configured so that
it automatically sets the layer thickness to this maximum
value when warranted by the complexity of the shape of the
boundary of the intended object. For a typical intended
object, this results in a shorter build time with the same level
of accuracy as would be obtained were the layer thickness
set at the minimum value dictated by the application. The
thickness calculator means of the present invention varies
the layer thickness between the maximum and minimum
values in relation to the complexity of the shape of the
boundary of the intended object. For a typical intended
object, this results in improved accuracy for the same build
time as would be obtained were the layer thickness set at a
uniform arbitrary value for the entire intended obiject.

The thickness calculator means employs the following
technique to vary the thickness of each layer. The thickness
calculator means chooses as the initial slice plane the slice
plane that passes through the bottom-most point along the
slice axis. To calculate the height along the slice axis of the
next slice plane above the initial slice plane, the thickness
calculator means pursues the following strategy. First, the
thickness calculator means determines the controlling nor-
mal by considering all the facets that have at least one vertex
through which the initial slice plane passes. The grouping of
facets done earlier by the facet processor means greatly
facilitates this process. However, all facets which lie in the
initial slice plane are ignored. Once the controlling normal
has been identified, the thickness calculator means calcu-
lates the layer thickness by applying a constraint equation

15

20

25

30

35

40

45

50

55

60

65

6

that relates the geometrical error between the desired profile
of the boundary of the intended object and the model profile
of each layer having such layer thickness, and the height
(Z,,,,) of the next Possible Slice Plane is then computed by
applying this constraint equation.

As noted above, the geometrical error can be expressed in
the constraint equation using a number of alternative param-
eters, including: (1) cusp height, (2) maximum deviation, (3)
chord length, and (4) volumetric error per unit of perimeter
length. Expressing the geometrical error in terms of volu-
metric error per unit of perimeter length is particularly
useful in applications concerned with minimizing the vol-
ume or mass of manufactured parts used in space vehicles.
Other expressions of geometrical error can be devised to suit
the particular needs of the application.

It is important to note that the Possible Slice Plane (at
height Z,,,) need not become the next slice plane (at height
Z,,x)- The Possible Slice Plane becomes the next slice plane
only in the absence of a new group (or groups) of facets
between the current slice plane and the Possible Slice Plane.
However, when the thickness calculator means encounters a
new group of facets in this location, the thickness calculator
means is configured to calculate the new slice thickness by
obtaining the controlling normal from the new group of
facets. If the “sum” of the Z-min of the new group and the
layer thickness is less than the height of the Possible Slice
Plane, then the thickness calculator means is configured to
use the value of this “sum” as the height of the Possible Slice
Plane. Then this process is repeated until either: (1) no new
group of facets lies between the current slice plane and the
Possible Slice Plane or (2) the “sum” is not less than the
height of the Possible Slice Plane. At the end of ihis
calculation loop performed by the thickness calculator
means, the height of the Possible Slice Plane becomes the
height of the Next Slice Plane, and the thickness calculator
means is configured to place this information into a layer
thickness data file to be used by the slicer means for
computing the points of intersection for such Next Slice
Plane.

Because of the configuration of the thickness calculator
means of the present invention, two important observations
can be made. First, if the controlling normal of a facet is
perpendicular to the slice plane (indicating that the facet is
parallel to the slice plane), then the thickness of the layer
becomes zero and the slice plane is forced to passes through
all three vertices of the facet. This result ensures that
important features like horizontal walls (overhangs) are
never missed. Moreover, this remains true regardless of the
maximum layer thickness defined by the user. Second, if the
controlling normal is parallel to the slice plane, then the
thickness of the layer is set to the maximum value defined
by user. This ensures that wherever there is a vertical wall,
the thickness of the layer is set to a maximum value, thus
reducing the number of layers. Moreover, multiple objects
can be sliced together. In such cases, the thickness calculator
means considers the most complex shape encountered for
each slice plane when selecting the thickness of the next
layer.

The slicer means generates two dimensional contours of
the intended model. The slicer means is configured to
operate on the sorted facet file, the grouped facet file, and the
layer thickness data file to produce a slice plane intersection
data file by calculating the intersection of each slice plane
disposed at a height above the previous slice plane by the
thickness calculated for each layer of the model of the
intended profile represented by the STL file.

The slicer means desirably is configured to include a
marching means that orders at least the grouped facet file

5,596,504

7

(and desirably also any subgrouped facet file that is gener-
ated by the facet processor means) to produce a geometri-
cally ordered facet file in the form of a continuous chain of
facets wherein each facet in this continuous chain intersects
one of the slice planes. Moreover, the marching means is
configured to generate an adjacency list for each facet that
is intersected by the one slice plane.

Once the thickness calculator means determines the
height of the slice plane, the slicer means computes the
points of intersection between the slice plane and the facets
defining the model of the intended object. In accordance
with the present invention, the slicer means optimizes the
speed of this computation of the intersection. The slicer
means is configured so that initially it forms a new group of
facets by merging (if necessary) relevant existing groups. A
relevant group is one which contains facets that potentially
intersect the slice plane. The slicer means is configured so
that the slicer means tests each facet in the new group for
intersection with the slice plane as follows.

In the case involving the intersection of the slice plane
through a vertex of a facet, any facet or vertex intersecting
with the slice plane is deemed “active.” The slicer means
records the intersection point (which is the co-ordinates of
the vertex), and the “active facet” containing this “active
vertex” is identified and stored so that it will not be checked
again on this layer. For the next intersection, the slicer means
checks the first facet encountered that shares the “active
vertex” for intersection. This first-encountered facet must
have one other vertex or an edge through which the slice
plane passes. Otherwise, this first-encountered vertex is
recorded and discarded and will not be checked by the slicer
means for an intersection with the current slice plane again.
The slicer means is configured to repeat this process until the
facet array is exhausted. This logic works for the tip of a
cone or any other similar geometry where a number of facets
share the same vertex.

In the case involving the intersection of the slice plane
through an edge of a facet, the slicer means deems any facet
or edge intersecting with the slice plane to be “active.” If the
slice plane is passing through an edge of a facet (“active
edge” and “active facet”), the slicer means records the
intersection point. The slicer means also records the “active
facet” so that the active facet will not be checked again for
an intersection with the current slice plane. There will be
only one facet which shares the “active edge” and the slicer
means identifies this facet by a simple comparison. This
facet sharing the “active edge” will have at least one more
edge or vertex through which the current slice plane passes.
The slicer means computes the new intersection and repeates
the process until all facets in the new group are exhausied.
If there are no more facets which share the “active vertex”
or “active edge™ and still the facet array is not exhausted, this
is a clear indication that there is a protrusion or a depression.
In such case, the slicer means restarts this checking proce-
dure for the facets left over in the facet array. This process
is repeated until the facet array is exhausted.

The present invention also can include a model generating
means for using the layer thickness data file and the slice
plane intersection data file to generate at least a portion of a
model of the intended object. This portion of the model of
the intended object includes a plurality of successive layers.
The cross-section of each layer in a plane of view is defined
by the intersection with this plane of view, of a pair of
parallel planes and a model profile connecting these parallel
planes. For each layer, the minimum distance separating its
pair of parallel planes defines the thickness of this layer.

The present invention also can include an interface means
for providing the generated portion of the model of the

25

30

35

40

45

50

55

65

8

intended object to operate the machine in successive steps
with respect to at least a corresponding portion of the
intended object. Each of the successive steps is based on a
separate one of the layers of the generated portion of the
model of the intended object.

In accordance with the method of the present invention,
the steps of the method include the permitted sequences of
functions performed by the programmable computer, the
facet processor means, the facet sorting means, the facet
grouping means, the facet subgrouping means, the key
characteristic identifier means, the thickness calculator
means, the simple back tracking means, the repeated back
tracking means, the slicer means, the marching means, the
model generating means, and the interface means.

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate several
embodiments of the invention and, together with the
description, serve to explain the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1C arc an elevated perspective view of three
prior art tesselated representations of a sphere, wherein FIG.
1(a) employs 67 facets, FIG. 1(b) employs 450 facets, and
FIG. 1(c) employs 1450 facets;

FIG. 2 is an elevated perspective view of an E-shaped
block wherein each face has been assigned a separate
designation, and two intersecting slice planes A—A and
B—B are shown perpendicular to the vertical direction
indicated by the arrow labeled “Z";

FIG. 3 is an elevated perspective view of a preferred
embodiment of apparatus in accordance with the present
invention as applied to a rapid prototyping process using a
stereolithography apparatus;

FIG. 4 is a schematic representation of the slicing engine
of the present invention used in the apparatus of FIG. 3 for
operating on an STL file to produce a sliced two-dimen-
sional representation that provides both a data file and can be
used for generating a visual display of the 2-D representa-
tion of the intended object;

FIG. 5 is an elevated perspective view of a block with a
square hole wherein four outward normals (arrows 70) and
four inward normals (arrows 71) arc shown;

FIG. 6(a) is a schematic representation of facets failing 1o
satisfy the vertex-to-vertex rule, and FIG. 6(b) is a schematic
representation satisfying the vertex-to-vertex rule;

FIG. 7 is an elevated perspective view of a tesselated
representation of a sphere intersected with a slice plane near
the bottom of the sphere with the Z direction indicated as the
vertical direction perpendicular to the slice plane;

FIG. 8 is a schematic representation illustrating the rela-
tionship between facet groups, facet sub-groups and indi-
vidual facets constituting the STL file;

FIG. 9 is an elevated perspective view of a tesselated cube
wherein the Z direction is indicated as the vertical direction
and the coordinates of two corners are shown within paren-
theses adjacent to each corner;

FIG. 10 is a schematic representation of the grouping and
subgrouping of the facets of the cube shown in FIG. 9,

FIG. 11 is a schematic representation of the facets of two
different intended models, each with its own shape, as a
progression is made from the initial state in the STL file to
the state after grouping and subgrouping;

FIG. 12 is a schematic representation of a comparison
between the error obtained at different layer thicknesses;

5,596,504

9

FIG. 13 is an clevated perspective view of a block with
pointed edges;

FIG. 14(a) is an elevated perspective view of a rectilinear
box having pointed ends, and FIG. 14(b) is a front plan view
of a triangular face with pointed ends;

FIGS. 15(a)and 15(b) are a schematic representation of
two different arrangements, (a) and (b), of multiple facets
forming a horizontal face of an intended object;

FIG. 16(a) is a front plant view of a block with differently
shaped holes shown in phantom (dashed line) intersecting
with a plane A—A, which is shown from a top plan view in
FIG. 16(b) to illustrate multiple empty contours within a
larger contour;

FIG. 17(a) is a schematic cross-sectional view of a
cylinder within a cylinder intersected by a slice plane A—A,
which is shown from a top plan view in FIG. 17(b) to
illustrate multiple contours surrounding each other;

FIG. 18(a) is a front plan view of a complex three-
dimensional object intersected by a slice plane A—A, which
is shown in FIG. 18(b) to illustrate unbounded contours;

FIG. 19(A) illustrates three examples of regular surfaces,
while FIG. 19(B) illustrates a single example of a regular
surface on a three dimensional block;

FIG. 20 schematically illustrates the effect of the slope
and layer thickness on the error produced by stair stepping
in a model of a tesselated intended object;

FIG. 21 is a graphical representation of the build time of
an object created with an SLA as a function of the layer
thickness wherein the layer thickness is “I”” at the minimum
build time “,,,,”;

FIG. 22 is a graphical illustration of the cusp height “c”
as a surface attribute wherein the Z direction is the vertical
direction along which the layers of thickness “I” are sliced;

FIG. 23 is a graphical representation of the relationship

between the cusp height “c” and the angle ©;

FIG. 24 is a schematic representation of the maximum
deviation “d” as a surface attribute with the vertical direction
indicated by the letter Z;

FIG. 25 is a schematic representation of the chord length
“I” as a surface attribute with the vertical direction indicated
by the letter Z;

FIG. 26 is a schematic representation of the error between
the three surfaces: intended surface, tesselated model of
intended surface, and layered model of tessalated surface;

FIG. 27 is a schematic representation illustrating the
volummetric loss in a layered model with the slice axis
direction indicated by Z;

FIG. 28(a) schematically illustrates the volumetric error
due to Stair Step (SS) error for a single layer of a layered
model having “n” surface complexities and shown in a top
plan view;

FIG. 28(b) schematically illustrates the volumetric error
due to SS error for a single layer of a layered model having

[Tt

n” surface complexities and shown in a side plan view;

FIG. 28(c) schematically illustrates the volumetric error
due to SS error for a single layer of a layered model having

[Tl

n” surface complexities and shown in a front plan view;

FIG. 29 is an elevated perspective view of three-dimen-
sional strip of a layer having a thickness “” measured in the
Z direction (the slice axis) and a perimeter length “p”
measured in a linear direction that is normal to the Z
direction;

FIG. 30 schematically illustrates three protrusions in an
object being intersected by the slice planes A—A and B—B;

5

20

25

30

35

40

45

50

55

60

65

10

FIG. 31a-31care a schematic representation of how the
back tracking means of the present invention provides the
ability to retain a key characteristic in a layered model of an
intended object;

FIG. 32 is a schematic representation of a three dimen-
sional object wherein successive slice planes A—A and
B—B pass through the same facet chain;

FIG. 33 is a schematic representation showing how the
simple back tracking means of the present invention pro-
vides the ability to retain a change in the level of surface
complexity in a layered model of an intended object;

FIG. 34 is a schematic representation showing the use-
fulness of repeated back-tracking in accordance with the
present invention in cases of multiple changes in the level of
complexity between Z_,,,, and Z,,,,,;

FIG. 35 is a schematic representation of a flow chart for
adaptive slicing in accordance with the present invention;

FIG. 36 is a schematic representation of the intersection
of a slice plane and a simple triangle;

FIG. 37 is a schematic representation of a slice plane
passing through a common vertex of two triangles;

FIG. 38 is a schematic representation of a slice plane
passing through a chain composed of six facets; and

FIG. 394-39d are a schematic representation of how the
direction of a contour is found in accordance with the
marching means of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Reference now will be made in detail to the presently
preferred embodiments of the invention, onc or more
examples of which are illustrated in the accompanying
drawings. Each example is provided by way of explanation
of the invention, not limitation of the invention. In fact, it
will be apparent to those skilled in the art that various
modifications and variations can be made in the present
invention without departing from the scope or spiril of the
invention. For instance, features illusirated or described as
part of one embodiment, can be used on another embodi-
ment to yield a still further embodiment. Thus, it is intended
that the present invention cover such modifications and
variations as come within the scope of the appended claims
and their equivalents. The same numerals are assigned to the
same components throughout the drawings and description.

The present invention operates with respect to the bound-
ary of a model of an intended object, which can be two-
dimensional or three-dimensional, as can the boundary of
the model. As shown in FIG. 3, an example of an intended
object could include an exemplar 40 of a three-dimensional
object to be built by a stereolithography apparatus (SLA) 41
with a laser beam 42 incident on the surface of a bath
composed of liquid polymer 43 under the conirol of a
computer 44, which generates a layered model 45 of an STL
file representative of the intended object that the SLA is
building. Another example of an intended object in a scan-
ning profile context such as shown in U.S. application Ser.
No. 08/156,321, now U.S. Pat. No. 5,432,704, could include
a patient’s cancerous tumor that is to be subjected to
irradiation. Yet another example of an intended object could
include a part to be machined, such as shown in U.S.
application Ser. No. 08/156,321, now U.S. Pat. No. 5,432,
705. Thus, the present invention can be practiced in any
application requiring a machine to be controlled with respect
to a target, whether such target be expressed as a one-

5,596,504

11

dimensional path, a two-dimensional perimeter or a three-
dimensional surface of an intended object. Other examples
of intended targets or objects are disclosed in U.S. applica-
tion Ser. No. 08/156,321, now U.S. Pat. No. 5,432,704,
which is incorporated herein in its entirety by this reference.

To facilitate understanding the present invention, the
discussion herein will concern itself primarily with
examples wherein the operation of the machine is controlled
based on a two-dimensional sliced (a.k.a. layered) model of
the profile of the cross-section of the intended object along
a slice axis of the intended object. In particular, the present
invention operates with respect to the model of the intended
object wherein the model of the intended object is expressed
in a computer file in the stereolithographic (STL) format.

In accordance with the present invention, one can begin
with a three-dimensional model of the intended object. Such
three-dimensional model of the intended object can be
generated in a Computer-Aided Design (CAD) system such
as the ARIES® CAD system available from ARIES Tech-
nology, Inc. As is the case with most available CAD sys-
tems, the ARIES® CAD system from ARIES Technology,
Inc. converts the model of the intended object in the CAD
system into a computer file in the stereolithographic (STL)}
format. The STL file defines the exterior surface of the
intended object in a tesselated form as: (1) a plurality of flat
planar sections known as facets and (2) the outward pointing
normals to these planar sections. Before a process, including
a process carried out by a machine operating under some
form of automatic control in accordance with the present
invention, can be performed with respect to the model of the
intended object, this data in the STL file format must be
transformed into an input that is useable by the process in
question. At the heart of the present invention is a so-called
slicing engine that is configured so as to effect this trans-
formation by generating a two-dimensional sliced model of
the profile of the cross-section of the intended object in a
particular plane of view. The particular plane of view is
chosen so as to take advantage of the symmetry of the
intended object.

The basic function of the slicing engine of the present
invention is to generate two-dimensional slices from a
three-dimensional tesselated model, which typically is pro-
vided by CAD software in the form of an 8TL file. Thus, the
output of a slicing engine is a two-dimensional representa-
tion of the STL model of the intended solid object. The
slicing engine of the present invention differs from the
existing similar software systems in two ways. First, there is
a smaller number of slices in the output of the slicing engine
of the present invention than in the output obtain from
conventional slicing engine. Second, the quality of the
two-dimensional representation comprising the output of the
slicing engine of the present invention is superior to the
quality of the output obtained from conventional slicing
engines. In other words, the error between the desired profile
of the cross-section of the intended object and the two-
dimensional representation forming the output of the slicing
engine is less in the output of the slicing engine of the
present invention than in the output obtained from the
conventional slicing engine. The slice data that is the output
of the slicing engine of the present invention, when used to
obtain the intended object, results in low build times because
of the fewer number of slices and results in surfaces of the
intended object that are high in quality because the slice
representation is improved over that obtainable with a
conventional slicing engine.

The slicing engine of the present invention includes four
main constituents: (1) a facet processor means, (2) a key

10

15

20

25

30

35

40

45

50

55

60

65

12

characteristic identifier (KCI) means, (3) a thickness calcu-
lator means, and (4) a slicer means. The basic function of
each of the four means of the slicing engine of the present
invention is briefly described as follows. The facet processor
means is provided to improve the speed of the slicing
operation. The key characteristic identifier (KCI) means is
provided to ensure retention of the intended object’s asym-
metries and to deal more effectively with the complexities of
the surface of the intended object. The thickness calculator
means computes the thickness of the slice (a.k.a. layer)
between adjacent slice planes according to a user defined
criterion relating to the complexity in the shape of the
boundary defining the model. The slicer means generates
two dimensional contours of the intended model.

A preferred embodiment of the slicing engine in accor-
dance with the present invention is schematically shown in
the block diagram in FIG. 4 as the elements surrounded by
the dashed-line rectangle and is represented generally by the
numeral 50. Information flow between the various elements
of the slicing engine moves in the direction indicated from
the tail to the pointed head of each arrow in FIG. 4. Input to
the slicing engine is an STL file 52, while the output from
the slicing engine is two dimensional slice data 54. As
schematically shown in FIG. 4, a facet processor means 56
receives the input data in the form of STL file 52, processes
STL file 52 in the manner described below, and then feeds
the processed STL file to the other three elements of slicing
engine 50. The KCI means 58 operates on the processed STL
file received from the facet processor means and sends the
output of KCI 58 to a thickness calculator means 60. The
thickness calculator means operates on the output received
from KCI means 58 and on the processed STL file received
from facet processor means 56 and sends the results of this
operation to a slicer means 62. The slicer means operates on
the output received from thickness calculator means 60 and
on the processed STL file received from facet processor
means 56 to generate two dimensional slice data 54 and
presents this data 54 in the form of a data file 64, which must
be converted by an interface means so that the information
in data file 64 can be used by the machine being controlled
(such as SLA 41). An example of an interface means is a
machine controller 46 shown in FIG. 3.

The interface means desirably includes a computer that is
programmed with software that converts the STL data file 64
output into a format compatible with the machine to be
controlled. For example, to convert data file 64 so that it can
be used by a SLA device such as SLLA 41 in FIG. 3, a
presently preferred embodiment of such component of the
interface means program is contained in pages 96—175 of the
Appendix which forms a part of this patent application. The
data thus created can be used by any process employing a
profile or cross-section that is decomposed by incremental
parallel planes of intersection. For example, as shown in
FIG. 3, the data 54 can be used by any layered manufac-
turing technique to realize the physical model 40.

As shown in FIGS. 3 and 4, two dimensional slice data 54
also can be outputted and presented in the form of a visual
display 66. The interface means also can include a computer
that is programmed with software that converts the STL data
file 64 output into a format compatible with the output
device gencrating the visual display 66. A presently pre-
ferred embodiment of such component of the interface
means program is contained in pages 47-95 of the Appendix
which forms a part of this patent application.

The properties of an STL file are taken into account in
building an efficient slicing engine in accordance with the
present invention. The configuration of a preferred embodi-

5,596,504

13

ment of the slicing engine of the present invention assumes
that the STL format conforms to the following criteria,
which are typical of STL formats employed by the major
computer-aided design (CAD) systems.

The first assumed criterion for the STL file is that each
facet is represented by four coordinates. The first coordinate
defines the unit normal to the plane of the facet. Each of the
remaining three coordinates defines the location of a differ-
ent one of the three vertices of the facet. The second
assumed criterion for the STL file is that the facet unit
normal information and the triangle vertex order are
arranged so that they are used to properly distinguish the
interior from the exterior of the intended object. Specifically,
as shown in FIG. 5, each facet must have a corresponding
unit normal vector 70, 71 pointing away from the solid
object. In addition to the facet normal, the “right hand rule”
is also used to specify the interior of the object. The right
hand rule states that the vertices of each facet must be
ordered so that when the fingers of the right hand pass from
vertex one through vertex two to vertex three, with the
thumb pointing in the direction of the normal, the normal
will point away from the solid object.

The third assumed criterion for the STL file is that the
actual data may be in any units, but negative and zero
co-ordinates are not used in specifying this data. This makes
it necessary to place the original model of the intended
object in positive CAD space before the model of the
intended object is tesselated. The fourth assumed criterion
for the STL file is the so-called Vertex-to-vertex Rule, which
states that each triangle must meet all adjacent triangles
along a common edge. In no case may a triangle vertex
intersect with the side of an adjacent triangle. FIG. 6(a)
shows an example of a facet model which does not follow
the Vertex-to-vertex Rule. FIG. 6(b) shows an example of a
facet model that obeys the Vertex-to-vertex Rule. The reader
should note that this Vertex-to-vertex Rule requires each
edge to be shared by only two triangles and no more, and
therefore each triangle has three and only three adjacent
triangles. As explained hereafter, the Vertex-to-vertex Rule
permits the specification and use of an adjacency list for
each facet in the model of the intended object.

As shown in FIG. 7, about 90% or more of the facets will
not intersect with the slice plane near the bottom of a
tesselated sphere. Thus, considerable computation time can
be saved merely by identifying and focusing on only those
triangles which intersect with a proposed slice plane. The
function of the facet processor means of the present inven-
tion is to bring order to the otherwise unordered collection
of triangular facets of the STL file 52 that is inputted to the
facet processor means 56.

In accordance with the present invention, the size and
orientation of a facet are of less importance to the slicing
engine than the facel’s location relative to the slicing plane.
Thus, sorting the facets according to their size or their unit
normals was considered unavailing. Accordingly, a more
coherent approach than a simple sorting was required. In
accordance with the present invention, the objective of such
a more coherent approach must be to arrange all of the facets
used to specify the tesselated model of the intended object
(the facets “thrown in the bucket” so to speak) according to
the geomeiry of the object that the facets represent. Further-
more, in the general case, this “coherent” arrangement must
be achieved without prior knowledge of the geometry of the
intended object in question.

In accordance with the present invention, generally speak-
ing the facets “in the bucket” are sorted, grouped, and

10

20

25

30

35

40

45

50

55

65

14

subgrouped. In more particular accordance with the present
invention, a facet processor means is provided for operating
on the STL file input to produce a processed facet file.
Desirably, a computer is programmed to function as the facet
processor means. Suitable computers on which the facet
processor means can be programmed include an IBM®
personal computer, so-called IBM® clone brand personal
computers, or an Apple® brand computer. Alternatively, the
facet processor means can be programmed on an EPROM
for example. As embodied herein, the facet processor means
is programmed in C language on a Sun Microsystem® work
station. A presently preferred embodiment of such facet
processor means program is contained in pages 15-18 and
30-31 of the Appendix which forms a part of this patent
application. In the Appendix, the computer file containing
the C language code was edited to fit the text into the format
used to print the patent application.

In further accordance with the present invention, the facet
processor means includes a facet sorting means for sorting
the three vertices of each facet in the STL file and then
sorting the facets themselves to produce a sorted facet file.
The facet sorting means is configured to sort the facets of the
STL file according to the slice axis to produce the soried
facet file. As noted above, a computer desirably is pro-
grammed to function as the facet sorting means. The facet
sorting means desirably is programmed on the same com-
puter on which the rest of the facet processor means is
programmed.

The program embodying the facet sorting means is con-
figured to sort the three vertices of each facet with reference
to the slice axis, and such sorting usually is performed by the
facet sorting means in ascending or descending order. For
purposes of simplifying the example used to explain the
operation of the facet sorting means, the slice axis has been
chosen to be the Z-axis, which is assumed to be the vertical
axis of the intended object in the three-dimensional Carte-
sian set of coordinates. Thus, for example, for each facet of
the STL file of the tesselated model of the intended object,
the facet sorting means orders the vertex with the smallest Z
value into the first position, the vertex with the largest Z
value into the third position, and the remaining vertex into
the second position. After the facet sorting means has
operated on the STL file, the output is a sorted STL file that
is ordered as explained above. As embodied herein, the facet
sorting means is programmed in C language on a Sun
Microsystem® work station. A presently preferred embodi-
ment of such facet sorting means program is contained in
pages 15-16 of the Appendix which forms a part of this
patent application.

In still further accordance with the present invention, the
facet processor means includes a facet grouping means for
grouping the facets in the sorted facet file produced by
operation of the facet sorting means. The facet grouping
means is configured to group the facets of the sorted facet
file into separate groups of facets to produce or compose a
grouped facet file 72 shown schematically in FIG. 8. Desir-
ably, a computer is programmed to function as thc facet
grouping means. The facet grouping means is programmed
conveniently on the same computer on which the facet
sorting means and the rest of the facet processor means is
programmed. As embodied herein, the facet grouping means
is programmed in C language on a Sun Microsystem® work
station. A presently preferred embodiment of such facet
grouping means program is contained in pages 16-18 and
30-31 of the Appendix which forms a part of this patent
application.

The strategy adopted by the facet grouping means is fairly
simple. Each group composing the grouped facet file has

5,596,504

15

either the same minimum Z-axis coordinate value (Z-min) or
the same maximum Z-coordinate value (Z-max). In the
example used herein, the program embodying the facet
grouping means is configured to group the facets in the
sorted facet file with reference to the Z-min values of the
vertices of each facet. Since the vertices of each facet in the
STL file provided as an input to the grouping means are
already sorted by the facet sorting means, the first vertex will
always contain the minimum Z-coordinate value for that
facet. Thus, for example, each facet in one group of facets
in the grouped facet file has the smallest Z-min value, while
each facet in a second group of facets in the grouped facet
file has the next smallest Z-min value, until in the last group
of the grouped facet file each facet has a vertex with the
largest Z-min.

As schematically shown in FIG. 8, all facets having
exactly the same Z-min are stored as one group called a facet
group 72. As embodied herein and schematically shown in
FIG. 9 for example, triangles designated T, through T, form
the facets of a tesselated cube 78. Facets T, and T,, which
are not shown in FIG. 9, form the bottom face of cube 78.
The top left corner of cube 78 has coordinates X=1.0, Y=1.0
and Z=2.0. The lower left corner of cube 78 has coordinates
X=1.0, Y=1.0and Z=1.0. As schematically shown in FIG. 10
for cube 78 of FIG. 9, facet group will include facets T,
through T, since all these facets have the same Z-min value
of 1.0. Facet group2 will have facets T,, and T, forming the
top face of cube 78, since these are the only facets with the
same Z-min value of 2.0.

In yet further accordance with the present invention, the
facet processor means can include a facet subgrouping
means for subgrouping the facets in the grouped facet file,
which has been produced by operation of the facet grouping
means. In this way, as schematically shown in FIG. 8, the
groups and subgroups have been arranged in a tree structure
in which the facets in each group are further divided into
subgroups called facet subgroups 74. The facet subgrouping
means is configured to subgroup the facets of the grouped
facet file into separate subgroups of facets to produce or
compose a subgrouped facet file. Desirably, a computer is
programmed to function as the facet subgrouping means.
The facel subgrouping means is programmed conveniently
on the same computer on which the facet grouping means
and the rest of the facet processor means is programmed. As
embodied herein, the facet subgrouping means is pro-
grammed in C language on a Sun Microsystem® work
station.

Since grouping is based on the Z-min in the example
given, subgrouping is done based on the maximum Z-coor-
dinate value (Z-Max). Thus, each subgroup composing the
subgrouped facet file has the same Z-max coordinate. The
program embodying the facet subgrouping means is config-
ured to subgroup the facets in the grouped facet file with
reference to the Z-max values of the vertices of each facet
in each group of facets. Thus, for example, each facet in one
subgroup of facets in the subgrouped facet file has the
smallest Z-max value, while each facet in a second subgroup
of facets in the subgrouped facet file has the next smallest
Z-max value, until in the last subgroup of the subgrouped
facet file each facet has a vertex with the largest Z-max.
While the program in the Appendix does not devote a
separate section of code to a facet subgrouping means, such
code would be the same as that shown for the facet grouping
means on pages 16-18 and 30-31 of the Appendix, except
that the facet subgrouping means would subgroup based on
Z-max instead of the Z-min that the code in the Appendix
uses for grouping.

20

25

30

35

40

45

50

55

60

65

16

The number of facet groups and the number of facet
subgroups within a facet group depend solely on the com-
plexity of the model of the intended object. However, the
number of individual facets in each group or subgroup
depends on the overall facet count.

As schematically shown in FIG. 10 for cube 78 of FIG. 9,
facets in facet group can be further divided into two sub-
groups based on the Z-max values. Facet subgroupl will
contain facets T, and T,, which have the same Z-max value
of 1.0, while facets T, through T, having a Z-max value of
2.0 will be in facet subgroup2. However, there will be no
subgroups in facet group2, because it has only two facets T,
and T, and both of these facets have the same Z-min value
as well as the same Z-max value. Accordingly, the facets
constituting the bottom face of cube 78 are in a first grouping
in the form of facet subgroup, the facets constituting the
middle faces are in a second grouping in the form of facet
subgroup2, and the facets constituting the top face are in a
third grouping in the form of facet group2. Similarly, FIG.
11 schematically illustrates the operation of the facet pro-
cessor means on two more facet models, which are taken
from their disordered initial states in the STL file to their
more ordered states after sorting, grouping and subgrouping.

In each of the above examples, each facet group or
subgroup represents either a vertical or a horizontal face of
the model. If a feature is defined as any topologically
significant entity, each face of the above models can be
considered to satisfy this definition of a feature. Accord-
ingly, the grouping methodology that results from sorting
vertices and grouping according to Z-min and subgrouping
according to Z-max, allows for easy identification of facets
that represent a feature. This important offshoot of grouping
will be exploited in key characteristic identification,
described below.

Unlike sorting, grouping and subgrouping are bi-direc-
tional, because both Z-min and Z-max are considered to
arrange the facets. As grouping follows sorting, identifying
facets with the same Z-min or Z-max for the purpose of
grouping becomes relatively simplified. Consequently, the
additional time spent on grouping and subgrouping becomes
insignificant.

The technique used by a stereolithography apparatus to
produce a prototype differs fundamentally from the tech-
nique used by a computerized numerically controlled (CNC)
milling machine to produce the same prototype. A stere-
olithography apparatus such as an SLA-250 utilizes an
additive process for producing a prototype. A CNC milling
machine adopts layered machining, which is a hybrid pro-
cess for producing a prototype. Because of these fundamen-
tal differences in their techniques, the stereolithography
apparatus has different needs with regards to feature recog-
nition than the needs of a CNC milling machine with regards
to feature recognition.

For Rapid Prototyping processes such as employed by an
SLA-250, the emphasis in the area of feature recognition
must be on recognition of the nature of the feature, protru-
sion or depression, and on the base faces of each feature.
Distinguishing depressions from protrusions enables identi-
fication of areas that must be left unfilled (additive pro-
cesses) or where material must be removed (substractive
processes) so as to form a hole.

In addition, recognition of base faces is essential to
improve tolerances of layered models. For example, FIG. 12
schematically illustrates the importance of retaining hori-
zontal faces. In FIG. 12, layered models of a stepped block
at different values of layer thickness AZ are schematically

5,596,504

17

shown. At layer thicknesses of 0.4 and 0.6, models are
considerably deviated from the intended object. In fact, at a
layer thickness of 0.6, the layered model is out of shape, with
one step completely eliminated. However, at a layer thick-
ness of 0.5, which is a multiple of the step heights (0.5 and
1.0), there is no error. No error is shown at the top of the
block, because it is assumed that all existing slicing engines
can successfully retain both top and bottom surfaces of an
object. This simple example demonstrates that the accuracy
of the layered model of the intended object or target is a
function of design features, dimensions, and layer thickness.
Recognizing base faces eliminates this undesirable depen-
dency. Thus, for Rapid Prototyping processes for example,
it is adequate to identify the type of feature and the base of
the feature. These two requirements can be met without a
full scale featurc recognition, and hence the term “key
characteristics” has been adopted.

In contrast to Rapid Prototyping processes, layered
machining performed by a CNC milling machine for
example, demands a more comprehensive feature recogni-
tion than mere identification of the type of feature and the
base faces of each feature of the intended object. Layered
machining requires the dimensions, the geometric shape,
and the orientation of each feature to be identified in addition
to the type of feature and the base faces of each feature. This
is mainly due to the fact that unlike other layered processes,
the capabilitics of layered machining are limited by the
geometric complexity of the intended object. Features like
threading, undercuts, grooves, and holes at an angle, are
some of the constraints which demand retooling, refixturing
or reorientation of the intended object. Identification of
machining constraints is therefore an essential requirement
for layered machining of a feature integrated design.

In accordance with the present invention, a Key Charac-
teristic Indentifier (KCI) means is provided. The key char-
acteristic indentifier means is configured to operate on a
tesselated model with the result that the following key
characteristics of the model of the intended object are
identified: (1) the base faces of the model; (2) the type of
features (protrusion or depression) of the model; (3) the
geometric shape of the model’s features; and (4) the orien-
tation of the model’s features. As schematically shown in
FIG. 4, the key characteristic indentifier means 58 is con-
figured to operate on the sorted facet file, the grouped facet
file and the subgrouped facet file to produce or compose a
key characteristic data file. Desirably, a computer is pro-
grammed to function as the KCI means. The KCI means is
programmed conveniently on the same computer on which
the facet sorting means and the rest of the facet processor
means is programmed. As embodied herein, the KCI means
is programmed in C language on a Sun Microsystem® work
station. A presently preferred embodiment of such KCI
means program is contained in pages 9-10 of the Appendix
which forms a part of this patent application.

In accordance with the present invention, the key char-
acteristic indentifier means provides slice-based feature rec-
ognition in the profile of the intended object. The key
characteristic indentifier means is configured to employ a
simple knowledge base that is supported by a few rules. The
rules are mostly based on simple geometric and engineering
principles, and derived by observation and logical reasoning.
In fact, some of the ideas discussed below are applicable for
any solid model regardless of whether the representational
scheme is a tesselated model.

Top and bottom faces of any feature in the model of the
intended object, including the overall object itself, may be
termed as base faces. Since a polygon consists of only two

10

20

30

35

40

45

50

55

60

65

18

basic entities, a point and a line, only combinations of one
or more points with one or more lines will result in any
topologically significant characteristic. Consequently, as
schematically shown in FIG. 13, any solid 80 represcnied by
planar polygons can have only three types of base faces: a
horizontal face 81, a pointed horizontal edge 82, and a
pointed end 83. FIG. 14 shows additional examples of
pointed ends 83 and pointed horizontal edges 82.

The key characteristic identifier means identifies a hori-
zontal surface by applying the following test: A horizontal
surface is represented by a single polygon disposed paraliel
to the slice plane or by multiple polygons disposed parallel
to the slice plane. In the STL format that is of interest herein,
the polygons will always be triangular facets. FIG. 15(a)
shows a rectangular horizontal face composed of triangular
facets and FIG. 15(b) shows an inverted T-shaped face
composed of triangular facets.

The key characteristic identifier means identifies a pointed
edge by applying the following test: When at least two
non-coplanar polygons share an edge, the edge may be
termed as a poinied edge. As schematically shown in FIG.
13, a block with v-grooves contains a number of pointed
edges 82.

The key characteristic identifier means identifies a pointed
end by applying the following test: When at least two
non-coplanar polygons share a vertex, the vertex may be
termed as a pointed end. As schematically shown in FIGS.
13 and 14, the tip of a cone and the corner of a block are
examples of pointed ends 83.

For a layered manufacturing process, the existence of of
each of the three types of base faces described above must
be identified. Then the height of each base face must be
determined so that the slice plane can be forced to assume
that height. Identification of these three types of base faces
from an STL model format is basically a searching opera-
tion. Horizontal surfaces can be identified by checking unit
normals or ordinate values of facets. For example, if a unit
normal of a facet describes 90° (or 270°) with the slice
plane, there lies a horizontal surface with that facet con-
tained in that surface. Alternately, if Z coordinate values of
all the three vertices of a facet are equal, then that facet is
part of a horizontal surface. However, if brute force
approaches to searching horizontal facets are used, then
computational costs will be tremendous as the facet count
increases. Fortunately, the facet groupings performed in
accordance with the present invention will greatly facilitate
the searching process. In fact, from the cube example shown
in FIGS. 9 and 10, it can be seen that during grouping in
accordance with the present invention, all facets contained in
a horizontal face are automatically stored in either a facet
group by the facet grouping means or a facet subgroup by
the facet subgrouping means.

With regards to implementation in a layered manufactur-
ing process, the key characteristic identifier means applies
further refinement of the above definition of an “edge” by
following more elaborate rules. First, the key characteristic
identifier means requires that none of the polygons sharing
an edge should be horizontal. This is because horizontal
faces are already identified, and the identification of a
horizontal face means that the edges of such horizontal face
have been determined. Second, the key characteristic iden-
tifier means requires that the common edge must be parallel
to the slice plane, and then a separate effort is required for
its retention in the sliced model. Thus, the key characteristic
identifier means ignores an inclined edge, and only identifies
horizontal edges. In STL format, any non-horizontal facet

5,596,504

19

with two vertices having the same Z coordinate value is
likely to form an edge provided the facet that shares these
vertices (there will be only one such facet) is not in the same
plane as the first facet and is non-horizontal. According to
the grouping sequence implemented by the facet grouping
means of the present invention, this facet will invariably lie
in the current group or a group above or below the current
group. Thus, the key characteristic identifier means limits
the search to these three groups only, saving much computer
time.

However, identifying two of a facet’s vertices which have
the same Z coordinate value, which is the very first step in
identifying a pointed edge, demands searching virtually
every vertex of all non-horizontal facets in the model. This
again leads to high execution times. Finally, while the key
characteristic identifier means can identify pointed ends
from an STL file by looking for a single vertex shared by
several non-coplanar facets, this calls for checking every
vertex in the model for the number of facets that share it and
their unit normals.

Clearly, identifying pointed ends and edges is a time
intensive search operation. Isolation of the vertex that forms
a pointed end or the edge that becomes a pointed edge
demands a large scale search, and often that search must
cover every facet of the model. This problem can be largely
overcome by adopting a new strategy in accordance with the
key characteristic identifier means of the present invention.
This strategy is based on the fact that whenever there is a
change in the number of contours in successive slices, there
lies a base face of a feature.

A contour is a line that is continuous and defines an
interior and an exterior. A continuous contour is a contour
that does not have a break. An empty contour is a contour
that lacks a second contour in the interior of the empty
contour. For example, as shown in FIG. 16(b), the rectan-
gular contour designated 84 is not an empty contour. This is
because within the interior of contour 84, there resides an
empty closed contour 85 in the form of a circle, an empty
closed contour 86 in the form of a square, and an empty
closed contour 87 in the form of a triangle.

In accordance with the configuration of the key charac-
teristic identifier means of the present invention, the exact
location of the base face of the feature can be anywhere
between the two slice planes or in the slice plane which has
the greater number of contours. A similar approach is
suggested by Dolenc and Makela (1993) to identify peaks.
Once a change in the number of contours is observed by the
key characteristic identifier means of the present invention,
the key characteristic identifier means finds the exact loca-
tion of the base face by considering facet groups in that
region and applying the methods suggested above.

Protrusions are any projections on the object, such as
pads, bosses, and mounds, while depressions are voids of
any shape. The easiest way of finding a feature’s type
(protrusion or depression) is by studying the slices and the
contours within each slice. The following rules, which are
true for any solid, are embodied in the KCI means of the
present invention and enable the KCI means to distinguish
between protrusions and depressions.

Rule 2.1: When a solid is sliced by an imaginary plane,
the resulting slice may contain single or multiple, non-
intersecting, closed contours. This is true, regardless of the
angle and the position of the slice.

Rule 2.2: If a single empty contour is surrounded by a
single larger contour or multiple empty contours are sur-
rounded by a single larger contour, each inner contour, i.e.,

20

25

30

35

40

45

50

55

60

65

20

each surrounded contour, represents a depression feature. As
shown in FIGS. 16{a) and (b), each of closed contours 85,
86 and 87 is a depression feature.

Rule 2.3: In general, if a contour is bounded by multiple
non-intersecting contours, and each contour is numbered
consecutively starting with the outermost contour as the first
contour and each area between consecutive contours is also
numbered consecutively starting with the outermost area,
then the n’th area represents solid if “n” is odd and a void
if “n” is even. Referring to FIG. 17 for example, a cross-
sectional view of a cylindrical block 88 is shown in FIG.
17(a) in an axial plane, and a cross-sectional view of block
88 taken through transverse plane A—A is shown in FIG.
17(b). In FIG. 17, the first area 91 (the area between the two
outermost contours 89 and 90) represents solid, the second
area 92 (area between contours 90 and 93) represents a void,
the third area 95 (area between contours 93 and 94) repre-
sents solid, and the fourth area 96 (area internal of contour
94) represents a void.

Rule 2.4: An unbounded contour is a contour that lacks a
second contour surrounding the exterior of the unbounded
contour. Any unbounded contour represents a protrusion
feature. Referring to FIG. 18 for example, a cross-sectional
view of a large solid block 100 is shown in FIG. 18(a) in an
axial plane, and a cross-sectional view of block 100 taken
through transverse plane A—A is shown in FIG. 18(b). As
shown in FIG. 18, the first area 101 (the area within the
empty contour 107) represents a solid protrusion, the second
area 102 (area between empty contours 107 and 108)
represents a void, the third area 103 (area within empty
contour 108) represents a solid protrusion, the fourth area
105 (area between empty contours 108 and 109) represents
a void, and the fifth area 105 (area within empty contour
109) represents a solid protrusion.

The KCI means is configured so that once it has deter-
mined the feature’s type and location by employing the
methods described above, the KCI means can obtain further
details of the feature by analyzing the unit normals of the
facets which compose the feature. The following cxample of
an analysis of the unit normals of the facets which compose
a feature of an intended model, assumes that the KCI means
already has identified voids, projections, and base faces
using the methods explained above.

Assuming that the KCI means has identified a particular
feature as either a pad or a void using Rules 2.1 through 2.4,
the KCI means applies the following tests to determine
whether the pad or void is triangular in shape. If a feature
comprising a pad or void is triangular, such feature is
bounded by three faces where the sum of the included angles
between the faces is exactly 180° and all three faces are
perpendicular to a common plane. Moreover, if the feature
has a fourth face that connects all of these three commonly
perpendicular faces, then the triangular feature is closed at
one end. Similarly, if the feature has a fifth face that also
connects the three commonly perpendicular faces, then the
triangular feature is closed at both ends. The KCI means is
configured to determine the type of triangle by testing the
included angle between the three faces that are pendicular to
the common plane. The KCI means is configured to deter-
mine the orientation of the feature by testing the angle
between the slice plane and one of the bounding faces.

Assuming that the KCI means has identified a particular
feature as either a pad or a void using Rules 2.1 through 2.4,
the KCI means is configured to determine whether that
feature is rectangularly shaped by testing whether such
feature is bounded by four faces wherein each face is

5,596,504

21

perpendicular to each adjacent face and all four faces are
perpendicular to a common plane. Moreover, if there is a
fifth face that connects all of the four faces, the rectangular
feature is closed at one end. Similarly, if a sixth face
connects the first four faces, then the rectangular feature is
closed at both ends.

The KCI means is configured to apply the following tests
to identify whether a feature, which has been determined to
be a pad or void, is pentagonal. Each pentagonal pad or void
is bounded by five faces, where the sum of the included
angles between the faces is exactly 450° and all five faces
are perpendicular to a common plane. Moreover, if there is
a sixth face that connects all of the five faces, the pentagonal
feature is closed at one end. Similarly, if a seventh face also
connects the first five faces, then the pentagonal feature is
closed at both ends. The KCI means is configured to
determine the type of pentagon (regular or irregular) by
testing the included angle between adjacent faces. The KCI
means is configured to determine the orientation of the
pentagonal feature by testing the angle between the slice
plane and one of the bounding faces. The foregoing logic can
be extended to identify hexagonal or any higher order
polygonal feature.

One limitation with slice-based feature recognition is that
features parallel or at certain angles to the slice plane will be
difficult to identify. In order for a comprehensive feature
recognition, slicing may have to be done at different angles
and the resulting slices studied independently and together.
However, these difficult-to-identify features need not be
identified for layered modeling techniques.

As noted in Chalasani and Bagchi (1992), one of the
fundamental problems for better process planning and even-
tually for greater build efficiency (lime versus quality) with
all of the Rapid Prototyping technologies is the limitation of
having to use a slice thickness that cannot be changed within
the model. This aptly sums up the importance of adaptive
slicing. Since the build time is directly proportional to the
number of layers, the objective of any layered process must
be to build superior quality parts with fewer layers.

As shown in FIG. 12, the stair stepping (S8S) phenomenon
introduces the concept of SS error, which is a function of the
geomelry of the object to be modeled and the thickness of
the layers into which such object is resolved. As known, SS
error is mainly responsible for the surface roughness of the
model of the intended object and for the form error of the
model from the intended object. Here a detailed analysis of
SS error is done in order to arrive at methods for quantifying
SS error. Then, the SS error so quantified is used by the
thickness calculator means of the present invention as a
criterion for determining how to vary the layer thickness to
restrict the resulting model surface to a predetermined
geometrical error that is acceptable for the application being
used.

In accordance with the present invention, a thickness
calculator means is provided for operating on the sorted
facet file, the grouped facet file, the subgrouped facet file and
the key characteristic data file, to calculate and select the
layer thickness that achieves a predetermined surface rough-
ness that is acceptable for the process being used. More
particularly, the thickness calculator means is configured to
calculate and select a thickness for each layer of the model
of the desired profile represented by the STL file of the
intended object such that the geometrical error between the
desired profile of the intended object and the model profile
of each layer having such layer thickness, remains no greater
than a preselected geometrical error. The thickness calcula-

10

20

30

35

45

50

55

60

65

22

tor means is configured to produce a layer thickness data file
containing such calculations. As schematically shown in
FIG. 4, the thickness calclator means 60 is configured to
operate on the sorted facet file, the grouped facet file, the
subgrouped facet file, and the key characteristic data file to
produce or compose a layer thickness data file. Desirably, a
computer is programmed to function as the thickness cal-
clator means. The thickness calclator means is programmed
convenienily on the same computer on which the key
characteristic identifier means and the facet processor means
is programmed. As embodied herein, the thickness calclator
means is programmed in C language on a Sun Microsys-
tem® work station. A presently preferred embodiment of
such thickness calclator means program is contained in
pages 25-29 of the Appendix which forms a part of this
patent application.

With regards to layered manufacturing, the thickness
calculator means is configured to classify each surface of the
model of the intended object into one of two broad catego-
ries. The first broad category is Regular Surfaces, which are
surfaces that are not susceptible to the SS phenomenon.
Examples of regular surfaces are shown at (A) in FIG. 19.
The thickness calculator means is configured to classify
intended objects with multiple regular surfaces as a regular
surface, if as shown at (B) in FIG. 19 each of the multiple
regular surfaces is separated from the other by a sudden
slope discontinuity.

The second broad category is Non-Regular Surfaces,
which are surfaces that are subject to the SS phenomenon.
Surfaces featuring slopes with respect to the slice axis are
prone to SS error because of an inevitable loss of informa-
tion during slicing. The amount of lost information is related
to the slope of the surface of the intended object and to the
layer thickness of the model. FIG. 20 shows two layered
models at (b) and (c) of a single tessellated model at (a)
having multiple slopes. Each of the two layered models at
(a) and (b) employs a different value of layer thickness. As
shown in FIG. 20, for a given layer thickness, the magnitude
of the SS error (indicated by the area encompassed by the
stippled region between the boundary of the intended tes-
sellated object and the boundary of the layered model
superimposed on the intended tessellated object) increases
with slope, and for a given slope, SS error increases with
layer thickness.

In further accordance with the present invention, the
thickness calculator means is configured to quantify a
parameter known as “Surface Complexity,” which relates
the layer thickness and the slope of the profile of the surface
of the intended object (in this case a tessellated object) to the
SS error. The “Surface Complexity” is defined in Equation
2.1 in terms of the slope of the profile of the surface of the
intended object obtained in a two-dimensional cross-section
of the STL model of the intended object.

Surface complexity=tan® 2.1
The angle © defines the slope of the object’s surface with
respect to the slice axis along which the layers are “cut.”
According to Equation 2.1, the surface complexity of a
surface that is perpendicular (© is 90 degrees) to the slice
axis, a so-called “regular surface,” is zero. For so-called
“non-regular surfaces” in which the angle e between the
surface and the slice axis varies between 90 degrees (per-
pendicularity) and zero degrees (parallel), the surface com-
plexity increases with increasing slope (decreasing angle ©)
until the surface complexity becomes infinite when © equals
90°. For example, if the slice axis is the Z-axis (vertical),

5,596,504

23

then a horizontal surface (when © equals 90°) has an infinite
surface complexity.

Assuming ideal process conditions, surfaces with zero
surface complexity can be precisely constructed by stacking
layers appropriately. Theoretically, one layer should be
enough to build all the intended objects shown at (A) in FIG.
19. However, in any practical application, the maximum
layer thickness is limited by the process that is being carried
out with respect to the intended object. For instance, the
maximum layer thickness for a stereolithography apparatus
is determined by the type of building material, the laser
power, and other process parameters. Furthermore, as is
known, a larger thickness for the slices or layers composing
the model of the intended object does not automatically
result in shorter process times. For example, in stereolithog-
raphy, the laser scan velocity decreases exponentially with
increased cure depth, which accounts for an increase in build
time. FIG. 21 graphically depicts how the build time in a
process employing a stereolithography apparatus varies as a
function of the layer thickness. According to FIG. 21, at a
time-optimized layer thickness of “1,”, build time *t,,,” is
minimum. Thus, even for zero complexity surfaces, the
thickness calculator means of the present invention must be
configured so as to select a layer thickness in such a way that
the fastest process time can be achieved. The determination
of such an optimum layer thickness depends on the process
to which the layered modeling is applied.

In accordance with the present invention, selection of
layer thickness for non-regular surfaces mainly depends on
the desired quality of the surface of the intended object. This
quality parameter is related to SS error, which in turn is
related to the surface complexity and to the layer thickness.
In the thickness calculator means of the present invention,
the relationship between SS error, layer thickness and slope
can be represented generally as in Equation 2.2 where “e” is
the S8 error and is a function of “1” (the layer thickness) and
the angle “@" (defining the slope of the object’s surface with
respect to the slice axis along which the layers lie trans-
versely, i.e., are “cut”).

A, ©) 22

In accordance with the thickness calculator means of the
present invention, a predetermined quality for the surface of
the intended object is obtained by varying “1” for different
“8” in order to control “e.” This must be done by establish-
ing a more specific relationship between “e”, “1” and “6”,
which necessitates an investigation of various methods of
quantifying the “SS error.” Four methods of quantifying the
“8S error” are discussed below. Before they are described,
it may be noted that S8 error can be either positive or
negative. When each layer is slightly bigger than the
intended cross-section of the object, the SS error is positive,
otherwise it is negative. The following criteria can be
applied for both positive and negative measures of the S8
error.

One alternative embodiment of a method of quantifying
the “SS error” in accordance with the thickness calculator
means of the present invention, relies on a parameter known
as the “Cusp Height.” As shown in an example in FIG. 22,
the layer thickness “I” is determined such that the *cusp
height,” which is denoted by the lower case letter “c,” is
within a user-defined value represented by the notation
“Cesirea- Equation (2.3) relates the cusp height ¢’ to the
layer thickness “I” and to the slope as follows.

c=1 Sin ©(0<0<90) (2.3)

In accordance with the thickness calculator means of the

present invention, the following constraints are considered

20

25

30

35

40

45

50

60

65

24

in determining a desired cusp height “cg, ;.- Referring to
FIG. 23, which plots the relationship between “c” and the
angle theta (®) for various values of “1”, the following
observations can be made. According to a first constraint
applied by the thickness calculator means of the present
invention, when a uniform layer thickness of 1, is used, the
cusp height of the intended object varies from c,to c,, where
¢,=1,,;,Sin B, and c,=1,,,Sin ©,,,, and is shown by the
bottom-most curve in FIG. 23. Similarly, when 1, is the
layer thickness throughout the intended object, the cusp
height varies from ¢, to c,, where ¢;=1,,,,Sin ©,,, and
c=1,,,,5in 8, . and is shown by the top-most curve in FIG.
23. In the plot, c,=c,=0, because ©,,,, is zero. The constraint
equation for the cusp height will then be ¢, £C,, ;.. Sc,.

According to a second constraint applied by the thickness
calculator means of the present invention, for all values of
Cgesirea» WHETE C4,0<Co, the cusp height, at best, can be
varied from c,;,., t0 ¢, by appropriately varying the layer
thickness *“1”, then the minimum deviation that cannot be
avoided is given by ¢,—Cy,.iea-

According to a third constraint applied by the thickness
calculator means of the present invention, a constant cusp
height throughout the intended object can be maintained for
all values of €y, g if €2 =Cy,eq=Ca. This is possible only
when c;>c,, which then becomes the condition for main-
taining a uniform cusp height. As shown in FIG. 23, since
€,<C,, a uniform cusp height cannot be achieved.

According to a fourth constraint applied by the thickness
calculator means of the present invention, for all values of
Capsireas WHETE Cgpyires>C. there will be at least one layer
having a cusp height that is less than c,, ., and the
deviation from the desired value can be, at best, controlled
L0 CaesiredCa-

According to a fifth constraint applied by the thickness
calculator means of the present invention, when theta () is
zero (corresponding to a situation lacking any surface com-
plexity), the cusp height “c” is zero for any layer thickness
“”. Moreover, when theta is zero, any layer thickness *1”
can be used without increasing the cusp height “c”. When
theta is 90° (corresponding to a situation of infinite surface
complexity), the cusp height “c” equals the layer thickness
“17.

A second alternative embodiment of a method of quanti-
fying the “SS error” in accordance with the thickness
calculator means of the present invention, relies on a param-
eter known as the Maximum Deviation. As shown in FIG.
24, in a stair stepping triangle, the side “d” oppositc the side
equal to the layer thickness “1” indicates the maximum
deviation of the layer from the intended surface, which is
represented by the hypotenuse of the triangle. Equation 2.4
relates the maximum deviation “d” to the layer thickness “1”
and to the slope of the profile as follows.

d=ltan © Equation (2.4)
In this case, the layer thickness “1”" is determined such that
the maximum deviation “d” is within a value that is defined
by the user. According to Equation (2.4), as © approaches
0°, “1” approaches infinity. This indicates that at ©=0°, the
surface complexity is zero and the thickness calculator
means can select virtually any layer thickness “1I” without
losing accuracy. However, as explained earlier, the maxi-
mum layer thickness selected by the thickness calculator
means is limited by the characteristics of the process.

Yet another alternative embodiment of a method of quan-
tifying the “SS error” in accordance with the present inven-
tion, relies on a so-called “surface attribute parameter”
known as the “Chord Length.” As shown in FIG. 25, the

5,596,504

25

layer thickness “I” is varied such that the chord length “f” is
within a user defined value {,,,,,,. Equation (2.5) relates the
chord length “f” to the layer thickness “1"” and to the slope
as follows.

S=liCos © Equation (2.5)

where,
0<G<90

The constraint equation applied by the thickness calculator
means of the present invention will be

HiEfEh

where

f, is not equal to 1, /Cos®,, ,,
and f, is not equal to 1,,,/Cos®,,,,

When an intended object with a complexity level from
©,.:, 10 0, is considered by the thickness calculaior means
of the present invention, the chord length “f* at best can be
varied from f; to f, when f; and f,, are set to their respective
lower limits. As illustrated in FIG. 26, these criteria are
useful in an application in which it becomes necessary to
compute the deviation of the layered model from not only
the tessellaled model but also from the original model.

A uniform value of “f” throughout the intended object can
be achieved if and only if Equation (2.6) is true:
1min Equation (2.6)
= cosBpmay

Linax

O8O min

If Equation (2.6) is true, then the thickness calculator means

of the present invention keeps the “surface attribute” “f’
uniform by setting the value of “f” such that

Equation (2.7)

lmm
€050 mgx

Lmax
cosB

zfz

This is derived using a similar logic on which the condition
for a uniform surface quality is based.

The fourth alternative embodiment of a method of quan-
tifying the “SS error” in accordance with the thickness
calculator means of the present invention, relies on a param-
eter known as the “Volumetric Error.” However, the follow-
ing volumetric analysis of layered and tessellated models is
required before formulating the criteria for relating SS error
to layer thickness “1” based on volumetric error.

Typically, a layered model can lose or gain volume over
the tessellated model based on whether the SS error is
positive or negative. The following analysis is done assum-
ing a negative SS error. However, the results of this analysis
can be applied for either positive or negative values of SS
error. Loss of volume in layered models of an intended
object with a complexity level more than 0° is common and
also inevitable (unless the process is modified). Volumetric
loss is related not only to the layer thickness and to the
surface complexity but also to the cross-sectional size of the
layer. This is illustrated in FIG. 27 by considering two layers
of the same thickness “I” but located at different heights h,
and h, of the cone 104 shown in cross-section as the
intended object. Due to the larger cross-section at h,, the loss
of volume at h; exceeds the loss of volume at h,. Thus, the
volumetric error is a function of the size of the cross-section
in addition to e and “1” and can be represénted as:

Loss of volume per layer=f(®, 1, p) where “p” is the

perimeter of the layer having thickness “I”.

It will not be feasible to maintain a constant volumetric

error from one layer to the next layer, because of large

15

20

25

30

35

40

45

50

55

60

65

26

variations in the perimeter from layer to layer. Any attempt
by the thickness calculator means of the present invention to
maintain a constant volumetric error by varying the layer
thickness is likely to lead 10 unacceptable form errors. One
alternative to keeping the volumetric error constant from one
layer to the next layer, could be the selection of an attribute
“V” such as the volumetric loss per unit length and keeping
such attribute constant. Equation (2.7a) presents this rela-
tionship in general.

V=loss of volume/perimeter of layer (2.7a)

For example, as shown in FIGS. 28(a), 28(b) and 28(c),
consider a single layer that is bounded by “n” surfaces and
has “n” levels of complexity. The stippled regions in FIGS.
28(b) and 28(c) schematically represent the volume tha is
lost due to SS error.

Volumetric loss=a,p,+a,p; . . . +@,_1Pp.1+@8,Pn

Where a,—a, are cross-sectional areas and p,—p, are
perimeters. Thus, if V represents the volumetric loss per unit
of length of the perimeter, then V can be expressed

(@mp;+aipy. .. +ag-1Pn-1 + anPn)

V=
- Pitpr... .+ Pa1+tpa

which also can be expressed as

.zlﬂiP-‘
- =
T3
=P
Further,
lztane,»
a;= 3
Therefore,
n
12 T tanfp; 28
V= =1
R
="
2.9)

n
L tanOp;
=1

Assuming that “p” and © are constants for a given geometry,
a suitable layer thickness “1” can be found for a V chosen by
the user. For example, as shown in perspective in FIG. 29,
a three-dimensional strip of a layer has a thickness “1”
measured in the Z direction (the slice axis), and has a
perimeter length “p” measured in a linear direction that is
normal to the Z direction. The constraint equation for V can
be obtained as follows:

Total Volume of the Strip _ 12
P 2

Z = tan®;

V can be minimized by setting “1” to 1,,,,

2
1ml‘n

Zmin = 7

tanB;

For a part with a complexity from ©
from V, to V, such that

to ©,,,.. v varies

min

5,596,504

27

V,svsv, 2.16)

Where,
V, is not less than

12

min

2

tanB ;s

V, is not less than

2
1 min

7 [F:1.1: 3.

A uniform volumetric error per unit length of the perim-
eter (V) throughout the model can be achieved only if

(2.09)

12, 12,
min 111
7 AN0 gy, = 5 tanB@a,

If this condition (2.09) is true, the thickness calculator
means of the present invention achieves a uniform V by

setting V such that:
12 12 2.10)
S @n6in 2 V 2 —5— tan6ax

Constraint equation (2.10) has been obtained using a logic
similar to the logic underlying the constraint equation for a
uniform surface quality. Expressing the geometrical error in
terms of volumetric error per unit of perimeter length is
particularly useful in applications concerned with manufac-
turing parts for components of space vehicles or any portion
of the payload carried by space vehicles. In such applica-
tions, space and weight are major constraints, and the V
parameter enables the user to control these characteristics of
the part to be manufactured.

In accordance with the present invention, the thickness
calculator means varies the slice thickness “1” according to
astrategy thal is easy to implement and independent of other
criteria. That is, this same strategy for varying the slice
thickness “I” can be used for any criteria that the user might
come up with in the future. As embodied herein and
explained below, the strategy by which the thickness calcu-
lator means selects the slice thickness is successfully tested
for three different criteria. In connection with these expla-
nations, a few simple rules, based on observation and logical
reasoning, are defined and act as tools that facilitate this
adaptive slicing process. Such rules are explained as and
when necessary.

The first such rule (Rule 3.1) to be observed by the
thickness calculator means states that: Triangles which are
either contained in or lying completely below the current
slice plane, which is designated by Z_,,,, and defines the slice
plane for which intersection points are being computed, will
not, in any way, influence the location of the slice plane
immediately above. For instance, if a cone is mounted on a
cube and the current slice plane is passing through the top
face of the cube (intersection plane of cube and cone), only
the triangles of the cone but not the triangles of the cube will
affect the location of the next slice plane.

Once again, for the sake of simplifying the foliowing
explanation of the strategy by which the thickness calculator
means selects the intersection of the next slice plane in
accordance with the present invention, the slice axis is
arbitrarily chosen to be the Z-axis. The first slice plane must
always pass through the lowest Z-value of the object to
ensure that the bottom face is retained in the sliced model.
This step in the strategy of selecting the triangles for
calculating the intersection with the slice plane is a step that
applies to any desired object and serves as a good starling

20

25

40

45

50

60

65

28

point for adaptive slicing of a model of the desired tesselated
object. As noted above, Z_,,, indicates the height of the
current slice plane. Now, to calculate the height of the next
slice plane, Z,,.,, each of the triangles which satisfies the
condition for intersection (which condition is explained
below) with the current slice plane Z_,,, is taken into
consideration by the thickness calculator means. This
ensures that the triangles selected by the thickness calculator
mearns are limited to those triangles which: (1) share either
an edge or a vertex and lie above the current slice plane or
(2) pass through the current slice plane. Any triangle which
shares an edge or a vertex but lies below the current slice
plane Z_,,, is eliminated from the group of triangles selected
by the thickness calculator means. Of course, there will not
be any triangles below the very first slice plane. This
selection strategy employed by the thickness calculator
means also eliminates from the group of selected triangles,
horizontal triangles which lie in the current slice plane.
Furthermore, all triangles which survive the elimination
process employed by the thickness calculator means satisfy
Rule 3.1. The intersection condition developed earlier, thus
plays a dual role, (1) avoidance of redundancies and (2)
selection of the group of triangles which satisfy Rule 2.1 for
the purpose of calculating the thickness of the layer.

Because of the operation of the facet processor means,
which has grouped the triangles according to Z-min and
subgrouped the groups according to Z-max, the grouped
data file and the subgrouped data file exist. Thus, the process
employed by the thickness calculator means to select tri-
angles to be used in determining the layer thickness does not
require a triangle-by-triangle check. Instead, the thickness
calculator means performs its checking by checking the
grouped data file and the subgrouped data file. In accordance
with the present invention, the checking occurs facet group-
by-facet group rather than triangle-by-triangle, thus saving
enormous computation time.

There might be one or more facet groups which will have
an intersection with the slice plane. Again, there might be
one or more facet subgroups in each such facet group which
will have an intersection with the slice plane. All such facet
groups and facel subgroups intersecting the slice plane are
identified by the thickness calculator means and then are
merged by the thickness calculator means to form a single
new group. Interestingly, all the triangles in that merged
group produced by the thickness calculator means form
either: (1) a single, non-intersecting continuous chain rep-
resenting a closed surface or (2) multiple, non-intersecting
continuous chains, wherein each such chain represents a
closed surface. For instance, as shown in FIG. 30, the slice
plane at B—B passes through a single, non-intersecting
continuous chain of triangles, while the slice plane at A—A
passes through multiple (three), non-intersecting continuous
chains of triangles. The three chains intersected by slice
A—A represent the three closed surfaces, the hemisphere,
the rectangular block, and the truncated cone. This leads to
the following important axiom (Rule 3.2) that is employed
by the thickness calculator means: For any closed surface,
there can be one and only one continuous chain of triangular
facets per slice plane.

As discussed carlier, the surface complexity can vary in
each layer, and in each layer there can be any number of
levels of surface complexity. However, in accordance with
the present invention, the worst case, i.e., the most complex
surface, in each layer is selected by the thickness calculator
means when determining how to vary the layer thickness. As
embodied herein, the thickness calculator means identifies
from the current chain or chains of triangles the controlling
normal that represents the most complex surface.

5,596,504

29

In theory, there can be as many controlling normals as
there are chains, and the thickness calculator means can vary
the slice thickness for each chain separately. The procedure
essentially remains the same. However, this most meticulous
procedure is not implemented in the thickness calculator
means embodiment presented in the Appendix.

Next, depending on the user defined criteria, any of the
four equations (2.3; 2.4; 2.5; 2.10) derived earlier (or any
new relationship for other criteria developed by the user) can
be used to calculate the layer thickness “I”. Then, Z,,,, ,
which is the height of the next probable (temporary, hence
the “trap” subscript) slice plane, is simply the sum of Z .,
and *1”. In the thickness calculator means of the present
invention, Z,,,, still need not represent the height of the next
slice plane Z,,,,, for two reasons. First, the thickness cal-
culator means checks to determine whether there could be a
key characteristic (KC) between Z_,,, and Z,,, IfaKC does
exist in this location, then the thickness calculator means
employs a back tracking means to deal with this KC in order
to retain this KC in the model. Second, the thickness
calculator means checks to determine whether there could be
a sudden change in the level of surface complexity between
Z r and Z,, . If a sudden change in the level of surface
complexity does exist in this location, then the thickness
calculator means employs a back tracking means (that is
either a simple back tracking means or a repeated back
tracking means) to deal with this sudden change in the level
of surface complexity in order to retain this sudden change
in the level of surface complexity in the model.

First, in explaining how the thickness calculator means
deals with a KC, consider the presence of a KC in the form
of a horizontal face indicated by the designating numeral
110 in FIG. 31(a). In accordance with the present invention,
if the KCI means identifies a KC 110 located between Z,
and Z_,,,, as shown in FIG. 31(d), such KC would be in the
key characteristic data file in the form of Z., which
represents the height of the KC and which is available to the
thickness calculator means. As shown in FIG. 31(3), the
“Error” is the distance along the Z-axis between Z,_, and
Zyc.

In accordance with the present invention, the thickness
calculator means includes a means for back tracking the
selection of the temporary slice plane at height Z,,, upon
encountering a KC so that the temporary slice plane corre-
sponds to the slice plane lying in the plane of the KC at
height Z, . Desirably, a computer is programmed to func-
tion as the back tracking means. The back tracking means is
programmed conveniently on the same computer on which
the thickness calculator means, the key characteristic iden-
tifier means and the facet processor means is programmed.
As embodied herein, the back tracking means is pro-
grammed in C language on a Sun Microsystem® work
station. A presently preferred embodiment of such program
for the back tracking means is contained in pages 25-29 of
the Appendix which forms a part of this patent application.
As shown in FIG. 31(c), the back tracking means assumes
that Z,,, has the value of Z,, and chooses this value as

temp

next
Second, in accordance with the present invention, the

thickness calculator means includes a means for accommo-
dating the presence of a sudden change in the degree of
surface complexily in the intended object. The means for
accommodating the presence of a sudden change in the
degree of surface complexity is complicated and thus merits
the following detailed discussion. In accordance with the
present invention, in order to ensure retention of a sudden
change in the degree of surface complexity of the intended

10

20

25

30

35

45

50

55

65

30

object, the thickness calculator means implements a back
tracking strategy in the process of determining the intersec-
tion of the next layer in the model of the intended object. As
the name suggests, the back tracking means adjusts the
position (forward and backward) of the slice plane along the
slice axis until a pre-selected attribute has been satisfied.
Back tracking becomes desirable in an adaptive slicing
process because the thickness of the next layer, and accord-
ingly the height of next slice plane above the current slice
plane, are not known beforehand.

When employing back tracking to ensure retention of a
sudden change in the degree of surface complexity of the
intended object, the thickness calculator means of the
present invention ignores the notion that the thickness of the
next layer depends on the current complexity level (or may
be derived from the current chain of facets). Instead, when
the thickness calculator of the present invention employs the
back tracking to ensure retention of a sudden change in the
degree of surface complexity of the intended object, the
criteria used by the thickness calculator means to select the
thickness (l,,.,,) of the next layer are: (1) the number of
changes in complexity that occur within a distance of 1.,
from the current slice plane and (2) the effect of each change
in complexity that occurs within the same distance 1,,,,, from
the current slice plane. If the number of changes in com-
plexity within that distance 1,,,, from the current slice plane
is “n,” then the effect of each one of them must be consid-
ered by the back tracking means in order to determine 1,,,,,
in accordance with the present invention.

The back tracking means used by the thickness calculator
means to ensure retention of a sudden change in the degree
of surface complexity of the intended object, can be classi-
fied into two types: (1) simple back tracking and (2) repeated
back tracking. In accordance with the present invention, the
thickness calculator means employs a simple back tracking
means for cases having only one change of complexity and
is explained first. Desirably, a computer is programmed to
function as the simple back tracking means. The simple back
tracking means is programmed conveniently on the same
computer on which the thickness calculator means, the key
characteristic identifier means and the facet processor means
are programmed. As embodied herein, the simple back
tracking means is programmed in C language on a Sun
Microsystem® work station. A presently preferred embodi-
ment of such program for the simple back tracking means is
contained in pages 25-29 of the Appendix which forms a
part of this patent application.

To illustrate an example of simple back tracking, assume
a surface with a one time slope discontinuity located at “P”
immediately above the position Z_,,, of the current slice
plane as shown in FIG. 33. The letter “P” designates the
transition point between the two complexity levels, each
complexity level being indicated by the respective slopes ©,
and ©, of the cross-section of the desired object. In accor-
dance with the present invention, whenever the complexity
level of the profile increases when moving along the profile
from a point just before P to a point just beyond P, the
thickness calculator means uses the simple back tracking
means to determine the position Z,,,,, of the next slice plane.
In further accordance with the present invention, when the
complexity level of the profile decreases when moving along
the profile from a point just before P to a point just beyond
P, the thickness calculator means forgoes employing simple
back tracking to determine the position of the next slice
plane. This can be proved mathematically as follows.

As shown in FIG. 33, the position of the current slice
plane is denoted by Z_,,,, the starting assumption for the

5,596,504

31

thickness of the next layer is denoted by 1,,,,,, and the slope
of the cross-section of the desired object that intersects the
position Z_,,, of the current slice plane is indicated by ©,.
After reaching Z_,,,, the initial assumption for the thickness
of the next layer thickness 1,,,,,, the “temporary” thickness
of the next layer so to speak, is calculated by the thickness
calculator means with respect to ©,. As can be seen, the
location of P provides a convenient point of demarcation for
dividing 1,,,,, into two components “a” and *b.” Component
“a” is the portion of 1,,,,, before the change of complexity
from @, to ©,, and component “b” is the portion of 1,,,,,
after the change of complexity from @, to ®,. A second
temporary assumption for the thickness of the next layer
thickness is denoted in FIG. 33 by l,,,,. and 1,,,,, is then
calculated considering the new complexity ©,. Note that
lympo is measured from P, the transition point between the
two complexity levels @, and ©,.

In a first case, a decrease in the complexity level is
indicated to the thickness calculator means if the slope of the
cross-section of the surface of the intended object intersect-
ing Z,., is greater than the slope of the cross-section of the
surface of the intended object on the other side of P, ie.,
0,>0,. In this first case, since layer thickness increases as
the complexity level decreases, 1,,,,,, will be more than,,,,,;.
Thus, the thickness calculator means need not consider L,,,,»
for the simple reason that the surface attribute will exceed
the allowable limit 1,,,, chosen by the user. In accordance
with the present invention, the thickness calculator means
does not employ the simple back tracking means to deter-
mine the location (Z,,,.,,) of the next slice plane because the
location (Z,,,,) of the next slice plane is already calculated
based on 1,,,,,. This corresponds to the case Z,,,~Z,,,,-

In a second case, no change in complexity level is
indicated to the thickness calculator means if the slope of the
cross-section of the surface of the intended object intersect-
ing Z_,., equals the slope of the cross-section of the surface
of the intended object on the other side of P, i.e., ©,=6,. In
this-second case, 1,,,,, will be equal to 1,,,,,, and in accor-
dance with the present invention, the thickness calculator
means is configured so that it does not employ the simple
back tracking means to determine the position Z,,,, of the
next slice plane. This again corresponds to the case Z,,,,,=
Zlmpl‘

In a third case, an increase in complexity level is indicated
to the thickness calculator means if the slope of the cross-
section of the surface of the intended object intersecting
Z...» s less than the slope of the cross-section of the surface
of the intended object on the other side of P, i.e., ©,<©,. In
this third case, which is shown in FIG. 33, since layer
thickness decreases as the complexity level increases, 1,,,,,
will be less than 1,,,. Then if 1,,,,>b then Z,,,=Z,,,,, and
in accordance with the present invention, the thickness
calculator means does not employ the simple back tracking
means to determine the location of the next slice plane (and
accordingly the thickness of the next layer in the model of
the intended object). Similarly, if 1,,,=b, then Z,.,,~Z,,,,,
and in accordance with the present invention, the thickness
calculator means does not employ the simple back tracking
means to determine the location of the next slice plane (and
accordingly the thickness of the next layer in the model of
the intended object). Finally, if 1,,,,,,<b, then Z,,,. ~Z ., +a+
lyp2, and in accordance with the present invention, the
thickness calculator means employs the simple back track-
ing means to back track the position Z,,,, of the initial
temporary slice plane to the position Z,,,, +atl,,».

Two important observations can be made from the above
analysis. First, the thickness calculator means is configured

20

25

30

35

40

45

50

55

60

65

32

so that it does not employ the simple back tracking means
when there is a sudden decrease in complexity level. Sec-
ond, the thickness calculator means is configured to employ
the simple back tracking means only in those certain cases
in which the complexity level increases suddenly. In accor-
dance with the present invention, the thickness calculator
means is configured to decide to employ the simple back
tracking means based not only on the value of the new
complexity level relative to the current complexity level but
also based on the location of the current slice plane Z_,,,
with respect to the transition point (P) denoting the change
from the current complexity level to the new complexity
level.

However, as illustrated in FIG. 34 for example, a thick-
ness calculator means configured with a simple back track-
ing means as explained above, fails to retain sudden changes
in the complexity level when determining the position of the
next slice plane if muitiple levels of complexity are encoun-
tered between the current slice plane Z_,,, and the initial
temporary slice plane Z,,,,. Therefore, in accordance with
the present invention, the thickness calculator means is
configured to employ a repeated back tracking means to
handle this fourth case of multiple levels of complexity
disposed between the current slice plane Z_,,,, and the initial
temporary slice plane Z,,,. The configuration of the
repeated back tracking means employed by the thickness
calculator means for handling this fourth case is based on the
fact that there will be as many transition points P,, P,, P,
. . . P,, as the number of complexity levels 6, ©,, ©,, . .
. ©,. Desirably, a computer is programmed to function as the
repeated back tracking means. The repeated back tracking
means is programmed conveniently on the same computer
on which the thickness calculator means, the key character-
istic identifier means and the facet processor means are
programmed. As embodied herein, the repeated back track-
ing means is programmed in C language on a Sun Micro-
system® work station. A presently preferred embodiment of
such program for the repeated back tracking means is
contained in pages 26-27 of the Appendix which forms a
part of this patent application.

In accordance with the present invention, after reaching
Z,,.51» the thickness calculator means is configured to initiate
a search to find any transition point P lying between the
current slice plane Z_,,, and the initial temporary slice planc
Z,,,1- 1f such search finds a transition point, the thickness
calculatior means is configured to initiate an additional
procedure. According to this additional procedure, the thick-
ness calculator means is configured to calculate the height of
a new slice plane from the transition point P, that is closest
to Z,,,, The transition point P, may be referred to as the
lowest of all of the transition points. If the height of the new
slice plane is more than or equal to Z,,,,, the thickness
calculator means ignores this transition point P, closest 1o
Z.., and focuses on the transition point P, immediately
above P.. The transition point P_,, is the second closest
transition point to Z_,,,,. If the height of the new slice plane
is less than Z,,,,, then the thickness calculator means
replaces Z,,,, with the new height. Then, the thickness
calculator means considers the group of transition points
between the current transition point (P, or P.,,) and Z,,,,,,,
and again employs the repeated back tracking means as
described above until each transition point has been
checked.

In accordance with the present invention, the thickness
calculator means identifies transition points, which is the
key to a successful implementation of this logic, by looking
for new facel groups between Z_,,, and Z Each new

‘curr tmp -

’

5,596,504

33

facet group cotresponds to a possible change in the com-
plexity level. When the thickness calculator means identifies
facet groups between Z,,, and Z,,,,,, the thickness calcu-
lator means first considers the facet group that is closest to
Z .. The complexity level of the surface being represented
by the new facet group is determined by the thickness
calculator means from the new facet group’s controlling
normal, which is the normal that makes the greatest angle
with the current slice plane Z,,,, and must belong to a facet
through which the current slice plane Z_,,, is passing. If
there is an increase in complexity, then the thickness calcu-
lator means employs the simple back tracking means to
apply the procedure described above in the third case for
0©,<0,. If back tracking is not necessary, then the thickness
calculator means considers the facet group immediately
above the earlier group and repeats the procedure.

However, when back tracking is performed by the thick-
ness calculator means, then Z,, ., assumes a new value,
Then, all groups lying between the current group and the
new Z,,.,, are considered by the thickness calculator means,
which repeats the procedure until there are no more facet
groups to be checked.

These steps are followed by the thickness calculator
means until the top of the intended object is reached. Since
the top face of the intended object is considered a key
characteristic (KC), the last slice plane inevitably passes
through the top face of the intended object. This completes
adaptive slicing of the model of the intended object. The
flow chart shown in FIG. 35 schematically illustrates the
various steps involved in adaptive slicing as performed by
the thickness calculator means of the present invention.

In accordance with the present invention, a slicer means
is provided for operating on the sorted facet file, the grouped
facet file, the subgrouped facet file and the layer thickness
data file to compute the intersection between each slice
plane and each facet of the STL file at any given height and
in the way that is least expensive, i.e., uses computer time
most efficiently. In accordance with the present invention as
shown schematically in FIG. 4, the thickness calculator
means 60 feeds the heights (Z,, Z,, Z,, eic.) in the layer
thickness data file to the slicer means 62, and the facet
processor means 56 feeds logically arranged facet groups
and facet subgroups to the slicer means 62. The slicer means
is configured to calculate the intersection of each slice plane
disposed at a height above the previous slice plane by the
thickness (1), 1,, 15, etc.) calculated by the thickness calcu-
lator means for each layer of the model of the intended
profile represented by the STL file and to produce a slice
plane intersection data file. The slicer means is configured to
be programmed on a computer. As embodied herein, the
slicer means is programmed in C language on a Sun Micro-
system® work station. A presently preferred embodiment of
such slicer means program is contained in pages 31-41 of
the Appendix which forms a part of this patent application.
The working details of the slicer means are presented next.

In an exemplary case shown in FIG. 36 for example, a
slice plane 120 at a height “h” will have an intersection with
a triangle 121 denoting a facet, if the following Condition
(2.11) is satisfied.

ZminShsZ,

‘max

2.11)

However, the imposition of Condition (2.11) leads to redun-
dancies. To illustrate how these redundancies might arise,
recall the cube example described in FIGS. 1.8 and 1.9. As
shown therein, a total of ten triangles, T, to T,, of facet
groupl and T}, and T, of facet group2, meet at the top face
and share vertices. When the slice plane passes through the

10

25

30

40

50

55

65

34

top face of the cube, technically each of these 10 triangles
will have an intersection. However, this leads to unnecessary
and duplicate intersection points. In accordance with the
present invention, the slicer means is configured to employ
the following Rule 4.1 to avoid such redundancies. Rule 4.1:
When a slice plane passes through a common vertex shared
by two triangles and the common vertex forms the first
vertex (Z,,,,) of the three vertices of one of the triangles and
the last vertex of the three vertices of the other one of the
triangles, for all computational purposes, the common vertex
is considered to belong to the former triangle. Applying this
Rule 4.1 shown in FIG. 37 for example, the common vertex
122 shared by triangle T, and triangle T, is the Z,,,,, vertex
of triangle T,, and accordingly the computation is performed
by the slicer means under the assumption that the common
vertex shared by triangle T, and triangle T, belongs to
triangle T, only. Now the modified Condition (2.12) for an
intersection will be

2, ShEZ, .. (2.12)

This Condition (2.12) can be applied to facet groups, to facet
subgroups and to individual triangles.

Assume that “h” is the height at which the intended object
is 1o be sliced by the thickness calculator means. There
might be one or more facet groups which will have an
intersection with a slice plane passing through the intended
object at the height “h”. Again, there might be one or more
facet subgroups in each such facet group which will have an
intersection with such slice plane. Applying the Condition
(2.12) for intersection derived above, all such facet groups
and facet subgroups are identified by the slicer means and
merged to form a single new group. This new merged group
defines a facet chain. All the facets in this merged group
when properly ordered, will form a closed facet chain that is
ordered according to a sequence determined by facets shar-
ing common edges or common vertices.

According to the Slicing Axiom defined above, there will
always be one continuous chain of triangles through which
aslice plane passes. As explained previously, such chains are
already obtained in accordance with the present invention by
merging facet groups and facet subgroups. Now, the slicer
means calculates intersections for each triangle in the chains
by using basic analytic geometry. There are two types of
intersections, a vertex intersection and an edge intersection,
and each requires its own separate treatment by the slicer
means in accordance with the present invention.

If the slice plane is passing through the vertex (active
vertex) of a triangle (active triangle), the slicer means
calculates the intersection point (which is nothing but the
coordinates of the vertex) and stores the identity of the active
triangle in the slice plane intersection data file in a manner
so that the slicer means will not check this triangle for an
intersection with the current slice plane a second time. When
linked lists in C language are used, the active triangle can be
dropped altogether, saving an enormous amount of compu-
tation time. For the next intersection, the first facet encoun-
tered that shares the active vertex is checked for intersection
by the slicer means. This next facet to be checked by the
slicer means must have at least one more vertex, other than
the active vertex, or an edge through which the slice planc
passes. (If not, it is a discontinuous chain, violating the
slicing axiom. The STL file may be repaired, if necessary,
before proceeding further). The intersection point is calcu-
lated by the slicer means and included in the slice plane
intersection data file. This process is repeated until the chain
of facets that intersect with the slice plane is complete.

If the slice plane is passing through the edge (active edge)
of a triangle (active triangle), the slicer means calculates the

5,596,504

35

intersection point and records the active triangle in the slice
plane intersection data file in a manner so that the active
triangle will not be checked a second time. There will be
only one triangle in the chain that shares the active edge, and
the slicer means identifies this one triangle by a simple
comparison. The slicer means finds the triangle that shares
an active edge by checking every triangle in the chain. This
is necessary because the triangles are not in any order inside
the chain. The slicer means terminates the search only when
the slicer means finds the triangle which shares an active
edge.

There still remains one more problem. Facets in each facet
subgroup are not yet arranged in any geometrically coherent
order. In other words, after the facets have been sorted,
grouped and subgrouped, it still is not known whether facet
T, is next to facet T, or nexi to facet T, and/or next to facet
T,. Referring to FIG. 10 for instance, it would be convenient
to have facets T, through T, in “‘geometric order” so as to
minimize the time needed to compute the intersection of
each facet with the slicing plane (such as shown in FIG. 7).

Moreover, when there is a large number of triangles in the
chain, the computation time used by the slicer means will be
commensurately more than when the chain includes only a
small number of triangles. However, the problems of lack of
geometric order and of increasing computation time are
addressed together. In accordance with the present inven-
tion, a marching means is provided to arrange in “geometric
order,” the facets which have been sorted, grouped and
subgrouped. Desirably, the slicer means is provided with a
marching means that generates an adjacency list for each
facet (which is a triangle in the STL file) that is intersected
by each slicing planc. Once the adjacency list is prepared,
the facets of the model are said to be placed in geometric
order. The marching means is configured to order the facets
of the slice plane intersection data file so that the two
neighboring facets of each facet in the slice plane intersec-
tion data file are identified as part of the adjacency list for
that particular facet. The adjacency list becomes part of the
slice plane intersection data file. Desirably, a computer is
programmed to function as the marching means, The march-
ing means is programmed conveniently on the same com-
puter on which the slicer means is programmed. As embod-
ied herein, the marching means is programmed in C
language on a Sun Microsystem® work station. A presently
preferred embodiment of such marching means program is
contained in pages 35-41 of the Appendix which forms a
part of this patent application.

As embodied herein, the marching means examines the
first facet in a subgroup of the slice plane intersection data
file, and begins preparing an adjacency list for each active
triangle. Such adjacency list is prepared by the marching
means of the present invention by exploiting one of the
properties (noted above) of STL files. According to that
property, any edge can be shared by exactly two triangles
and no more. Thus, each triangle will have exactly three
adjacent triangles, which are listed in each triangle’s com-
pleted adjacency list. As the intersection points are being
calculated, the adjacency list is also prepared by the march-
ing means of the slicer means and updated simultaneously.
Every time the slicer means performs a search for a triangle
which shares an active edge or an active vertex, the slicer
means first consults the adjacency list of the active triangles.
If the slicer means finds a matching triangle in one of the
adjacency lists of those active triangles, then the slicer
means calculates the intersection point. If the slicer means
fails 10 find a matching triangle in the adjacency lists of one
of those active triangles, then the next active triangle is

10

15

20

25

30

35

40

45

50

55

60

65

36

identified from the chain of triangles by simple comparison
and the intersection point is calculated. Then, the adjacency
list of each of the active triangles as well as the active
triangle’s adjacent triangles, is updated by the marching
means. The slicer means repeats the procedure until the
chain of triangles in the intersection with the slice plane is
complete.

In accordance with the present invention, the adjacency
list generated and maintained by the marching means of the
slicer means is particularly useful, in case of successive slice
planes passing through chains which are similar or nearly
similar in composition. For instance, consider two slice
planes A—A and B—B as shown in FIG. 32. Both the slice
planes are passing through exactly the same chain of tri-
angles T, through Ty, which of course, are not in that order.
While calculating intersections for slice plane A—A, an
adjacency list is prepared simultaneously by the marching
means. This adjacency list can be consulted by the slicer
means while calculating intersections for slice plane B—B.
Because the composition of chains at slice plane A—A and
slice plane B—B is exactly the same, the need for checking
every triangle until a match is found is eliminated in
accordance with the procedure employed by the slicer means
of the present invention. When the number of triangles in a
chain runs into thousands, adjacency lists will be of
immense help. In such cases, the computation time is often
reduced by more than a factor of fifteen.

When triangles remain afier the search employed by the
slicer means returns to the first active edge or the first active
vertex that triggered the search, it is an indication that there
is at least one more chain, representing a protrusion or a
depression. In such cases, the slicer means is configured as
shown schematically in FIG. 35 to restart the search process
for the remaining triangles. This is done until there are no
more chains.

In accordance with the present invention, two important
observations can be made from the above procedure adopted
by the slicer means for calculating intersections. First, each
triangle except the first triangle will have only one intersec-
tion per slice plane, and the first triangle will have two
intersections. This can be seen from FIG. 38, where a chain
with six (6) member triangles is broken and shown in
extended form in relation to a slice plane 124. There are
seven (7) intersections, for six (6) triangles, with the first
triangle T, having two intersections. Thus, the slicer means
of the present invention completely eliminates duplicate
intersection points. Second, the slicer means of the present
invention uses the marching means to march from one
triangle to its adjacent triangle in calculating intersections
between the triangle and the slice plane. Typically, the march
starts at the first triangle of the chain, encompasses all the
member triangles and ends again at the first triangle where
it began. This marching attribute for this procedure justifies
the name marching means for this aspect of the procedure
employed by the slicer means.

The greatest advantage of the slicer means that employs
a marching means, lies in the fact that intersection points are
always calculated in the correct sequence and shape of the
contour at any slice plane and can be obtained by joining the
points of intersection in that order. Accordingly, the march-
ing means enables the slicer means of the present invention
to eliminate any need to determine the direction of vectors,
etc. Moreover, because the intersections are calculated
chain-after-chain for each slice plane, identifying protrusion
and depression features becomes much easier. In addition,
the marching means enables the slicer means to operate with
a significant reduction in overall computation time.

5,596,504

37

Another interesting problem exists because the intersec-
tion points or vectors obtained using the slicer means with
the marching means in accordance with the present inven-
tion, may be ordered in a clockwise (CW) or counterclock-
wise (CCW) direction and this direction may vary from
contour to contour within a single slice. Accordingly, before
the slice plane intersection data file is utilized to build
physical models, the present invention employs a directional
ordering means that imposes a uniform direction that is
maintained. Desirably, a computer is programmed to func-
tion as the directional ordering means. The directional
ordering means is programmed conveniently on the same
computer on which the slicer means and the marching means
is programmed. As embodied herein, the directional order-
ing means is programmed in C language on a Sun Micro-
system® work station. A presently preferred embodiment of
such directional ordering means program is contained in
pages 42-46 of the Appendix which forms a part of this
patent application.

As a first step, the directional ordering means obtains Y,
(or X,,.;,) of the data points of any contour. If the i poimt
represents Y, there will be at least two more points, one
point (i-1) preceding the i*” point and one point (i+1)
following the i** point. This condition will never fail because
a polygon does not exist without at least three non-co-linear
points. As shown in FIGS. 39(a)-394, if ©, is the angle
subscribed by lines 126, 128 joining the i—1,, point and the
i,, point, and ©, is the angle subscribed by lines 127, 128
joining the i+1,, point and the i, point, then the conditions
for determining the direction of the contour in accordance
with the directional ordering means of the present invention
are:

When ©,>0, then the direction of the contour is CCW

when ©,<0, then the direction of the contour is CW

when ©,=1}, then point i-1, point i, and point i+1 are
co-linear, meaning that there is an error in the data.

Once the directional ordering means employed by the
slicer means of the present invention finds the direction of
each contour by applying the above conditions, then the
directional ordering means of the present invention makes
whatever adjustment, if any, is necessary so that the direc-
tion of each contour remains the same, either CW or CCW.
In other words, the directional ordering means finds the
direction of each contour defining each intersection of each
slice plane in the slice plane intersection data file and
ensures uniformity of such direction (CW or CCW) with the
direction of each other contour defining each other intersec-
tion of each other slice plane in the slice plane intersection
data file. In the embodiment of the directional ordering
means shown in pages 42-46 of the Appendix, the direc-
tional ordering means imposes the CW direction.

A few words about the software in the Appendix are
appropriate. Firs, it is necessary that two programs “slice.c”
and “reverse.c” be compiled. Both programs were written in
C language. The “slice.c” program takes an STL file in
ASCII format as input and stores the slice data as output in
a file called “int_pts” file by default. The “reverse.c”
program functions as the directional ordering means and so
ensures that the line segments which form each contour are
in CW order.

The commands to compile the programs are

cc -g slice.c -Im -o slice

cc -g reverse.c -lm -0 reverse

It is important to note that the name of the object code of
“reverse.c” must be “reverse” as shown above. The reason
being that “reverse” is invoked from inside the object code

20

25

30

35

40

45

50

55

60

65

38

of “slice ¢” and no other name will be recognized. However,
the name of the object code of slice.c, called “slice” in this
document, can be anything.

Before the slicing program can be executed, the STL file
of the object being sliced must be in the current directory.
This is a command driven program and the input provided
by the user, including the STL file, is assumed to be correct
and is not counterchecked by the program. Therefore any
error in input either aborts the program or outputs garbage.
A step by step tutorial on how to use the program is
presented here. Underlined words indicate program com-
mands which will be displayed on the console. Words/
numerals in bold and within “<>" are examples.

At the command prompt type <slice name of the STL file>
The STL file is an argument to the “slice” program and must
be typed along with it. The two names should be separated
by a white space.

Enter 1 to read sorted STL file, else enter any other:
number. <enter 2>

A sorted STL file will be created upon the use of “slice”
and the file will be named “sorted.stl”. This file contains
exactly the same information as the original STL file with
the difference being that the facets are sorted. Incidentlly,
“sorted.st” file should be renamed since it is written over
each time the slicing program is used.

Some information, like number of facets in the STL file,
the dimensions of the object, etc., will appear on the console.
For uniform slicing enter 1, for adaptive slicing enter any
other number. <enter 2>

Enter the maximum slice thickness that you would prefer.
<enter 0.005>

Choose a criteria by entering the appropriate number

1. Cusp height

2. Maximum deviation

3. Chord length <enter 1>

Four values c1, c2, c3, c4 of cusp height will be displayed
on the screen. Enter a value for limiling cusp height based
on these four values. You may take the help of cusp height
Vs. theta plot. If you need help enter 911. <enter the value
of c2>

The number of slices will be displayed and the program
ends. A file named “int__pts”, which contains the slice data,
will appear in the current directory. The “int_pts” filc,
which is short for intersection points, contains intersections
between slice plane and triangular facets in an STL file. The
format of the “int__pts” file is as follows. The first linc of the
file will have two numbers which are Z-min and Z-max of
the intended object. In each of the second line and subse-
quent lines of the “int_pts” file, there will be exactly five
numbers in each line. The first two numbers are integers and
the first number represents the slice number while the
second number represents the island number. The next three
numbers are X, y and z coordinates of the particular inter-
section point. An example “int_pts” file is shown below.
Beneath each row of numbers, an explanation of such
numbers is written within the parentheses.

0.50000 2.500000
(Z — min, Z — max)

0 0 2784693000 1.911540000 2.50000000
(slice number 0, island number 0, x, y, z)
1.456797000 1.456797000 2.50000000

01

5,596,504

39

-continued
1 0 2784693000 1.911540000
(slice number 1, island number G, x, y, z)

2.40000000

(End of the file.)

The slice data generated and stored in the form of “int__
pts” file can be used to produce the desired object using any
layered process. However, typically the interface means is
required to postprocess the slice data, depending on the
process chosen. For example, postprocessing of the slice
data will be shown for CNC milling and stereolithography
processes.

The slice data obtained above can be postprocessed using
the CNC machining software in the appendix of U.S.
application Ser. No. 08/156,321, now U.S. Pat. No. 5,432,
704, to obtain the CNC code which can be used to produce
the part on any 3-axis CNC milling machine. But, first it is
necessary to converl the slice data stored in “int__pts” into
a format compatible with the CNC machining software. An
embodiment of the interface means capable of converting
the slice data stored in “int__pts” into a format compatible
with the CNC machining software is the program called
“tata_to_vouze.c” (in Appendix pages 176-179). This
“lata__to__vouze.c” program assumes that “int_ pts” file is in
the current directory and looks for it.

Compile “tata_to_ vouze.c” as shown below.
cc -g tata_to_ vouze.c -0 tata__to_ vouze

At the command prompt enter <tata_ to__vouze >

A file named “vouze” will be created in the current
directory, which contains the slice data in binary format and
is the input to the CNC code generator in the appendix of
U.S. application Ser. No. 08/156,321, now U.S. Pat. No.
5,432,704,

As noted above, the interface means desirably includes a
computer that is programmed with software that converts the
STL data file 64 output into a format compatible with the
machine to be controlled. If the machine to be controlled is
a SLA-250, a presently preferred embodiment of such
component of the interface means program is contained in
pages 96-175 of the Appendix which forms a part of this
patent application. The slice data needs to be postprocessed
to obtain a .sli file, which is necessary to produce the part on
an SLA-250 . This includes hatching all of the closed
contours. In order to obtain the .sli file, the following files
are required to be in the current directory.

main.c (Appendix pages 96-97)
io.c (Appendix pages 98-116)
cides.h (Appendix pages 117-123)

20

25

30

35

40

45

40

3d_io.h (Appendix pages 124-126)

seg.h (Appendix page 127)

file.h (Appendix pages 128-129)

read_ brdrpts.c (Appendix pages 130-132)

user_input.c (Appendix pages 133-135)

hatch__cal.c (Appendix pages 136-168)

new_ sli.c (Appendix pages 169-174)

header (Appendix page 175)

The following command “cc -g main.c io.c -lm -o create__
sli” can be used to compile the program. Next, at the
command prompt, type in <create_sli >. The program
assumes that the “int_ pts” file is in the current directory. In
the following step-by-step tutorial, underlined words indi-
cate program commands that will be displayed on the
computer console. Words/numerals in bold and within “<>”
are examples.

For Clemson hatching style enter 1, else any other number
Eg., <l>

Enter hatch Spacing for bottom and top most layers E.g.,
<0.05>

Enter number of hatch angles followed by their values
E.g., <3 090 120>

Enter the number of different zones (Z heights) you would
like to have for hatching. If you type in 1, there will be only
one zone which includes all layers other than bottom and top
layers. E.g., <2>

Enter hatch spacing for zone 1 which starts from second
layer from bottom E.g., <0.1>

Enter number of hatch angies followed by their values for
zone 1 E.g., <2 45 135>

Enter starting z-height for zone 2 E.g., <0.7> (Note:
z_min and z_max of this part are 0.5 and 1.5. Compute
z__height accordingly)

Enter hatch spacing for zone 2 E.g., <0.03>

Enter number of hatch angles followed by their values for
zone 2 E.g., <3 10 40 70>This ends the execution of create
sli file, and a file named “Clemson.sli” appears in the current
directory. Clemson.sli can be used to produce the part on any
SLA-250 .

In order to visualize sliced models, a separate program
“visual_ slice.c” was developed using HOOPS graphic rou-
tines. The following command compiles the program.

hee -g visual _slice.c -o visual slice

Note the usage of “hcc” for compiling HOOPS routines.
Usage of “visnal_slice” is the same as “slice” which is
explained above.

5,596,504
41 42

%/419711

Vad Al i i s 2t e T I T T T TR T T
ADAPTIVE SLICING OF 3-D MODELS IN STL FORMAT

DEVELOPED BY

KAMESH M. TATA
MECHANICAL ENGINEERING
CLEMSON UNIVERSITY, SC 29631

***********i***/

/* This program named "slice.c" is a program to
read .stl files and slice them adaptively as well as
uniformly. This software recognizes horizontal
surfaces and retains them in the sliced model. The
sliced contours are stored in int_pts (short for
intersection points) file, which is automatically
created. This code is primarily written to establish
and prove the concept of adaptive slicing and is
completely research oriented. Using quicksort
algorithm and double linked lists, the processing
speed of this program can be improved furhter.
HOWEVER, THE FUNDAMENTAL LOGIC, WHICH IS UNIQUE TO AND
STRENGTH OF THIS PROGRAM, REMAINS THE SAME. */

#include <stdio.h>
#include <math.h>

#define N 50000 /* Limiting the number of
triangles of each object to N #*/

$define M 1 /* Limiting the number of objects
to M */

#define 0 40000 /* Limiting the number of groups
of triangle to O */

fdefine P 3000 /* Limiting the number of cutting
planes to P */

#define Q 400 /* Limiting the number of islands
per plane to Q */

#define R 20000 /* Limiting the number of points
of intersec per island per plane
to R */

#define T 50000 /* Limiting the number of

triangles in one chain to T #*/
/*#define max_slice thick 0.08. */
#define DMEM_CONST 1000
/* note that tri is for triangle. nor is for

normal. ver is for vertex. Declaration of point
structure with an array as its member. */

5,596,504
43 4“4

APPENDIX PAGE 2

struct point {
double axis{3]:
}:

/* triangle is a structure with two member
structures "nor, *ver{3]. Both nor and *ver([3] are
structures of type "struct point". *ver[3] is a
pointer to struct ver([3]777. */

struct triangle ({
struct point nor;
struct peint *ver[3)];

)i

/* object is a structure with an array of
structures. #*tri[N] pointing to its members normal
and #*ver([]. */

struct object ({
struct triangle *tri(N];
}i

/* obj[M] is a structure of type object. It is
not a pointer. Pointer is not necessary because this
program is not expected to sort objects. */

struct object obij[M];

/* "first" and "last" store the number of first
and last triangles in that group. "min" and "max"
store the min and max values of sl_axis co-ords in
that group of triangles. */

/* structure group(] to hold number of groups and
number of triangles in each group. */

struct gr {
int first, last;
double min,max} *group{0]:

/* structure to draw the picture. Need not be
global. Check this. */

struct {
double x,y.,2;
} poly([31]:

/* With the following 3 structures you can access
say x coordinate of 20th intersection point of island
4 of cutting plane 2 by writing:
pln[2]}.isl[4].point[20][0]. structure to hold
intersection points for each island. */

5,596,504
45 46

APPENDIX PAGE 3

struct islands {
struct point *intpts };

/* structure to hold number of islands for each
cutting plane. */

struct plane {
struct islands isl(Q);

yi
/* structure to hold number of cutting planes. #*/

struct plane *pln:

double x_min,x_max,y_min,y_max,z_min,z_max,
highest nor,max_slice_thick;

double curr_gr_min, curr_gr_max, curr_pln,
all_planes{P), act_pln;

int tri_num, obj_num=0,max_triangles[M], sl axis,
axl,ax2, total_num_groups;

int curr_pln_num, num, isl_num, isl_numl, curr gr,
bad, read_sorted_file;

int curr_gr_first,curr_gr last, eliminated[R],
curr_pln_numl;

char obj_type[20], obj_name[20]:

int intersec[R][Q], intersecl([R][Q], islands[P]:
int islands1{P], all_slices, tri_in_curr_pln,
new_gr{20000],

neighbours({T}[3), successl, success2 ;

double max_slice_thick_for_ill, accuracy_req;

FILE *fpl;

double

min_slice_thick,uniform_slice_ thick,machine_resolution

int uniform_slicing;

double lowest_theta, highest_theta;

int criteria,

there_is_a_vertical_wall,there is_a_horizontal_wall:

float desired_cusp_height, desired_max_deviation,
desired_chord_length;

main(argc, argv)
int argc:
char **argv;

FILE *fp;

5,596,504
47 48

APPENDIX PAGE 4

if(argc == 2}
fp = fopen(argv(l]}, “"r"):
else

{
fprintf(stderr, "\nAlternate Usage : %s
<filename>\n\n", argv[0]);
fp = stdin;
}

printf ("\nYOU MUST HAVE reverse FILE IN CURRENT
DIRECTORY SO AS TO EXECUTE THIS PROGRAM ")};

printf("\n\nENTER 1 TO READ SORTED STL FILE,
ELSE ENTER ANY OTHER NUMBER ")
scanf("%d", &read_sorted_file):

if(read_sorted_ file==1)read_sorted_stl_file(fp);
else read_stl_data(fp):
printf ("DATA SUCCESSFULLY READ.\n");

/* get_xyz_max_min() is to calculate max and min
values for auto scaling and other uses during
computations for intersections. */

get_xyz_max_min():
put_pts_in positive_space(}:
theta_min_and_theta max():

fpl= fopen("int_pts", "w");
fprintf(fpl,"\n%lf %1f", z min, z_max);
get_slice_axis():

if (read_sorted_file!=1) sort_vertices();

/* sort triangles in ascending order considering
the value of sl_axis co-ordinate of first vertex. If
sl_axis is, say 1, y coordinate of first vertex is
considered for sorting. */

if(read_sorted_file!=1) sort_triangles():

/* all triangles with equal sl_axis coordinate of
first vertex (after sorting vertices) will be in one
group. */

group_triangles();

/* store_stl_data() is to store the data read in
a different file in a different format. */

5,596,504
49 50

APPENDIX PAGE 5

if(read_sorted_file!=1) store stl_data():
multi_slicing();

fprintf(fpl, ®*\n"):

fclose (fpl);

system("reverse") ;

read_stl_data(fp)
FILE *fp;

{
int i,3;
char duml{20]},p:;

if(fp == stdin)
fprintf (stderr, "WHERE IS THE .STL FILE
BOY"™) ;

/* Every object is identified by its type and
name in .stl file. (Type of object can be solid or
surface. Name of object can be sphere, cone etc.).
S0, the condition !=2 is valid only at the end of file
or when the file is corrupt or not formatted. */

ql:
if(fscanf(fp, "%s is",obj_type, obj_name) =2}
{

printf(" 3$s
%s",obj_type,obj_name):/*obj_num=obj_num—1;*/
return;

}
while ((p= getc(fp)) != '\n’):

/* to read all the characters in the first line
for each object. */

if (feof (fp))return;

/* duml is always "FACET" unless it encounters a
different object or end of file. Just when a new
object or end of file is encountered total number of
triangles in the earlier object is stored using
max_triangle[obj_num]. */

for(tri_num=0;feof (fp)==0;tri_ num++)
{

5,596,504
31 52

APPENDIX PAGE 6

obj[obj_num}.tri{tri_num] = (struct triangle
*)malloc(sizeof (struct triangle)):

fscanf (fp, "%s",duml) ;
if((strocmp(duml, "FACET") !=0) &&
(strcmp (duml, " facet") !=0})
{
max_triangles[obj_num]=tri_num-1;
return;

}

/* Reads x,y,z values of normal vectors.
(obj[..].tri{..]) points to normal. This is indicated
by -> @€fee nor.axis[..] gives the value. */

if({fscanf(fp, " %*s %1f %1f %1f",
&(obj[obj_num].tri[tri_num)->nor.axis[0]).
&(obj[obj_num].tri[tri_num}->nor.axis([1]),
&(obj[obj_num].tri[tri_num]->nor.axis[2]))!=3)
printf ("CHECK NEAR TRIANGLE %d IN .STL
FILE",tri_num);
exit(0);

}
/* printf("tri num=%d nor=%1f %1f %1f
\n",tri_num, -

(cbj[obj_num].tri[tri_num}->nor.axis{0]),
{(obj[obj_num].tri[tri_num]->nor.axis[1]),
(obj[obj_num].tri[tri_num]}->nor.axis(2])):*/

/* Ignores reading characters "OUTER LOOP" in
.stl file. */

fscanf (fp, "%*s %*sh);

/* Reads x,y,z values of the three vertices of
each triangle. */
for(i=0; i<3;i++)
{

/* malloc allocates enough memory required to
store Ystruct point". */

obj[obj_num].tri{tri_num]->ver{i] =
{struct point

5,596,504
53 54

APPENDIX PAGE 7
*)malloc(sizeof (struct point));

fscanf (fp, "%*s");
for(j=0; j<3;j++)
fscanf (fp, "%1fv,
& (obj(obj_num].tri[tri_num]->ver[i]->axis[j])):
/* printf("ver #%d =%1f $1f $1f \n",
i,
(obj[obj_num].triftri_ num]->ver{i]->axis[0]),
(obj[obj_num].tri[tri_num]->ver[i]->axis[1]),
(obj[{obj_num].tri[tri_num]->ver[i]->axis[2]));
*
}
/* Ignores characters "ENDLOOP",
WENDFACET" * /

fscanf (fp, "%*s %*s%);

/* reads stl_out file which is sorted. #*/

read_sorted_stl _file(fp)
FILE *fp;
{
int h,i,j;
char nor[20];
obj_num=0: /* this function works for one object
files only. */

fscanf (fp,"%s %s", obj_type, obj_name);

for (h=0:h<=obj_num;h++)
for(i=0;feof (fp)==0;i++)

{
abj[obj_num].trifi] = (struct triangle
*)malloc(sizeof (struct triangle)):;

/* skips the string TRIANGLE and reads the
following number. */

5,596,504
55 56

APPENDIX PAGE 8

fscanf (fp, “%*s %d", &i):

fscanf(fp, " %s %1f %1f %1f",nor,
&(obj[h].tri[i]->nor.axis{[0]),
&(obj[h].tri[i]->nor.axis{1)),
&(obj[(h].tri[i]->nor.axis[2])):

for(j=0;3<3;j++)
{
obj[obj_num].tri{i)->ver{j] =
(struct point
*)malloc(sizeof(struct point}));

fscanf (fp, " %1f %1f %1f",
&(obj[h].tri[i]->ver[j]->axis[0]),
&(obj[h].tri[i]->ver[j)->axis[1]),
&(obj(h].tri[(i]->ver[j]->axis[2])}:

}
}

tri_num=i-1;
max_triangles[obj_num] = i-2:
fclose(fp);

/* outputs x,y,z values of the normal and the
three verices of each triangle to stl_out file. */

store_stl_data()
{
FILE *fp:
int h,i,j;

fp = fopen("sorted.stl", “w");
fprintf(fp,”%s %s", obj_type, obj_name):;

for (h=0:h<=obj_num;h++)
for(i=0;i<tri_num;i++)
{
fprintf(fp, "\nTRIANGLE %d \n",i):
fprintf(fp, "\t\t\tnor= %1f %1f %1f
\n“
' (obj(h}.tri[i]->nor.axis[0}),
{obj{h}.tri[i]->nor.axis[1]},

5,596,504
57 58

APPENDIX PAGE 9
(obj[h].tri{i}->nor.axis[2]));

for(j=0;j<3;:3++)
fprintf(fp, "™ %1f %1f %1f\n",

obj(h].tri[(i}->ver[j]->axis[0],
obj[h].tri[(i]->ver[j]->axis[1],

obj[h].tri[i])->ver[j}->axis[2]);
}

fclose (fp):
/* Code for KCI means begins. */

theta_min_and_theta_max()
{

float rad_to_deqg ;
int h,i;

for(h=0;h<=0bj_num;h++)
for (i=0;i<tri_num;i++)
{
rad_to_deg = 180%7/22;
highest_theta =0;
lowest_theta = 90;

for(i=0; i< tri_num: i++)

{
if(obj[obj_num].tri[i]->nor.axis[2]<0)
obj[ohj_num].tri[i]—>nor.axis[2] = -1 *
obj[obj_num].tri[i]->nor.axis[2]:

/*printf ("asinglf",

asin(obj[obj_num].tri[i]->nor.axis[2])):*/

if(asin(ohj[ohj_num].tri[i]->nor.axis[2])>

5,596,504
59 60

APPENDIX PAGE 10

highest_theta)
{

if(asin(obj[obj_num].tri{i]->nor.axis[2])*180*7/22 <
90.00 &&

asin(obj[obj_num].tri{i)->nor.axis[2])*180*7/22 >
89.5)

there_is_a_horizontal_wall=l;
else
highest_theta =

asin(obj[obj_num].trif{i)->nor.axis[2]);

if(asin(obj[obj_num].tri[i)->nor.axis[2])<
lowest_theta)
{

if(asin(obj[obi num].tri[ij->nor.axis[2])*180%7/22 ==
0)

there_is_a_vertical_wall=1l;
else
lowest_theta =
asin(obj[obj_num].tri[il->nor.axis[2]):

}
}

printf ("\n\n"):
if(there_is_a_horizontal_wall==1}
printf("\nThere are horizontal
surfaces in this object."):

if(there_is_a_vertical_wall==1)
printf("\nThere are vertical
surfaces in this object.®):

printf ("\n\nhighest_theta=%1f
lowest_theta=%1f", rad_toc_deg*highest_theta,
rad_to_deg*lowest_theta);

printf {"\nNote: Vertical and horizontal
walls %(0 and 90%) are not considered while
determining lowest and highest thetas.");

}

/% Code for KCI means ends. */

5,596,504
61 62

APPENDIX PAGE 11

get_next_slice_thick(sl_thick)
double *s1 _thick:
{

double ratio;

if (highest_nor *180%7/22== 90)
*s1_thick = 0;

else if(highest_nor #*180%7/22== 0.0)
*sl_thick = max_slice_thick;

else

{

if(criteria==1)#*sl thick =
desired_cusp_height / sin(highest_nor);

else if(criteria==2)*sl_thick =
desired max_deviation / tan(hlghest nor) ;

else if(criteria==3)*sl_thick =
desired_chord_length * cos(highest_nor);

}

if(*sl_thick>max_slice _thick)
*s] thlck—max slice thlck.

if(*sl_ thlck<m1n slice_thick)
*s] th1ck—m1n slice tthk,

get_slice_axis{()

{
/* for building parts on sla machine sl _axis is
always 2 */

sl_axis = 2;

prlntf("\n\nFOR UNIFORM SLICING ENTER 1, FOR
ADAFPTIVE SLICING ANY OTHER NUMBER "y;
scanf(“%d" &uniform_slicing):
if(uniform sllclng==1)
{
printf(“\n \NENTER SLICE THICKNESS "y:
scanf ("%1f", &uniform _slice_thick):

else

{
printf{¥\n \nENTER MAXIMUM SLICE THICKNESS

5,596,504
63 64

APPENDIX PAGE 12

THAT YOU WOULD PREFER ");

scanf ("$1f", &max_slice_thick):

printf ("\nENTER MINIMUM SLICE THICKNESS THAT
YOU WOULD PREFER ")

scanf ("%1f%, &min_slice_thick):

print £ ("\nCHOOSE A CRITERIA BY ENTERING THE
APPROPRIATE NUMBER") ;

printf("\nl. CUSP HEIGHT"):

printf("\n2. MAXIMUM DEVIATION"):

printf(“\n3. CHORD LENGTH "y:

scanf ("%d", &criteria);

if(criteria==1)

{

printf("\ncl = %f, c2 = %f, c3 = %f, c4
= %f", min_slice_thick*sin(lowest_theta),
min_slice_thick#*
sin(highest theta),
max_slice_thick*sin(lowest_theta),
max_slice_thick*sin(highest_theta));

printf("\nENTER A VALUE FOR LIMITING
CUSP HEIGHT BASED ON THESE FOUR VALUES. YOU MAY TAKE
THE HELP OF CUSP HEIGHT Vs. THETA PLOT. IF YOU NEED
HELP ENTER 911. ")

scanf ("%$f", &desired_cusp_height):

if(desired_cusp_height==911.0)

{
printf("\nl. If you choose a value
equal to cl1, layer thickness will be set to %f
$(minimum thickness %) throughout the part. Further,
if a part is built using this slice data, cusp height
of the physical part will vary from cl to c2. \n2. If
you choose c4, layer thickness will be set to %f
% (maximum thickness %) throughout the part. Further,
if a part is built using this slice data, cusp height
of the physical part will vary from c3 to c4. \n3. If
you choose a value between cl and c4, layer thickness
will be appropriately varied to maintain cusp height
within the value you have given.", min_slice_thick,
max_slice_thick);
printf ("\n\nENTER A VALUE FOR
LIMITING CUSP HEIGHT "):
scanf ("$f", &desired_cusp_height);
}

5,596,504
65 66

APPENDIX PAGE 13

if (criteria==2)

{
printf(™\ndl = %f, d2 = %f, d3 = %£f, d4
= %f", min_slice_thick*tan(lowest_theta),
min_slice_thick*
tan(highest_theta),
max_slice_thick*tan(lowest_theta),
max_slice_thick*tan(highest theta));

printf("\nENTER A VALUE FOR LIMITING
MAX. DEVIATION BASED ON THESE FOUR VALUES. YOU MAY
TAKE THE HELP OF MAX. DEVIATION Vs. THETA PLOT. IF YOU
NEED HELP ENTER 911, ");

scanf ("%$f", &desired_max_deviation);

if(desired_max_deviation==911.0)

(

printf("\nl. If you choose a value
equal to dl, layer thickness will be set to %f
$(minimum thickness %) throughout the part. Further,
if a part is built using this slice data, maximum
deviation of the physical part will vary from dl to
d2. \n2. If you choose d4, layer thickness will be set
to %f %(maximum thickness %) throughout the part.
Further, if a part is built using this slice data,
maximum deviation of the physical part will vary from
d3 to d4. \n3. If you choose a value between dl and
d4, layer thickness will be appropriately varied to
maintain maximum deviation within the value you have
given.",

min_slice_thick,

max_slice_thick);

print £ (”\n\nENTER A VALUE FOR
LIMITING MAXIMUM DEVIATION ")

scanf ("%f"v,
&desired_max_deviation);

}

if(criteria==3)

{
printf("\nf1 = %f, £2 = %f, £3 = %f, f4
= %¥f", min_slice_thick/cos(lowest_theta),
min_slice_thick/

5,596,504
67 68

APPENDIX PAGE 14

cos(highest_theta),
max_slice_thick/cos(lowest_theta},
max_slice_thick/cos(highest_theta)):
printf("\nENTER A VALUE FOR LIMITING
CHORD LENGTH BASED ON THESE FOUR VALUES. YOU MAY TAKE
THE HELP OF CUSP HEIGHT Vs. THETA PLOT. IF YOU NEED
HELP ENTER 911. %)
scanf ("%f", &desired_chord_length):

if (desired_chord_length==911.0)
{
printf("\nl. If you choose a value
equal to fl, layer thickness will be set to %f
% (minimum thickness %) throughout the part. Further,
if a part is built using this slice data, chord length
of the physical part will vary from f1 to f2. \n2. If
you choose f4, layer thickness will be set to %f
% (maximum thickness %) throughout the part. Further,
if a part is built using this slice data, chord length
of the physical part will vary from £3 to f4. \n3. If
you choose a value between fl1 and f4, layer thickness
will be appropriately varied to maintain chord length
within the value you have given.",
min_slice thick,
max_slice_thick);
printf ("\n\nENTER A VALUE FOR
LIMITING CHORD LENGTH ");
scanf ("%¥f",
&desired_chord_length);
}

uniform_slice_thick = max_slice thick;

} /* end of elsex*/

/* sl_axis is short for slice axis. */
/* when & does not precede sl_axis segmentation
fault occurs. */

if(sl_axis == 2) {
axl 0;
ax2 1;

5,596,504
69 70

APPENDIX PAGE 15

}

/* Code for facet processor means begins. */

/* Code for facet sorting means begins. */

/* sorts vertices of each triangle in ascending
order according to x, y or z co-ordinates. If sl_axis
is, say 2, vertices will be sorted according to z
value. */

sort_vertices()

{
struct point *temp:
int i;
for (i=0;i<=max_triangles[obj_num];i++)

/* comparing element[0] and [1] and sorting in
ascending order. */

{
if(obj[obj_num].tri[i]—>ver[0]->axis[sl_axis]>
obj[obj_num].tri[i]—>ver[1]—>axis[sl_axis])

{
temp = obj[obj_num].trifi]->ver[0];
obj[obj_num].trifi}->ver[0]=

obj{obj_num).tri[i}->ver[1];
obj[obj_num).tri[i]->ver[1])= temp;
)

/* comparing element{1l] and [2] and sorting in
ascending order. */

if(obj[obj_num].tri[i]—>ver[1]->axis[sl_axis]>
obj[obj_num].tri{i]->ver[2]->axis[sl_axis])

temp = obj{obj_num].tri[i]->ver[1];

obj[obj_num).trifi]->ver[l]=
obj(obj_num].trif{i]->ver[2];

obj[obj_num).trifi}->ver(2}= temp;

if(obj[obj_num].tri[i]—>ver[0]—>axis[sl_axis]>
obj[obj_num].tri[i]—>ver[1]—>axis[sl_axis])
{

temp =

5,596,504
71 72

APPENDIX PAGE 16

obj[obj_num].tri[i]->ver(0];
obj[ob] num].tri{i]->ver[0]=
obj[obj_num].tri[i]->ver[1l};
obj[obj_num].tri[i]->ver[1]= temp;

sort_triangles()

{
struct triangle *temp;
int i,j;

for(i=0; i<max_triangles(obj_num];i++)
for(j=i+1;j<=max_triangles[obj_num];j++)

if(obj[obj_num].tri{i]->ver[0]->axis[sl_axis]>
obj(obj_num].tri(j)}->ver[0]~->axis[sl_axis])

(
temp = obj[obj_num].tri[i]:
obj[obj_num].trif[i]=
obj{obj_num].tri(j]l:
obj[obj_num}.tri[j}= temp;
}

/* Code for facet sorting means ends. */
/* Code for facet grouping means begins. */

group_triangles()
{

J*¥%countl" is to assign values first, min etc.
only once for each group. "“count2" gives number of
the group. "first" gives number of first triangle in
the group and "last" gives the last num. "min" gives
the minimum value of sl_axis coord of the first vertex
(which is equal for all triangles in that group).
"max" gives the maximum sl_axis co-ordinate in that

group */
int i, countl=0,count2=0;

group[0] = (struct gr *) malloc{ sizeof(struct
gr))i

5,596,504
73 74

APPENDIX PAGE 17

for(i=0;i<max_triangles{obj_num];i++)
{
if (countli==0)
{
group[count2]->first = i;
group(count2]->min =
obj[obj_num].tri[i]->ver[0]->axis[sl_axis]:
group[count2]~->max =
obj[obj_num].tri[i]->ver[2]->axis(sl_axis];

if(obj[obj_num].tri[i]->ver[0]->axis[sl_axis] ==
obj[obj_num].tri[i+l]->ver[0]~>axis[sl axis])

{
if(group[countz]->max<obj[obj_num].tri[i+1]—>ver[2]—>a
xis[sl_axis])

group[count2}->max=obj(ocbj_num].tri[i+1]->ver[2]->axis
[s1l_axis];

}

else
{

countl = countl + 1;

group[count2}->last = i;
count2 = count2 + 1:
group[count2] = (struct gr *) malloc(
sizeof(struct gr));
countl =0;
}

total_num_groups = count2;
}
/* check for the last triangle */

if(obj[obj_num].tri[i]—>ver[0]—>axis[sl_axis] ==
obj[obj_num].tri[i-l]->ver[0]—>axis[sl_axis])
group{count2]->last = i;

else
{
. group[count2)->first = group[count2]->last =
i;
group{count2]->min =
obj[obj‘num].tri[i]->ver[0]->axis[sl_axis]:
group[count2)->max =
obj[obj_num].tri[i]->ver[2]->axis[sl_axis];
}

/*

for(i=0;i<=total_num_groups;i++)

5,596,504
75 76

APPENDIX PAGE 1B

t
printf("\ngroup_num=%d first=%d last=%4",
i,groupf{i)->first, group[i]->last);
printf("min=%1f max=%1f",
group[i]->min,group(i]->max) ;
}
*/
}

/* Code for facet grouping means temporarily
ends. */

/%* Code for facet processor means temporarily
ends. */

get_xyz_max_min()
t

int countl,count2,vertex;

/* Initialization of xyz max and min variables */

x_max=obj[0].tri[0]->ver[0)->axis[0]
x_min=obj[0].tri[0}~>ver[0]}->axis[0];
y_max=obj[0]}.tri{0)->ver[0)->axis([1];
y_min=obj[0].tri{0)}->ver[{0}->axis[1];
z_max=obj[0]).tri{0]~>ver(0]->axis[2];
z_min=obj[0].tri{0]->ver[0)->axis[2]

/*countl is for incrementing obj_num . ‘“count2"
is for incrementing triangle number. M"vertex" is for

three vertices of each triangle. */

for (count1l=0;countl<=obj_num;countl++)

for (count2=0;count2<max_triangles[obj_num];count2++)

for (vertex=0;vertex<3;vertex++)
{

if(obj[countl}.tri{count2]->ver[vertex]->axis[0]>x_max

X_max=
obj[countl].trifcount2]->ver[vertex]->axis[0];

if (obj[countl].tri[count2)->ver[vertex]->axis[0]<x_min

x_min=
obj[countl].tri[count2]->ver[vertex]->axis[0]:

if(obj[countl}.tri{count2]->ver[vertex]->axis[1]>y max

5,596,504
77 78

APPENDIX PAGE 19

y_max=
obj[countl].tri[count2]->ver[vertex]—>axis[1];

if(obj[countl].tri[countz)->ver[vertex]—>axis[1]<y_min
y_min=

obj[countl].tri[countz]->ver[vertex]—>axis[1];

if(obj[countl].tri[count2]—>ver[vertex]->axis[2]>z_max

Zz_max=
obj[countl].tri[countz]—>ver[vertex]->axis[2];

if(obj[countl].tri[count2]->ver[vertex]->axis[2]<z_min

z_min=
obj[countl].tri[countz]—>ver[vertex]->axis[2);

}

pPrintf ("\nTOTAL NUMBER OF
FACETS=%d",max_triangles[obj_num]);

/*
Printf("\n \nx_min=%1f x max=%1f \ny_min=%1f y_max=%1f
\nz_min=%1f z_max=31f", x_min, x max, y_min,y_max,

Z_min, z_max);
*/

/* to put the object in positive space */
put_pts_in positive space()
{

int h,i,j:

/* .1 .1 and .5 are selected because that is what
is done in cides */

double x_add =0.0, y_add = 0.0, z2_add = 0.0;

¥_add = -x min+0.1;
y_add = -y min+0.1;
Z_add = -z_min+0.5;

5,596,504
79 80

APPENDIX PAGE 20

for (h=0;h<=obj_num;h++)
for(i=0;i<tri_num;i++)
for(j=0;j<3;j++)
{

obj{h}.trifi]->ver[j]->axis[0]
obj(h]).tri[i}->ver[j]->axis[0])+x_add;
obj[h}].tri{i)->ver(j]->axis{1]
obj(h].tri[i}->ver[j]->axis(1]+y_add,
obj(h]).trifi])->ver[j]l->axis[2]
= obj[h]l.tri[i)->ver(j]~>axis[2]+2z_add;

¥_min = x_min+x_add;
y_min = y_min+y_add;
z_min = z_min+z_add:;
x_max = x_max+x_add;
y_max = y_max+y_add;
z_max = z_max+z_add;

printf("\n \nx_min=%1f x_max=%1f \ny_min=%1f
y_max=%1f \nz_min=%1f z_max%1f", x min, x_max,
y_min,y_max, z_min,
Z_max);

get_everything()

{

int ver num,i,adj_tri, type, count,countl,j,
countl0;

bad=0;

get_new_group() ;s
/* for loop where i is incremented from the first
triangle to the last
triangle of the curr_group(The new group
after merging dif.groups)*/

i = new_gr[0):
do
{
/* if (num != 0)

if ((hum % DMEM_CONST) == 0)
pln[curr_pln_numj}.isl{isl_num].intpts = (struct

5,596,504
81 82

APPENDIX PAGE 21

point *)
realloc((char
*)pln{curr pln_num].isl[isl_num].intpts,
{num+DMEM_CONST) *sizeof (struct
point) }:

if (pln[curr_pln num}.isl[isl_num].intpts ==
NULL)
fprintf(stderr,"realloc : get_everything :
out of memory. num= %d\n",num);
exit(0);

*/

type= get_intersection pt(i);
eliminated(bad)=i;
bad = bad+1l:;

/* type will be 0 or 1 or 2 when intersection is
through a vertex. In other words, type gives vertex
num through which curr_pln is passing. When type=10
intersection is with line passing through ver0 and
verl, and when it is 30 line of intersection is verl
and ver2. When type = 20 intersection is with line
ver2z and ver0 */

if(type == 0 || type ==1 || type == 2)

adj_tri = get_adj_tril(i,type);
)
else if(type == 10 || type==20 || type==30)
{

adj_tri = get_adj_tri2(i,type);

J*
if(abs(i-adj_tri)>50 && adj_tri!= -1) (printf("\ni=%d
adj_tri=%d i-adj_tri=%d countl0=%d",i,adj tri,
i-adj_tri, countl0); countl0=0;}countl0++;

*/

i = adj_tri;
if(adj_tri == -1)
(
if(bad<tri_in_curr_pln)

/* going on to a new island */

i=get_tri_on_new_isl():

/*

5,596,504
83 84

APPENDIX PAGE 22

pln[curr_pln_num).isl[isl_num].intpts = (struct point
*)

peint) };
if (pln[curr_pln_num].isl[isl_num].intpts ==

calloc(DMEM_CONST, sizeof(struct

NULL)
fprintf (stderr,"calloc : get_everything
: out of memory. isl_num = %d\n", isl_num);
exit(0):
}
*/

else break;

/*
{printf ("\nohohoh bad%d tri_in_curr_pln=%d",bad,
tri_in_curr_pln) ;}

*/
/% in while loop curr_gr_lsat -
curr_gr_first gives the number of triangles (one less)

in curr_gr. bad gives the number of triangles already
eliminated. */

Jwhile(bad<= tri_in_curr_pln):

get_tri_on_new_isl()
{
int i,j,kx=0,count;

for(k=0; k<=tri_in_curr pln;k++)

{
i = new_gr{k];
for(j=0;j<bad;j++)

if(eliminated{j]==1)1{
count=1;
break:

}

)

if (count==1) {
count=0;
continue;

}

else

{

5,596,504
85 86

APPENDIX PAGE 23

intersec[curr_pln_num]{isl_num]=num;
isl _num=isl_num+l;

num=0;
islands[{curr_pln_num]=isl_num;
/* printf("\nisl=3%d

i=%d",isl_num,i);*/return(i);

}
}

get_plane()
{

printf("\ncutting plane value=");
scanf ("%1f", &curr_pln):
curr_pln num = 0;

multi_slicing()
(
int i,3:
double curr_pln_min, curr_pln_max, sl_thick_min;

for(i=0;i<T;i++)

neighbours[i][0]=neighbours[i][1l])=neighbours{i][2] =
-1;

if (uniform_slicing!=1)
{
get_adaptive_planes();

printf(" \nNUMBER OF SLICES(varying
thickness)=%d",all_slices);

for(i=all_slices~1;i>=0;i--,curr_pln_num++)
{

curr_pln = all_planes[i];

num=0;

isl _num=0;

islands[curr_pln_num]=0;

5,596,504
87 88

APPENDIX PAGE 24
for(3j=0;3<R;j++)
{

eliminated([]]=-1;

get_everything();

intersec{curr_pln num}(isl_num] = num;
}

z_min;
Z_max:;

curr_pln_nmin
curr_pln_max

curr_pln_num=0;
s1_thick_min = uniform_slice_thick;

for(curr_pln=curr_pln_min;
curr_pln<curr_pln_max+sl_thick_min -0.000001 ;
curr_pln =
curr_pln+sl_thick_min, curr_pln_numt+)
{

}
) /* end of while */

if(uniform_slicing==1)
{

curr_pln_min = z_min;
curr_pln_max = Z_max;
curr_pln _num = 0;

sl _thick _min = uniform_slice_thick;

for(curr_pln=curr_pln_max;
curr_pln>curr_pln_min-sl_thick_min +0.000001 ;
curr_pln =
curr_pln-sl_thick min,curr_pln_num++)
{

if(curr_pln<curr_pln_min)curr_pln =
curr_pln_min;

num=0;

isl_num=0;

islands(curr_pln_num}=0;

5,596,504
89 92

APPENDIX PAGE 25

for(i=0;i<R;i++)

{
}

eliminated[i]=-1;

get_everything();
intersec[curr_pln_num][isl num]} = num;

H
printf(" \nNUMBER OF SLICES(uniform

thickness)=%d",curr_pln_num-1);

} /* end of while */

/* Code for thickness calculator means begins. */
/* Code for simple back tracking means begins. */

get_adaptive_planes()

{
int act_gr,i,j,k, count=0, count2;
double sl_thick, possible_pln;
double curr_pln min, curr_pln_max;

if(sl_axis==0) {
curr_pln _min =
curr_pln_max = X_max;
}
else
if(sl_axis==1) {
curr_pln_min = y_min;
curr_pln_max =
}
else
if(sl_axis==2) {
curr_pln_min = z_min;
curr_pln max =

all_planes[count]=curr_pln_min;
count = count+1l;
act_pln = all_planes[0];

do
{

5,596,504

91 92
APPENDIX PAGE 26
for(act_gr=0;act_gr<total_num groups;
act_gr++)
{
if (act_pln>grouplact_gr]->max)
continue;
if (act_pln >= grouplact_gr]}->min)
break;

/* act_gr is the group number through or just
above which curr_pln is passing through. */

get_highest_angle_nor(&act_gr):
get_next slice thick(&sl_thick);
possible pln = act_pln + sl_thick;
i = act_gr;

count2=0;

/* to find how many groups the possible plane
crossed from group i*/

for(j=act_gr+1;j<total_num_groups;j++)
{

}

if(possible_pln<=group(j]->min) break;

/* if j-act_gr= 1 possible plane still falls
in group{act gr]. Same as curr_pln. If j-act gr is 2
possible plane is in grouplact_gr+1]. */

if((j-act_gr) != 1)
{

/* Code for repeated back tracking means begins.
*/

if(get_highest_angle_nor(&i)== ~-1)

i++;
continue;

}
get_next_slice_thick(&sl_thick);

if(act_pln> group[i]->min)

5,596,504
923 9

APPENDIX PAGE 27

{

if (possible_pln>act_pln+sl_thick)
{

possible_pln =
act_pln+sl_thick;
i+4+;
continue;
} else {
i++;
continue;
)
}
if(possible_pln>
group[i}->min+sl_thick)
{
possible_pln =
group{i}=->min+sl_thick;
i++;
continue;

}

i++;

jwhile(i<3):

/* Code for repeated back tracking means ends. */

}
act_pln = all_planes[count++] =
possible_pln;
if(all_planes[count-1j-all_planes[count-2] <
min_slice_thick)
act_pln = all_planes[count-1] =

all_planes[count-2]+min_slice_thick;

/*

printf("nor=%1f pln=%1f\n count=%4",
highest _nor*180*7/22, act_pln, count):

*/ if(act_pln >
curr_pln_max)
{
act_pln = all_planes{count-1]=
curr_pln max ;
/*printf ("pln=%1£f", act_pln);#*/

5,596,504
95 96

APPENDIX PAGE 28
ywhile (act_pln<curr_pln_max) ;

all_slices = count;

get_highest_angle nor(j)
int *j;
{

double sl_thick:
int remove=0,1i,k, count;

/* normal that makes the highest angle to the
sl_axis. Higher the angle of normal lower is slice
thickness. */

/* possible highest angle is 90 */

qlo:
for (i=group[*jj->first;i<=group(*j]->last;it++)

/* there can be some triangles in each group
which may not have an intersection with the
curr_plane. Following condition eliminates such
triangles. Eliminated triangle number is stored in
eliminate[]. */

if (act_pln>obj[obj_num].tri[i]->ver{2]->axis(sl_axis})
{

eliminated[remove]=i;
remove = remove+l;
continue;

)

/* when the above condition is not true then
there must be an intersection between curr_pln and
curr_tri (=i). So this triangle need not be checked
further and can be eliminated after calculating the
intersection point. */

}

if (remove-1 == group[*j]->last -
group(*j]->first) (
remove=0;
if (++*j>total_num_groups) {
return(-1);

5,596,504
97 98

APPENDIX PAGE 29

}
else goto glo0;

}
highest_nor =0;

for(i=group[*j]->first; i<= group[*j]->last; i++)

for (k=0;k<=remove;k++)
{
if(eliminated{k] == i) {
count=1;
break;
}

)

if (count==1) {
count=0;
continue;

)

if(obj[obj_num].tri[i]->nor.axis[sl_axis]<0)
obj[obj_num].tri{i]->nor.axis{sl_axis]
= =1 *

obj[ob])_num].tri[i]->nor.axis[sl_axis);
/*printf("asinglf",
asin(ocbj[obj_num].tri[i}->nor.axis[sl_axis])};*/

if(asin(obj[obj_num].tri[i)->nor.axis[sl_axis])>
highest_nor})

highest_nor =
asin(obj[obj_num].tri[i)->nor.axis[sl axis]);

/* Code for thickness calculator means ends. */
/* Code for back tracking means ends. */

/*
get_next slice thick(sl_thick)
double *sl_thick;

{

double ratio:

highest_nor = highest_nor *180*7/22;
ratio = (90-highest_nor)/90;

5,596,504

99 100
APPENDIX PAGE 30
/ / note pointer "*" and multiplication®*" */
/* *sl thick= ratio * max_slice_thick;

if(highest_nor!=0 && highest_nor !=90)

*gl thick= ratio * max_slice_thick_for_ill:

*/

/* Code for facet processor means begins again.

/* Code for facet grouping means begins again. */

get _new_group()

{
int i,3j,k=0;

for(i=0; i<=total_num_groups; i++)
(

if (curr_pln<group[i}->min) break:
if(i==total num_groups)
(
if(curr_pln >= group(i}->min &&
curr_pln <=group(i]->max)
for(j=group[i]->first;
j<=group({i]->last;j++)

if (curr_pln<=ocbj[obj_num].tri{j]->ver[2])~>axis[s]l_axis
IB]
new_grik++] = j;
}

else if(curr_pln >= group(i]->min &&
curr_pln < group{i]->max)

for (j=group{i]->first;
j<=group[i}->last;j++)

if(curr_pln<obj[obj_num].tri{j]->ver[2]->axis[sl_axis]

5,596,504
101 102

APPENDIX PAGE 31

)

new_grik++)] = j;

}

}
tri_in_curr_pln = k-1;

/* Code for facet grouping means ends again. */
/* Code for facet processor means ends again. */

/* Code for slicer means begins. */

/* i is the triangle number for which the
intersection point is to be calculated. */

get_intersection_pt(i)
int i:;
(

int j, common_ver= -1, common_line= -1;

static double x1_old, yl_old, zl_old, x2_old,
y2_old, z2 old;

double x_new, y_new, z_new, x1, yl, zl, x2, y2,
z2;

static double x_old, y_old, z_old:

/* checking if curr_plane is passing through the
vertex j(0,lor 2) of i. i is nothing but the current
triangle. */

for(j=0;j<3:j++)

{
if(obj(obj_num].tri[i)->ver{j)->axis[sl_axis] ==
curr_pln)

/* when the above condition is true curr_pln is

passing through vertex j. Coordinates of intersection
are simply the coordinates of vertex j of triangle i.

*/

/* 2_new =
pln{curr_pln num].isl{isl_num].intpts{num].axis{sl_axi
s8]=

obj{obj_num].trifi]->ver[j]->axis[sl_axis];

X_new =
pln[curr_pln_num].isl(isl_num).intpts[num}.axis[axl]}=
obj[obj_num].tri[i)->ver[j]->axis(axl];

5,596,504
103 104

APPENDIX PAGE 32

y_new =

pln{curr pln_num}.isl{isl_num].intpts[num].axis[ax2]=
obj[obj_num}.tri[i]->ver[]j]->axis([ax2]}:

*/

z_new =
obj[obj_num).tri{ij->ver[j]->axis[sl_axis];

x_new =
obj{obj_num].tri[i]->ver[j]->axis[axl];

y_hew =
obj[obj_num].tri[i]->ver({j]->axis[ax2}:

/* following condition is necessary to
ensure that the new
intersection point is not equal to the earlier

point */
if(x _new == x_old && y_new == y_old &&
z_new == z_old)
{
common_ver =j;
continue;
H
else
{
x_old = x_new;
y_old = y new;
z_old = 2z_new;
/* loading the inter-section points into a
file. */

fprintf (fpl,"”\n¥d %d4",
curr_pln_num, isl_num);

fprintf(fpl," 3%1f $1f %1f",
X_new, y_new, z_new):;

num = num +1;

/* every intersection is identified by a
number given by "num". sequence[num] gives the
triangle number for that intersection. Each triangle
can have only one intersection. sequence{num] = i;%/

return(j); /* vertex num is
returned */

}

5,596,504
105 106

APPENDIX PAGE 33

/* this part of prog is executed only when
curr_pln does not pass through any of the vertices of
i or passes through a vertex which is equal to ¥_old,
y_old and z_old(in which case common_ver=j. when
common_ver. */

/* to check if the curr_pln is passing through
one of the sides of i.*/

if (curr_pln >
obj(obj_num].tri[i}->ver[0]~>axis([s]l_axis] &&
curr_pln <
obj[obj_num}.tri[i)->ver{l]->axis[sl_axis]) j=o0;
else
ql:
if(curr_pln >
obj[obj_num].tri[i]->ver[l]->axis[sl_axis] &&
curr_pln <
obj[obj_num].tri(i)->ver[2]->axis[sl_axis]) j=1;
else
g2:
if(curr_pln >
obj[obj_num].trifi}->ver[0]->axis[sl_axis] &&
curr pln <
obj[obj_num].trifi]->ver[2]->axis[sl_axis]) j=2;
else
(
if (common_line== -1)
return(common_ver) ;
else return(common_line):
H

/* when above condition is true curr_pln is
passing through line joining ver0o and verl. Else it
is passing through the other two lines. */

/* calculate of point of intersection. */

J*
pln[curr_pln num].isl[isl_num).intpts{num].axis[sl axi
s]= curr_pln:;

*/

/* for the sake of convenience following code is
written. x_new need not always represent x coordinate
of intersection point. Similarly, y and z.

Similarly, x1,yl etc. it is true only when sl_axis is
2 (ie. z). #*/

xl = obj[obj num].tri[i]->ver([jl->axis[axl];
Yyl = objlobj_num].tri[i]->ver[j]->axis[ax2];
zl1 = obj[obj_num].tri(i)->ver([j]->axis[s)_axis];

5,596,504
107 108

APPENDIX PAGE 34

if(i==2) i=-1;

¥2 = obj[obj_num].tri{i]->ver[j+l]->axis{axl]:
y2 = obj[obj_num].tri{i]->ver[j+1]->axis[ax2];
22 =

obj[obj_pum].tri[i]->ver[j+1]->axis[sl_axis]:

if(3=="-1) j=2:

if((x1_old == x1 && yl_old == yl && 2zl1_old == z1

&&

%x2_old == %2 && y2_old == y2 && z2_old == 22)
1]
il

(x2_o0l1d == x1 && y2_old == yl && 2z2_old == zl
&&

x1_old == x2 && yl_old == y2 && 2zl_old ==
z2))

common_line = 10*(j+(j+1));
if (j==0) goto qi;

if(j==1) goto g2:

if(j==2) return(common_line);

else

{
x1l_old = x1;
yl_old = yl;
z1_old = z1;
x2_old = x2;
y2_old = y2;
z2_old = z2;

}

/* X_new, y new and z_new represent coordinates
of intersection. */

/*Z_new =
plnfcurr_pln_num].isl[isl_num].intpts{num]}.axis{sl_axi
s)=

curr_pln;

¥_new =
pln{curr_pln_num].isl(isl_num).intpts[num].axis[ax1]=
x1 + ((z_new - 2l1) * (x2 - x1) / (22 - 21)}:

y_new =
pln{curr_pln_num].isl({isl_num].intpts[num].axis[ax2]=

yl + ({(z_new - zl1) * (y2 - yl) / (22 - z21));
*/

Z_new = curr_pln;

x_new = x1 + ((z_new - zl) * (x2 - x1) / (22 -

5,596,504
109 110

APPENDIX PAGE 35
z21)):;

y_new = yl + ((z_new - z1) * (y2 - yl) / (z2 -
zl)):

fprintf(fpl,®\n%d %d", curr_pln_num,isl_num):
fprintf (fp1," %1f %1f %1f", x_new, y new,
zZ_new);

num = num+l;

/*1f intersection is with line ver0 and verl
(0+1)*10 is returned. if intersection is with verl
and ver2 (1+2)*10 is returned. intersection with ver:z
and ver0 (2+0)*10. Multiplication with 10 is
necessary form the value returned it will be easy to
identify type of intersection. */

if(j==2) return(20):
return(l0* (j+(j+1)));

/* Code for marching means begins. */

/*curr_tri is the triangle for which adjacent
triangle is to be found out. Note that curr_tri is
already in the eliminated list. ver num is the number
of vertex of curr_tri through which plane passes
through. #*/

get_adj_tril(curr_ tri,ver num)
int curr_tri, ver num;

{

int count,i,j, k=0;

for(k=0; k<3;k++)
if(neighbours[curr_tri][k]!=-1)
t
i=neighbours{curr_ trij][k]:
for(j=0;j<=bad;:j++)
{

if(eliminated[j] == 1) {
count=1;
break;

)

}
/* when count =1 that triangle need not be
checked for adjacency. That triangle is already in
eliminated list. So¢ loop continues */

5,596,504
111 112

APPENDIX PAGE 36

if (count==1) (
count=0;
continue;
}
/* comparing the three coordinates of curr_tri
with three coordinates of each vertex of triangle "i".
When there is a match "i" will be one of the adjacent
triangles which share the same vertex. */

for(j=0;j<3;j++)
(

if (obj[obj_num].tri[curr_tri}->ver([ver_num]}->axis[0]

obj{obj_num].tri{i}->ver[j]->axis[0] &&

obj{obj_num}.tri[curr tri]->ver(ver_num]->axis[1l] ==

obj[obj_num).tri[i}->ver[j]->axis[1l] &&

obj[obj_num].tri[curr_trij->ver(ver_num]->axis[2]
obj[obj_num].tri[i]->ver(j]->axis(2])

return(i);

for(k=0; k<=tri_in_curr_pln;Kk++)
(
i=new_gr[k];
for(j=0;j<=bad;j++)

if(eliminated[j] == 1) {
count=1;
break;

)

/* when count =1 that triangle need not be
checked for adjacency. That triangle is already in
eliminated list. So loop continues. */

if (count==1) {
count=0;

5,596,504
113 114

APPENDIX PAGE 37

continue;
)
/* comparing the three coordinates of curr_tri.
with three coordinates of each vertex of triangle m"i".

When there is a match "i" will be one of the adjacent
triangles which share the same vertex. */

for(j=0:j<3;j++)
(

if(obj{cbj_num).tri(curr_tri]->ver{ver_num}->axis[0]

obj{obj_num}.trifi]->ver{j]->axis[0] &&

obj[obj_num].tri[curr_tri)->ver{ver num]->axis(l} ==

obj[obj_num].tri[i)->ver[j]->axis[1l] &&

f
[

obj[obj_num].tri{curr_tri]->ver[ver_ num}-—>axis[2] ==

obj[ocbj_num].tri[i]->ver[j]l->axis[2]) return(i):

return(-1);

/*curr_tri is the triangle for which adjacent
triangle is to be found out. Kote that curr tri is
already in the eliminated list. vers gives which two
vertices which form the line. We have to find a
triangle that shares same line with curr_tri. #/

get_adj_tri2 (curr_tri,vers)
int curr_tri, vers:

{

int count,i,j,k, verl, ver2, match,h,countll=0;

for (k=0;k<3;k++)
if (neighbours{curr_trij[k]!= -1)
{
i = neighbours{curr_tri}({k]:

for (h=0;h<bad;h++)

5,596,504

115 116
APPENDIX PAGE 38
if(eliminated{h] == i) {(
count=1;
break:

}

)

if (count==1) (
count=0;
ceontinue;

)

if(vers==10)
verl =

{
0
verz2 1

H
else
if (vers==20) (
verl = 2;
ver2 = 0;
}
else
if (vers==30){
verl = 1;
ver2 = 2;
)

for(3=0;3j<3;j++)

if(obj[obj_num].tri[curr_tri]->ver{verl]->axis[0] ==

obj[obj_num].tri[i]->ver[j]->axis[0] &&

obj[obj_num].tri[curr_tri}->ver[verl]->axis[1l] ==

obj{obj_num].tri[i)->ver(j]->axis(1] &&

obj{obj_num).tri[curr_tri)->ver[verl]->axis[2] ==

obj[{obj_num].trifi]->ver[j]->axis[2]) {
match=1;
break;

}

if(match==1)

{
for(j=0;3<3:j++)
(

5,596,504
117 118

APPENDIX PAGE 39
if{obj[obj_num].tri[curr tri}->ver[ver2]->axis[0] =

obj{obj_num].tri[i)->ver[j}->axis{0] &&

obj[obj_num].trif{curr_tri)->ver{ver2]->axis{1]

obj[obj_num].tri[i]->ver[j]->axis[1] &&

ocbj(obj_num].trifcurr_trij->ver[ver2)]->axis[2]
cbj[obj_num].tri[ij->ver[j)->axis[2])
{

match=2;
/* if(successl % 100
==0)printf ("S1=%d", successl++); */
return(i);
}

match=0;

for (k=0;k<=tri_in_curr_pln;k++)
¢
i = new_gr[k};
for(j=0;j<bad;j++)
{

if(eliminated([j] == i) {
count=1;
break:

}

/* when count =1 that triangle need not be
checked for adjacency. That triangle is already in
eliminated list. So loop continues. */

if (count==1) {
count=0;
continue;

)

/* comparing the three coordinates of curr_tri

with three coordinates of each vertex of triangle "i".

5,596,504
119 120

APPENDIX PAGE 40

When there is a match "i" will be one of the adjacent
triangles which share the same vertex. */

if(vers==10) {
verl = 0;
verz = 1;
}
else
if (vers==20){
verl = 2;
ver2 = 0;
}
else
if (vers==30) (
verl = 1;
verz = 2;

}

for(3=0:3<3;j++)
{

if(obj{obj_num].tri[curr_tri]->ver[verl]->axis[0] =

obj(obj_num].tri[i]->ver([j]->axis[0] &&

obj[obj_num].tri{curr_tri]->ver([verl}->axis[1l] ==

obj{obj_num].tri{i)}->ver[j]->axis[1l] &&

obj[{obj_num].trifcurr_ tri]->ver{verl]->axis[2] =
obj{obj_num).trifi}->ver([j]->axis[2]) {

match=1;
break;

}
if (match==1)
(
for(j=0;3<3;j++)
if(obj[obj_num].tri[curr_ tri)->ver{ver2)]->axis[0] ==

obj[obj_num].tri{i]->ver[j]->axis[0] &&

5,596,504
121 122

APPENDIX PAGE 41

obj[obj_num).tri[curr_tri]->ver[ver2]->axis[1]

obj[obj_num].tri[i)->ver[j]->axis[1] &&

obj(obj_num].tri{curr_tri)->ver[ver2}->axis[2] ==
obj{obj_num}.tri[i]->ver[j]->axis[2])

{
match=2;

for(h=0;h<3;h++)
{

if (neighbours{curr_trij[h) ==i) break:;

= —l)
{

if (neighbours(curr_tri](h]

neighbours[curr_trij[h]=i;
break:
}

}
for (h=0;h<3;h++)
{
if (neighbours(i][h]
curr_tri) break:;
if(neighbours[i][h]

{

-1}

neighbours[i][h)=curr_tri;
break;
)

return(i);

}
match=0;
return{-1);

/* Code for marching means ends. *x/
/* Code for slicer means ends. */

5,596,504
123 124

APPENDIX PAGE 42

/* This program called "reverse.c" ensures that
the line segments that form each contour are in
clockwise order. */

#include <stdio.h>

#include <math.h>

int curr pln_num, curr_isl_num, earlier_pln_num,
earlier_isl_num, cw;

int y min_is_here;

double x[30000}, y[30000], z{30000};

FILE #*fpl, *fp2;
/* yes will be 0 and no will be 1 bec. of
enumeration*/
enum {
yes=1l, noj};

main()
{

fpl = fopen("int_pts", “r%);
fp2z = fopen("new_int pts", "w");

read pts();
fclose(fpl);
fclose(fp2);

system("mv new_int_pts int_pts");

read_pts()
{

int i, first_time = 1 ;
double z_min, z_max, y_min;

fscanf(fpl, "%1f %1f", &z_min, &z_max);
fprintf(fp2, "%1f %1f", z_min, z_max);

for(i=0; feof(fpl)==0; i++)
(

if(fscanf(fpl, "%d %d4", &curr_pln_nunm,
&curr_isl_num) !=2)break;
if(first_time==yes)

5,596,504
125 126

APPENDIX PAGE 43

earlier pln num = curr pln num;
earlier_isl_num = curr_isl_num;

)

else
if(earlier pln_num != curr pln_num !!
earlier isl_num != curr_isl_num)

{

chk_pts_for_direction(i-1):
rewrite_pts(i-1)

-

earlier_pln_num = curr_pln_num;
earlier isl_num = curr_isl_num;
first_time = yes;

i=0;

}

Vi allocating memory for x and y
X = (double *) malloc(sizeof (double));
Y = (double *) malloc(sizeof (double));

if(x == NULL !|! y = NULL)
{
printf("Could not allocate memory for x or Y
in function read_pts in reverse.c") ;
exit(-1);
)

*/

fscanf (fpl, " %1f %1f 31f", &x[i], &y[i],
&z[i]):

/* when curr point is identical to prev
point it is skipped */

if(x[i] == x[i-1) &&
Y[?] == y[i-1] &&
Z[i] == z[i-1})
{
i=1i-1;

continue;

if(first_time == yes)

{

5,596,504
127 128

APPENDIX PAGE 44

y_min = y[i];
y_min_is here = i;
first_time = no;

}

/* finding y_min and its number */
else if(y[i] < y_min)
{

y min = y[i);

y_min_is_here = i;

chk_pts_for direction(i-1);
rewrite_pts(i-1):;

/* 1 is num of points in curr_island of curr_plane #*/
chk_pts_for_direction(i)
int i;
{

double next_x, next_y, prev_x, prev_y, theta_in,
theta_out;

/* there should be atleast 3 points in a contour.

so if i is less
than 2 for the time being cw is selected */
if(i<2) return(cw=yes):;

/* when y_min_is_here is last point (=i) or first
point (=0) special
conditions are required */

if(y min_is_here == 0)

prev_x
prev_y

([}
b
~

}

else

{
prev_x = x{y_min_is_here-1];
prev_y = y(y_min_is_here-1];

5,596,504

129 130
APPENDIX PAGE 45
if(y_min_is_here == i)
next_x = x[0};
next_y = y[0]);
)
else
{
next_x = x[y_min_is_here+1}];
next_y = y[y_min_is_here+1];
}
if(prev_x == next_x && prev_y == next_y)

printf("at %d point in %d island of %d prev
and next points are identical.", y_min_is_here,
curr_isl_num,
curr_pln_num) ;
cw=yes;

theta_in = atan((prev_y -
y(y_min_is here])/(prev_x - x[y_min_is_here]}):
theta out = atan{(next_y -
yly_min_is_herel)/(next_x - x[{y_min_is here]}):

/* converting into degrees */
theta_in = theta_in * (180%7)/(2%22);
theta_out = theta_out * (180%7) /(2*22);

if(prev_x< x[y_min_is_here]) theta_in
theta_in+180;

if (next_x< X[y_min_is here])theta_ out
theta_out+180;

if(theta_in < theta_out) return(cw=yes):;
else return(cw = no);

5,596,504
131 132

APPENDIX PAGE 46

rewrite_pts(last_pt)
int last_pt:
{

int j;
if(cw == no)
for(j=last_pt; j>=0; j-=~)
fprintf(fp2,"\n%¥d %d %12.9f %12.9f

%$12.9f", earlier_pln_num,earlier_isl_num, x[j], YI[jl,
z2[31);

)

if(cw == yes)
{
for(j=0; j<=last_pt; Jj++)
fprintf({ fp2,"\n%d %4 %12.9f %12.9f
%12.9f", earlier_pln_num,earlier_isl num, x(33, y[i}l,
z[31):

}
fprintf (fp2, "\n"):

5,596,504
133 134

APPENDIX PAGE 47

FAAAA ARSI T T T2 ST T T T Y T T TR D B R S S I g g arar yr g
ADAPTIVE SLICING OF 3-D MODELS IN STL FORMAT

DEVELOPED BY

KAMESH M. TATA
MECHANICAL ENGINEERING
CLEMSON UNIVERSITY, SC 29631

***/

/* This program called "visual_slice.c" is used
to display the sliced model obtained from the program
called "slice.c". #/

#include <stdio.h>

#include <math.h>

#define N 50000 /* Limiting the number of triangles of
each object to N #*/

#define M 1 /* Limiting the number of objects to M
*/

#define O 40000 /* Limiting the number of groups of
triangle to 0 */

#define P 5000 /* Limiting the number of cutting
Planes to P */

#define Q@ 120 /* Limiting the number of islands per
plane to Q */

#define R 10000 /* Limiting the number of points of
intersec per island per

plane to R */

#define T 50000 /* value of numerator that decides the
slice thickness */

/*#define max_slice_thick 0.08

*/

#define DMEM_CONST 500

/* note that tri is for triangle. nor is for normal.
ver
is for vertex. */

/* declaration of point structure with an array as its
member */
struct point {
double axis[3]:
HH

/* triangle is a structure with two member structures
"nor, *ver([3]

Both nor and *ver{3] are structures of type
"struct point". *ver[3]

is a pointer to struct ver[3}??? */

5,596,504
135 136

APPENDIX PAGE 48

struct triangle {
struct point nor;
struct point *ver[3};
b

/* object is a structure with an array of structures
*tri[N] pointing
to its members normal and *ver[] */
struct object {
struct triangle *tri[N):
}:

/* obj[M] is a structure of type object. It is not a
pointer. Pointer

is not necessary bec this program is not
expected to sort objects */
struct object obj[M]:
/* first and last store the number of first and last
triangles in that

group. min and max store the min and max
values of sl_axis co-ords

in that group of triangles */

/* structure group[] to hold number of groups and
number of triangles in
each group */
struct gr {
int first, last:
double min,max} *group{0};

/* structure to draw the picture. need not be global.
check this*/
struct {
double x,y,Z:
} poly[31:

/* with the following 3 structures you can access say
x coord of 20th

intersection point of island 4 of cutting
Plane 2 by writing

pln(2].1isl1[4].point{20][0] */
/%* structure to hold intersection points for each
island */
struct islands {

struct point *intpts };

/* structure to hold number of islands for each
cutting plane */
struct plane (
struct islands isl[Q];
1

5,596,504
137 138

APPENDIX PAGE 49

/* structure to hold number of cutting planes */
struct plane *pln;

double x_min,x max,y_min,y_max,z_min,z_max,
highest_nor,max_slice thick;

double curr_gr_min, curr_gr_max, curr_pln,
all_planes[P], act_pln;

int tri_num, obj_num=0,max_triangles{M], sl_axis,
axl,ax2, total_num_groups;

int curr_pln_num, num, isl_num, isl_numl, curr_gr,
bad;

int curr_gr_first,curr_gr_last, eliminated([R],
curr_pln_numl;

char obj_type[20]), obj name[20];

int intersec[R][Q], intersecl{R]{Q]), islands[P];
int islandsl[P], all_slices, tri_in_curr pln,
new_gr{20000],

neighbours{T){3), successl, success2,read_sorted_file
double max_slice_thick_for_ill, min_slice thick,
accuracy_req, uniform_slice_thick:

double lowest_theta, highest_theta;
int criteria,
there_is a_vertical_wall,there_is_a_horizontal wall;

float desired cusp height, desired_max_deviation,
desired_chord_length;

main(argc, argv)
int arge:
char #**argv;

FILE *fp;

if(arge == 2)
fp = fopen{argv(1l], "r"):
else

{
fprintf(stderr, "\nAlternate Usage : %s
<filename>\n\n", argv([0]);
fp = stdin;
}

printf("\nENTER 1 TO READ SORTED STL FILE, ELSE

5,596,504
139 140

APPENDIX PAGE 50

ENTER ANY OTHER NUMBER ");
scanf ("%d", &read_sorted_file):;

if (read_sorted file==1)read_sorted_stl_file(fp);
else read_stl_data(fp):

printf ("After read.\n"):

/* get_xXyz_max_min() is to calculate max and min
values for
auto scaling and other uses during
computations for
intersections. */
get_xyz max_min():;
theta_min_and_theta_max();

get_slice_axis():
sort_vertices();

/%* sort triangles in ascending order considering
the value of
sl_axis co-ordinate of first vertex. If
sl_axis is, say 1,
y coordinate of first vertex is
considered for sorting */
sort_triangles();

/* all triangles with equal sl _axis cord of first
vertex (after
sorting vertices) will be in one group */
group_triangles();

/* store_stl_data() is to store the data read in
a different
file in a different format. */
/* store_stl_data();
*/

multi_slicing():

create_menu_window() ;
create_picture_window_and_picture():
user_interaction_control();
HC_Pause();

5,596,504

141 142
APPENDIX PAGE 51
/* BODY OF THE FUNCTION create_menu_window() */

create_menu_window()

HC_Open_Segment ("?Picture/menu”) ;
HC_Set_Window(0.75,1.0,-1.0,1.0);
HC_Set_Text_Size(0.7):

/* THE FOLLWING WINDOWS ARE CONTAINED IN THE
ABOVE WINDOW */

small_wmenu_window(“rotate-x",-1.0,1.0,0.75,1.0);

/* DO NOT WRITE UPPER CASE LETTERS. ROTATE-X IS
NOT ACCEPTABLE
(NO ERROR MESSAGE IS DISPLAYED) ONLY
rotate_x is right. */

small menu_window("rotate~y",-1.0,1.0,
small_menu_window("rotate-z",-1.0,1.0,

small_menu_window("rotate-xyz",-1.0,1.0,0.0,0.25);
small_menu_window("scale",-1.0,1.0,-0.25,0.0);
small_ menu_window("move",-1.0,1.0,-0.5,-0.25);
small_menu_window("plane",-1.0,1.0,-0.75,-0.5);
small_menu_window("quit",-1.0,1.0,-1.0,-0.75);
HC_Close_Segment();

/* BODY OF THE FUNCTION small_menu_window() */
small_menu_window(name, xmin, xmax, ymin, ymax)

char *name;
float xmin, xmax, ymin, ymax;

{
HC_Open_Segment (name) ;
HC_Set_Window{xmin, xmax, ymin, ymax);
HC_Insert_Text(0.0,0.0,0.0,name) ;
HC_Close_Segment();

/* BODY OF THE FUNCTION create picture_window_and
_picture() */

5,596,504
143 144

APPENDIX PAGE 52

create_picture window_and_picture()

HC_Open_Segment ("?Picture/scene");

HC_Set_Window(-1.0,0.75,-1.0,1. 0): /* OPEN
WINDOW X */

HC_Set_cColor("face=yellow, edge= red");

HC_Close_Segment()

HC _Define_Alias(%?scene”, "?Picture/scene”);

HC_Open_ Segment ("?scene/textwinl");

HC_Set_Window(-1.0,0.0,-1.0,-0. 9);

HC Set_Text_size(0.5);

HC Insert _Text(-0.6,0.0,0.0, "ADAPTIVELY SLICED
MODEL") ;

HC_Close_Segment(};

HC_Open_ Segment ("?scene/textwin2") ;

HC_Set_Window(0.0,1.0,-1.0,-0.9);

Hc Set_Text Slze(o 5):

HC_ " Insert _Text(-0.6,0.0,0.0,"UNIFORMLY SLICED
MODEL"Y) ;

HC_Close_Segment () ;

/% FRONT VIEW */

HC_Open_Segment("?scene/front view") ;

HC Set_Window(-1.0,0.0,-0.9, 1.0):

HC Open Segment("object")'

HC_Set Color("face—yellow, edge= red"):
set_camera().

draw_variable_slice():

HC_Close_Segment(};

HC_Close_Segment(): /* CLOSE WINDOW X */

HC Define_Alias("?front view","?scene/front
view") ;

HC_Open_Segment ("?scene/toolpath top view");
HC_Set_Window(0.0,1.0,-0.9, 1.0):

HC_ _Open__ Segment("object"):
HC_Set_Color("face—yellow, edge= red");

set_camera();
draw_uniform_slice();
HC_Close_Segment () ;
HC_Close_Segment () :;

HC_Open_Segment ("?scene/axiswinl");

5,596,504

145 146

APPENDIX PAGE 53

*/

*/

)

HC_Set_Window(-0.15,0.15,0.7,1.0);
draw_axis():
HC_Close_sSegment () ;

/%
HC_Open_Segment ("?scene/toolpath iso view"):
HC_Set_Window(-1.0,1.0,-0.1,0.8);
HC_Open_Segment ("object") ;
HC_Set_Color("face=yellow, edge= red");

set_camera_for_iso():
draw_variable_slice();
HC Close_Segment();
HC Close_Segment();

S*
HC_Open_Segment ("?scene/object iso view");
HC_Set_Window(0.0,1.0,-0.1,0.8);
HC_Open_Segment ("object") ;
color_setting();

set_camera_for_iso(}:

insert_polygon():

HC _Close_Segment() :

HC Close_Segment();

draw_axis()

HC Insert_Line(~-0.9,-0.9,0.0,0.9,-0.
HC_Insert_Line(-0.9,-0.9,0.0,-0.9,0
HC_Set_Text_Size(0.5):
HC_Insert_Text(0.8,-0.8,0.0,"X");

if(sl_axis==2)HC Insert Text(-0.8,0.8,0.0,"2");
else
HC_Insert_ Text(-0.8,0.8,0.0,%"Y");

/* BODY OF THE FUNCTION user_interaction_control #/

#define streq(a,b) (strcmp(a,b) == 0)

5,596,504
147 148

APPENDIX PAGE 54

/* NOTICE THAT THERE IS NO SEMI COLON HERE */

user_interaction_control()

{

char segment([50]);
float anglex, angley, anglez, scale, movex,
movey, movez;

HC_Open_Segment ("?Picture/scene") ;

/* OPENING THE SEGMENT picture WHERE THE MAIN
PICTURE IS
DRAWN */

for(; :)

HC_Get_Selection(segment); /* GET MOUSE
SELECTION */

if ((strcmp(segment, "rotate-x")==0))
{

printf ("\nPLEASE TYPE IN ANGLE OF
ROTATION ABOUT \"X\" (DEGREES)=");

scanf ("%£f", &anglex);

HC_Rotate_Object(anglex,0.0,0.0);

if(streqg(segment, "rotate-y")) /* streq is
DEFINEQ as strcmp(a,b)==0 */

{
printf ("\nPLEASE TYPE IN ANGLE OF
ROTATION ABOUT \"Y\" (DEGREES)=");
scanf ("%$f", &angley):;
HC_Rotate Object(0.0,angley,0.0);
}

else if(streg{segment, "rotate-z"))

{
printf (*\nPLEASE TYPE IN ANGLE OF
ROTATION ABOUT \"Z\" (DEGREES) =");
scanf ("%f", &anglez):
HC_Rotate_Object(0.0,0.0,anglez);
H

else if(streg(segment, "rotate-xyz"))

{
printf (*\nPLEASE TYPE IN ANGLE OF
ROTATION ABOUT \"X\"(DEGREES)=\n"):

5,596,504
149 150

APPENDIX PAGE 55
scanf ("§$f", &anglex);

printf ("\nTYPE IN ANGLE OF ROTATION

ABOUT \"Y\" (DEGREES)=");
scanf ("$f", &angley):

printf("\nTYPE IN ANGLE OF ROTATION
ABOUT \"Z\" (DEGREES)="};
scanf ("¥f", &anglez):
HC_Rotate_Object(anglex,angley,anglez);
}

else if(streq(segment, "“scale")})

{
printf ("\nTYPE IN THE SCALE FACTOR");

scanf ("$%f", &scale);
HC_Scale Object(scale,scale,scale}:

H

else if(streqg(segment, "move"))

{

IN \llx\":ll);

Printf ("\nTYPE IN THE DISTANCE TO MOVE

scanf ("$£f", &movex):

printf ("\nTYPE IN THE DISTANCE TO MOVE
IN \“Y\"z");

scanf ("$f", &movey):;

printf ("\nTYPE IN THE DISTANCE TO MOVE
IN \l'z\ll-_-ll);

scanf ("3¥f", &movez);

HC_Translate_Object (movex,movey,movez) ;

)

else if(streqg(segment,"quit")) break:

}

HC_Close_Segment():
/* YOU WILL HAVE PROBLEMS IF HC-Close_Segment ()
IS PLACED
INSIDE THE FOR LOOP. */

}

read_stl_data(fp)

5,596,504
151 152

APPENDIX PAGE 56
FILE *£fp;

{
int i,j;
char dumil{20);

if(fp == stdin)
fprintf (stderr, "WHERE IS THE .STL FILE
BOY"™) ;

/* Every object is identified by its type and
name in .stl
file. (Type of object can be solid or
surface. Name
of object can be sphere, cone etc.).So,
the condition !=2
is valid only at the end of file
or when the file is corrupt or not
formatted #*/
ql:
if({fscanf(fp, "$s %s",obj_type, obj_name)!=2)
{
printf (" %s
%$s",0bj_type,obj_name) ;/*obj_num=obj_num-1;*/
return;
}

while (getc(fp) != ’\n’); /* to read all the
characters in the first line
for each object */

/* duml is always "FACET" unless it encounters a
different
object or end of file. Just when a new
object
or end of file is encountered total
number of triangles in
the earlier object is stored using
max_triangle[obj_num] */
for(tri_num=0;feof (fp)==0;tri_numt+)

obj[obj_num].tri{tri_num] = (struct triangle
*)malloc(sizeof (struct triangle));

fscanf (fp,"%s",duml);

if ((strcmp(duml, "FACET") !=0) &&
(strcmp (duml, "facet") {=0))

{

max_triangles{obj_num]=tri_num-1;
return;

5,596,504
153 154

APPENDIX PAGE 57

/* Reads X,y,z values of normal vectors.
(objf{..].trif..]) peints to
nor this is indicated by -> €@@€€ nor.axis[..]
gives the value */
if (fscanf(fp, " %*s 31f 31f %1f",

&(obj[obj_num].tri{tri_num]->nor.axis[0]),

&(objfobj_num]}.tri{tri_num]->nor.axis[1]),

&(obj[obj_num]}.tri(tri_num}->nor.axis[2]))!=3)
{

Printf ("CHECK NEAR TRIANGLE %d IN .STL
FILE",tri_num);

}* printf("nor=%1f %1f %1f \n",
(obj[obj_num].tri{tri_ num]->nor.axis[0]),
(obj[obj_num].tri[tri_num]->nor.axis{1}},
(obj[obj_num).tri{tri num]->nor.axis{21)):

/ / Ignores reading characters "OUTER LOOP"
in .stl file#/
fscanf(fp, "%*s %*s%):

/* Reads x,y,z values of the three verices
of each triangle */
for(i=0; i<3;i++)
{
/* malloc allocates enough memory
required to store "struct point" %/
obj[obj_num].tri[tri_num]->ver(i] =
(struct point
*)malloc(sizeof (struct point));

fscanf (fp, “"%*s");
for(j=0: j<3;j++)
fscanf (fp, "%1f",

&(obj[obj_num].tri[tri_num]->ver(i]->axis[j]1));
. /¥ printf("ver #%d =%1f %1f %1f \n",
i,
(obj[obj_num).tri[tri_num]->ver{i]->axis[0]},
(objlobj_num].tri[tri_num)->ver[i)->axis[1]),
(obj[obj_num].tri(tri_numj->ver[ij->axis[2]));
*

}
/* Ignores characters "ENDLOOP",

5,596,504
155 156

APPENDIX PAGE 58

“ENDFACET" */
fscanf (fp, "%*s %*s");

/* reads stl_out file which is sorted #*/
read_sorted_stl_file(fp)
FILE *fp:
{

int h,i,j;

char nor[20];

obj_num=0; /* this function works for one object
files only */

fscanf (fp,"%s %s", obj_type, obj_name);

for (h=0;h<=cbj_num;h++)
for(i=0;feof(fp)==0;i++)

obj[obj num].tri{i} = (struct triangle
*)malloc(sizeof (struct triangle)):

/* skips the string TRIANGLE and reads
the following number*/
fscanf(fp, "%*s %d",&i);
fscanf(fp, " %s %1f %1f %1f",nor,
&(obj[h]}.tri[i]->nor.axis[0])
&(obj[h].tri[i]->nor.axis[1])
&(obj[h].tri[i]~>nor.axis[2])

)i
for(j=0;j<3:j++)
obj[obj_num].tri[i]->ver([j] =
(struct point
*)malloc(sizeof(struct point});
fscanf (fp, " 3%1f %1f 3%1f",
&{obj{hl.tri(i}->ver{j]->axis(0]),

&(obj[h]l.tri[i)->ver[j]->axis([1]},

5,596,504
157 158

APPENDIX PAGE 59
&(obj[(h}.tri{i}->ver{j)->axis(2])):

)
)

tri_num=i-1;
max_triangles[obj_num] = i-1;
fclose(fp):

/* outputs x,y,z values of the normal and the three

verices of
each triangle to stl_out file #*/

store_stl_data()

{
FILE *fp;
int h,i,j;

fp = fopen(¥stl_out", ®u");
fprintf(fp,"%s %s\n", obj_type, obj_name);

for (h=0;h<=obj_num;h++)
for(i=0;i<tri_num;i++)
{
fprintf(fp, “"\nTRIANGLE %d \n",i):;
fprintf(fp, "\t\t\tnor=%1lf %1f %1f \n",
(obj[h].tri[i}->nor.axis[0]),
(obj[h].tri[i]->nor.axis{1]),
(obj(h].tri{i}->nor.axis[2]));

for(3=0:j<3;:j++)
fprintf(fp, " %1f %1f %1f\n",

obj[h].tri[i]->ver([j]->axis[0],
obj[h]).tri(i)~>ver[j]->axis(1],

obj[h].trifi]->ver(j]->axis(2]);
}

fclose(fp);

5,596,504
159 160

APPENDIX PAGE 60

theta_min_and_theta_max()
{

float rad_to_deg ;
int h,i;

for (h=0;h<=0bj_num;h++)
for(i=0;i<tri_num;it++)
t
rad_to_deg = 180%7/22;
highest_theta =0;
lowest_theta = 90;

for(i=0; i< tri_num; i++)
{

if(obj{obj_num}.tri[i]->nor.axis[2]<0)
obj{obj_num).tri[i])->nor.axis[2] = -1 *
obj[obj_num].tri[i]->nor.axis(2]:

/*printf (Yasinilf",
asin(obj[obj_num].tri(i)->nor.axis[2])):*/

if(asin(obj[obj_num].tri{i]->nor.axis[2])>
highest_theta)
€

if(asin(obj[ob)j_num].tri[i]->nor.axis[2])*180*7/22 <
90.00 &&

asin(obj[obji_num).tri[i]~>nor.axis[2])*180%7/22 >
89.5)

there_is_a_horizontal_wall=1;
else
highest_theta =
asin(obj[obj_num].tri[i]->nor.axis(2]);

if(asin(obj{obj_num}.tri[ij->nor.axisf{2])<
lowest_theta)
{

5,596,504
161 162

APPENDIX PAGE 61

if(asin{obj[obj_num].tri{i]->nor.axis[2])*180+7/22 ==
0)

there_is_a_vertical_wall=1;
else
lowest_theta =
asin(obj[obj_num].tri[i]->nor.axis[2]);:

}
}

printf ("\n\n");
if(there_is_a_horizontal_wall==1)
printf ("\nThere are horizontal
surfaces in this object.");

if(there_is_a_vertical wall==1)
printf{"\nThere are vertical
surfaces in this object.");

printf("\n\nhighest_theta=%1f
lowest_theta=%1f", rad_to_deg*highest_theta,
rad_to_deg*lowest_theta);
printf("\nNote: Vertical and horizontal
walls %(0 and 90%) are not considered while
determining lowest and highest thetas.");
}

get_next slice_thick(sl_thick)
double #*sl1_thick;
{

double ratio;

if(highest_nor *180%7/22 == 90)
*sl thick = 0;

else if(highest_nor #180%7/22 == 0.0)
*sl_thick = max_slice_ thick;

else

{

if(criteria==1)#sl_thick =
desired_cusp_height / sin(highest nor):

else if(criteria==2)+sl_thick =
desired max_deviation / tan(highest_nor);

5,596,504
163 164

APPENDIX PAGE 62

else if(criteria==3)*sl_thick =
desired chord_length * cos(highest_nor);

}

if(*sl_thick>max_slice_thick)
*gl_thick=max_slice_thick;

if(*sl_thick<min_slice_thick)
*sl thick=min_slice_ thick:

get_slice axis()

{
int change;

/* for building parts on sla machine sl_axis is
always 2 */
sl_axis = 2;

printf("\n \nENTER MAXIMUM SLICE THICKNESS THAT
¥YOU WOULD PREFER ");

scanf ("$1£", &max_slice_thick}):

printf ("\nENTER MINIMUM SLICE THICKNESS THAT YOU
WOULD PREFER Y);

scanf ("$1f", &min_slice_thick}):

printf ("\nCHCOSE A CRITERIA BY ENTERING THE
APPROPRIATE NUMBER"):;

printf("\nl. CUSP HEIGHT"):;

printf("\n2. MAXIMUM DEVIATION"):

printf("\n3. CHORD LENGTH ") ;

scanf ("%d", &criteria):

if(criteria==1)
{

printf("\ncl = %f, c2 = %f, ¢3 = 1f, c4 =
$f", min_slice_thick*sin(lowest_theta),
min_slice_thick*
sin(highest_theta),
max_slice_thick*sin(lowest_theta),
max_slice_thick*sin(highest_ theta));

5,596,504
165 166

APPENDIX PAGE 63

printf ("\nENTER A VALUE FOR LIMITING CUSP
HEIGHT BASED ON THESE FOUR VALUES. YOU MAY TAKE THE
HELP OF CUSP HEIGHT Vs. THETA PLOT. IF YOU NEED HELP
ENTER 911. ");

scanf ("%f", &desired_cusp_height);

if(desired_cusp_height==911.0)
{
printf("\nl. If you choose a value
equal to cl, layer thickness will be set to %f
% (minimum thickness %) throughout the part. Further,
if a part is built using this slice data, cusp height
of the physical part will vary from cl to c2. \n2. If
you choose c4, layer thickness will be set to %f
% (maximum thickness %) throughout the part. Further,
if a part is built using this slice data, cusp height
of the physical part will vary from c¢3 to c4. \n3. If
you choose a value between cl and c4, layer thickness
will be appropriately varied to maintain cusp height
within the value you have given.", min_slice_thick,
max_slice_thick);
printf ("\n\nENTER A VALUE FOR LIMITING
CUSP HEIGHT ");
scanf ("%f", &desired_cusp_height);
}

uniform_slice_thick = desired_cusp_height /
sin(highest_theta);

printf("\nTo produce a similar quality part,
uniformly sliced model will have a slice thickness of
f", uniform_slice_thick);

printf ("\nIF YOU WANT TO CHANGE THIS VALUE
ENTER 1, ELSE ENTER ANY OTHER NUMBER "):

scanf ("$d", &change):;

if (change==1)

{

printf ("\nENTER THICKNESS FOR UNIFORM
SLICING ");
scanf ("%1f", &uniform_slice thick);
}

if(criteria==2)
{
printf("\ndl = %f, d2 = %f, d3 = 5f, d4 =
%f", min_slice_thick*tan(lowest_theta),
min_slice thick*

5,596,504
167 168

APPENDIX PAGE 64

tan(highest_theta),
max_slice_thick*tan(lowest_theta),
max_slice_thick*tan(highest_theta));

printf("\nENTER A VALUE FOR LIMITING MAX.
DEVIATION BASED ON THESE FOUR VALUES. YOU MAY TAKE THE
HELP OF MAX. DEVIATION Vs. THETA PLOT. IF YOU NEED
HELP ENTER 911. ");

scanf ("$f", &desired_max_deviation);

if (desired_max_deviation==911.0)
{
printf("\nl. If you choose a value
equal to dl, layer thickness will be set to %f
% (minimum thickness %) throughout the part. Further,
if a part is built using this slice data, maximum
deviation of the physical part will vary from dl to
d2. \n2. If you choose d4, layer thickness will be set
to $f % (maximum thickness %) throughout the part.
Further, if a part is built using this slice data,
maximum deviation of the physical part will vary from
d3 to d4. \n3. If you choose a value between dl and
d4, layer thickness will be appropriately varied to
maintain maximum deviation within the value you have
given.",
min_slice_thick, max_slice_thick);
printf ("\n\nENTER A VALUE FOR LIMITING
MAXIMUM DEVIATION ")
scanf ("$f", &desired_max_deviation);
}

uniform slice thick = desired_max_deviation
/ tan{highest_theta);

printf{"\nTo produce a similar quality part,
uniformly sliced model will have a slice thickness of
%f", uniform_slice_thick);

printf{*\nIF YOU WANT TO CHANGE THIS VALUE
ENTER 1, ELSE ENTER ANY OTHER NUMBER "):

scanf ("%d", &change):

if (change==1)

{

SLICING ")

printf (Y\nENTER THICKNESS FOR UNIFORM

scanf ("$1f", &uniform_slice_thick};
}

5,596,504
169 170

APPENDIX PAGE 65

if (criteria==3)

printf("\nfl = %f, f2 = %f, £3 = %f, f4 =
%f", min_slice_thick/cos(lowest_theta),
min_slice_thick/
cos(highest_theta),
max_slice_thick/cos(lowest_theta),
max_slice_thick/cos(highest_theta)):
printf("\nENTER A VALUE FOR LIMITING CHORD
LENGTH BASED ON THESE FOUR VALUES. YOU MAY TAKE THE
HELP OF CUSP HEIGHT Vs. THETA PLOT. IF YOU NEED HELP
ENTER 911, “);
scanf ("3f", &desired_chord_length);

if(desired_chord_length==911.0)}

{

printf("\nl. If you choose a value
equal to fl, layer thickness will be set to %f
f(minimum thickness %) throughout the part. Further,
if a part is built using this slice data, chord length
of the physical part will vary from f1 to f2. \n2. If
you choose f4, layer thickness will be set to %f
% (maximum thickness %) throughout the part. Further,
if a part is built using this slice data, chord length
of the physical part will vary from f3 to f4. \n3. If
you choose a value between f1 and f4, layer thickness
will be appropriately varied to maintain chord length
within the value you have given.",

min_slice_thick, max_slice thick);

printf ("\n\nENTER A VALUE FOR LIMITING
CHORD LENGTH ");

scanf ("%f", &desired_chord_length);

}

uniform_slice_thick = desired_chord_length #*
cos(highest_theta);

printf("\nTo produce a similar quality part,
uniformly sliced model will have a slice thickness of
%f", uniform slice_thick);

printf(“\nIF YOU WANT TO CHANGE THIS VALUE
ENTER 1, ELSE ENTER ANY OTHER NUMBER "y:

scanf ("3d", &change);

if (change==1)

{

SLICING ");

printf ("\nENTER THICKNESS FOR UNIFORM

scanf("%1f", &uniform slice_thick):
}

5,596,504
171 172

APPENDIX PAGE 66

}

/* sl_axis is short for slice axis. */
/* when & does not precede sl_axis segmentation
fault occurs */
if(sl_axis == 2) {
axl = 0;
axz2 = 1

/* sorts vetrices of each triangle in ascending order
according to x, y or z co-ordinates.
if sl_axis is, say 2,
vertices will be sorted according to z
value */

sort_vertices()
{

struct point *temp:
int i;

for (i=0;i<=max_triangles{obj_num];i++)
/* compering element[0] and [1] and sorting in
ascending order */

{
if(obj[obj_num].tri[i]->ver{0]->axis[sl_axis]>
obj{obj_num].trifi]->ver[l]->axis{sl_axis])

temp = obj[obj_num].tri{i]->ver[0];
obj[obj_num].tri[i]->ver([0]}=
obj[obj_num].tri{ij->ver[1l];
obj[obj_num].tri[i]->ver[1l]= temp:;
}

/* comparing element[1l] and [2] and sorting
in ascending order */

if(objf{obj_num].tri{i]->ver[1]->axis[sl_axis]}>

5,596,504
173 174

APPENDIX PAGE 67

obj[obj_num].tri[i]->ver{2]->axis({sl_axis])
{

temp = obj[obj_num).tri[i]->ver[1];

obj{obj_num].trifi}->ver[l]=
obj[obj_num).tri[i)->ver[2]:

obj[obj_num).trifi}->ver[2]= temp:

if(obj[obj_num].tri[i]->ver[0])->axis[sl_axis]>
obj[ob)j_num].tri{i]->ver[{1]->axis([sl_axis})

temp =
obj[obj_num].tri[i]->ver[0];
cbj{obj_num]).tri[i]->ver([0]=
objobj_num].tri[i]->ver([1];
obj[obj_numj}.tri[i]->ver(1]= temp;
$

sort_triangles()

{
struct triangle *temp:;
int i,3;

for(i=0; i<max_triangles(obj_num];i++)
for{j=i+l;j<=max_triangles[obj_num];3j++)
{

if(obj[obj_num}.tri[i]->ver[0]}->axis[sl_axis]>
obj[obj num}.tri{j}->ver[0]->axis[sl_axis])

{
temp = obj{obj_num}.tri[i];
obj[obj_num].trif{i)=
obj[obj_num].tri[j]:
cbj[obj_num].tri[jl= temp:;
}

group_triangles ()
{

5,596,504
175 176

APPENDIX PAGE 68

/*"countl" is to assign values first, min etc.
only once foreach
group. count2 gives number of the group.

"first" gives number
of first triangle in the group and "last"

gives the last num.
¥min® gives the minimum value of sl_axis
coord of the first
vertex (which is equal for all
triangles in that group)
'"max" gives the maximum sl_axis

co-ordinate in that group */
int i, countl1=0,count2=0;

group[0] = (struct gr *) malloc(sizeof(struct
gr))i

for(i=0;i<max_triangles[ob]j_num];i++)

if (count1==0)
{
group{count2]->first = 1i;
group[count2}->min =
obj[obj_num].tri{i]->ver[0]->axis[sl_axis];
group[count2j->max =
obj[obj_num].tri(i]->ver[2]}->axis[sl_axis];

if(obj[obj_num].tri[i]->ver[0]->axis[sl_axis] ==

obj{obj_num].tri[i+l]->ver[0]->axis[sl_axis])

if (group[count2]->max<obj[obj_num].tri{i+l]}->ver[2]->a
xis[sl_axis])

group[count2}->max=cbij[cbj_num].trifi+i]}->ver[2]->axis
[sl_axis];
countl = countl + 1;
}
else
{ 3
group{count2}->last = 1;
count2 = count2 + 1;
group{count2] = (struct gr *) malloc(
sizeof(struct gr) }:
countl =0;

total_num_groups = count2;

5,596,504
177 178

APPENDIX PAGE 69

/* check for the last triangle */
if(obj[obj_num).tri{i}->ver[0]->axis{sl_axis] ==
cbj[obj_num).tri{i-1]->ver[0]->axis[sl_axis])
group[count2]->last = i;

else
{
group[count2]}->first = group[count2]->last =
i;
group[count2)->min =
obj[obj_num].tri[i)}=->ver{0}->axis([sl_axis];
group[count2]->max =
obj[obj_num].tri[i]->ver[2]->axis[sl_axis];

/*

for(i=0:i<=total_num_groups:i++)

{

printf ("\ngroup_num=%d first=%d last=%4",
i,group[i)=->first, group{i]->last):

printf("min=%1f max=%1f",
group[i]->min,group{ij->max) ;

}

*/
}

get xyz max_min()
{

int countl, count2,vertex;

/* Initialization of xyz max and min variables */
X_max=obj[0].tri[0]->ver[0]->axis([0];
x_min=obj[0].trif{o]->ver{0}->axis([0];
y_max=obj[0].tri[0]->ver[0]->axis[1];
y_min=obj[0].tri[0]->ver[0]->axis[1];
z_max=ocbj[0].tri[0]->ver[0]->axis[2];
z_min=obj(0]).tri{0)->ver[0]->axis[2];

/*countl is for incrementing obj_num
count2 is for incrementing triangle
number.
vertex is for three vertices of each
triangle */
for (countl1=0:countl<=cbj_num;countl++)

for(count2=0;count2<max_triangles[obj_num];count2++)
for(vertex=0;vertex<3;vertex++)

{

5,596,504
179 180

APPENDIX PAGE 70
if(obj[countl].tri[count2]->ver[vertex]~>axis{0]>x_max

X_max=
obj[countl].tri{count2]->ver|[vertex]->axis{0];

if (obj[countl].trifcount2])->ver[vertex]->axis{0]<x min
x_min=

obj[countl].tri[count2}->ver[vertex]->axis{0]};

if(obj[countl].tri[count2]->ver[vertex}->axis[1]}>y_max

y_max=
obj[countl].tri[count2]->ver[vertex)->axis[1];

if(obj[countl]).tri[count2]->ver{vertex]->axis[1]<y_min
Y_min=

cbj{countl].tri[count2]->ver|[vertex}->axis{1];

if(obj[countl].tri{count2]->ver[vertex]->axis[2]}>z_max

z_max=
obj[countl].tri{count2]->ver{vertex]->axis(2]:

if (obj[countl].tri[count2]->ver[vertex]->axis[2]<z_min

z_min=
obj[countl].tri[count2]->ver[vertex]->axis[2];

)

printf ("\nTOTAL NUMBER OF
FACETS=%d" ,max_triangles[obj_num]);

printf ("\n \nx_min=%1f x_max=%1f \ny_min=%1f
y_max=%1f \n z_min=%1f z_max=%1f", x_min, x_max,
y_min,y_max, z_min,
Z_max})

5,596,504
181 182

APPENDIX PAGE 71

draw_variable_slice()

(
int countl,count2,count3, count4:
printf ("\nOBJECT SUCCESSFULLY SLICED BOTH
UNIFORMLY AND ADAPTIVELY\n\n");
for(count2=0;count2<curr_pln_numl;count2++)

for (count4=0;countd4<=islandsl[count2);
count4++)
¢

for(countl=0;countl<intersecl[count2][count4]:;countl++
)

ql:

HC_Insert Ink(pln{count2].isl{count4).intpts{countl].a
xis[o0],

{

pln[count2].isl[count4].intpts[countl].axis{l],
Pln[count2].isl{count4].intpts[countl].axis[2]);
if(count3==1) {

countl3=0;
goto g2;

if (countl==intersecl{count2]{count4]-1){
count3=1;
countl=0;
goto ql;

}

HC_Restart_Ink():
)

HC_Restart_Ink():

q3:

draw_uniform_slice()
{
int countl,count2,count3, count4d;
for (count2=0;count2<curr_pln_num;count2++)

{
for(count4=Q/2:count4<=islands[count2];
countd++)

5,596,504
183 184

APPENDIX PAGE 72
{

for (count1=0;countl<intersec[count2] [count4];countl++)

{
ql:

HC_Insert_Ink(pln[count2].isl[count4].intpts[countl].a
xis[o0),

Pln[count2].isl(count4].intpts[countl].axis[1],
pln{count2].isl{count4}.intpts[countl).axis[2]):

if (count3==1) ({
count3=0;
goto g2;

}

if (countl==intersec[count2]{count4]-1){
count3=1;
countl=0;
goto gl;

}

g2:
HC_Restart_Ink():

}
q3:

HC_Restart Ink():

}

}
insert_polygon()

{

int countil,count2,vertex;
/* countl is to increment object number
count2 is for incrementing triangle num.
in each object */
for (countl=0;countl<=cbj_num;countl++)

for (count2=0;count2<=max_triangles{countl];count2++)
{

poly[0].x=cbj[countl].tri[count2]->ver{0]->axis{0];
Poly[0).y=obj[countl]}.trifcount2]->ver[0]->axis{1]};

poly[0]}.z=obj[countl].trif{count2]->ver[0]->axis{2];

5,596,504
185 186

APPENRDIX PAGE 73

pPoly[l].x=0bj(countl].trifcount2]->ver[1]->axis[0];
poly[l].y=obj[countl].tri[count2]->ver{l}->axis[1];

poly(l}.z=obj[countl].tri[count2]->ver[1l]}->axis(2];

poly[2].x=obj[countl).tri[count2]}->ver[2]->axis{0];
poly([2]).y=obj[countl].tri{count2]->ver[2]->axis(1];

poly([2].z=obj[countl].tri{count2]->ver([2]->axis[2];

HC Insert_Polygon(3,poly):

set_camera()

{

if(sl_axis==2){
HC_Rotate Object(~90.0,0.0,0.0);

HC_Set Camera_By_Volume("orthographic",x_min~0.5,x _max
+0.5,z_min-0.5,z_max+0.5) ;
/* HC_Orbit_Camera(45.0,45.0) ;*/
}

else(

HC_Set_Camera_By_Volume("orthographic",x_min-0.2,x max
+0.2,y_min-0.2,y_max+0.2);
/*HC_Orbit_Camera(45.0,45.0) %/ }

set_camera_for_iso()
{

if(sl_axis==2)({
HC_Rotate_Object(-90.0,0.0,0.0);

HC_Set_Camera_By_Volume("orthographic",x_min-0.5,x_max
+0.5,2 min-0.5,2_max+0.5) ;
HC_Orbit_cCamera(45.0,45.0);
}

5,596,504
187 188

APPENDIX PAGE 74
elsef
HC_Set_Camera_By_Volume(“orthographic“,x_min-o.z,x_max

+0.2,y_min-0.2,y max+0.2):;
HC_orbit_Camera(45.0,45.0);
}

create_ps_file()
{

HC_Open_Segment("?driver/postscript/pcspline.ps"):
HC_Include_Segment ("?picture");
HC Update_Display():
HC_Close_Segment () :

HC_Delete_Segment ("?driver/postscript/pcspline.ps®):

H

color_setting()
(

HC_Set_Color ("edge= red");

/* BLUE LIGHT */

/* HC_Open_Segment ("blue light"):;
HC_Insert_Distant_Light(1.0,0.0,-1.0):

HC_Set Color("light=red");
HC_Close_Segment () ;

*/
/* GREEN LIGHT */
*
HC_Open_Segment ("green light"):
HC_Insert_Distant_Light(-1.0,0.0,-1.0};
HC_set_color("light=green®);
HC_Close_Segment();
*/

/* INSERTING TWO LINES REPRESENTING X AND Y AXIS
RESPECTIVELY #*/

5,596,504
189 190

APPERDIX PAGE 75

insert_axes()
{

HC_Insert_Line(x_mwin-3.0,y min-3.0,0.0,%_max+5.0,y _min
-3.0,0.0):

HC_Insert_Line(x_min-3.0,y min-3.0,0.0,x_min-3.0,y_max
+5.0,0.0);

insert _text()
(
HC_Set_Line_Weight(1.0):
/* SETS WIDTH OF THE MARGIN TO TWICE THE DEFAULT
WIDTH */
HC Set_Text _Size(.6):
HC_Insert_Text(x_max,y_min-4.0,0.0,%X");
HC_Insert_Text(x_min-4.0,y max,0.0,%Y");
HC_Insert_Text(x_max-5.0,y_max+4.0,0.0,"KAMESH M.

TATA") ;
HC_Insert_Text(x_max~-5.0,y_max-8.0,0.0,"EG 823
#1“) '-
HC_Insert_Text(x_max-5.0,y_max-20.0,0.0,"4 POINT
PC CURVE") ;

get_everything()

{

int ver_num,i,adj_tri, type, count,countl, j,
countl0;

bad=0;

get_new_group():
/* for loop where i is incremented from the first
triangle to the last
triangle of the curr group(The new group
after merging dif.groups)*/

i = new_gr[o]:

do
(
if (num != 0) {
if ((num % DMEM_CONST) == 0 }

5,596,504
191 192

APPENDIX PAGE 76
plnf[curr_pln num].isl[isl_num].intpts = (struct point
*

)
realloc({(char
*)pln[curr_pln_num].isl{isl_num].intpts,
(num+DMEM_CONST) *sizeof (struct

peint))
if
(plnf{curr_pln_num].isl{isl_num]).intpts == NULL) ({
fprintf (stderr,"realloc :
get_everything : out of memory. num= %d\n",num):
exit(0):
}

type= get_intersection_pt(i):
eliminated([bad]=i;
bad = bad+l:

/* type will be 0 or 1 or 2 when
intersection is through a vertex. in
other words type gives vertex num through
which curr_pln is passing
when type=10 intersection is with line passing
through ver0 and verl
and when it is 30 line of intersection is
verl and ver2. when
type = 20 intersection is with line ver2 and
ver0 */

if(type == H type == H type == 2)
(
adj_tri = get_adj_tril(i,type):

}
else if(type == 10 || type==20 || type==30)
{

}

/%
if(abs(i-adj_tri)>50 && adj_tri!= -1) {printf("\ni=%d
adj_tri=%d i-adj_tri=%d countlo=%d",i,adj_tri,
i-adj_tri, countlD); countl0=0;)countl0++;

*/

adj_tri = get_adj_tri2(i,type);

i = adj_tri;
if(adj_tri == -1)

if (bad<tri_in_curr_pln)
{

5,596,504
193 194

APPENDIX PAGE 77

/* going on to a new island */
i=get_tri_on_new_isl();

Pln{curr_pln_num].isl{isl_num].intpts = (struct point
*

)

sizeof (struct point)):
if
(Pln[curr_pln_num].isl[isl_num].intpts == NULL)
fprintf (stderr,“calloc :
get_everything : out of memory. isl_num = %d\n",
isl_num);

calloc(DMEM_CONST,

exit(0);:
}

else break;

J*
{printf ("\nohohoh bad%d tri_in_curr_pln=%d4",bad,
tri_in curr_pln);)

*/
/* in while loop curr_gr lsat -
curr_gr_first gives the number of
triangles (one less) in curr_gr. bad gives the
number of triangles
already eliminated */
}while(bad<= tri_in_curr_pln);

get_tri_on_new_isl()
{
int i,j,k=0,count:;

for(k=0; k<=tri_in_curr_pln:k++)

{
i = new_gr{kj;
for(j=0:j<bad;j++)
{

if(eliminated[j]==1i){
count=1;
break;

}

}

if (count==1) {
count=0;
continue;

5,596,504
195 196

APPENDIX PAGE 78

else

intersec{curr_pln_num][isl_num]=num;
isl_num=isl_num+l;

num=0;
islands[curr_pln_num]=isl_num;
/* printf ("\nisl=%d

i=%a",isl_num,i) ;*/return(i):;

}
}

}

get_plane()

{

printf ("\ncutting plane value="):
scanf ("$1£f", &curr_pln):
curr_pln num = 0;

multi_slicing()
{
int i,3;
double curr_pln_min, curr_pln_max, sl_thick_min;

for(i=0;i<T;i++)

neighbours[i][0)=neighboursfi][1]=neighbours[i}[2] =
-1

get_adaptive_planes();
pln = (struct plane *) calloc(all_slices,
sizeof(struct plane) }:
if (pln == NULL) {
fprintf(stderr,"multi_slicing(): planes :
out of memory.\n"):
exit(0}:
}

printf (" \nNUMBER OF SLICES(varying
thickness)=%d",all_slices):

5,596,504
197 198

APPENDIX PAGE 79

for(i=0;i<all_slices;i++,curr_pln_num++)
{

curr_pln = all_planes[i]:

num=0;

isl_num=0;

islands[curr_pln_num]=0;

for(j3=0;j<R;j++)

(

eliminated{j]=-1;

pln[i].isl[0]).intpts = (struct point
*)calloc(DMEM_CONST, sizeof(struct point)):;
if (pln{i].isl[0].intpts == NULL) {
fprintf(stderr,"multi_slicing(): intpts
: out of memory.\n");
exit(0);:
}

get_everything():

intersec[curr_pln_num]}[isl_num] = num;:
}
curr_pln_numl=curr_pln_num;
isl_numl = isl_num;

for(j=0;j<=curr_pln_num;j++)
islands1([j] = islands[j]:

for(i=0;i<all_slices:i++)
for(j=0;j<=islands[i]:j++)
intersecl(i][j} = intersec(i][j)}:

if(sl_axis==0) (
curr_pln min = »_min;
curr_pln_max = X_max;
}
else
1f(sl_axis==1) {
curr_pln_min = y min;
curr_pln_max = y_max;
}
else
if(sl_axis==2) {
curr_pln min = z_min;
curr_pln _max = z_max;

5,596,504
199 200

APPENDIX PAGE 80

curr_pln num=0;
sl_thick _min = uniform_slice_ thick;

for (curr_pln=curr_pln_min;
curr_pln<curr_pln_max+sl_thick min -0.000001 ;
curr_pln =
curr_pln+sl_thick_min,curr_pln_num++)

{

if (curr_pln>curr_pln_max)curr_pln =
curr_pln_max;

num=0;

isl_num= Q/2;

islands{curr_pln_num}=Q/2;

for(i=0:;i<R;i++)

{

H

eliminated{i}=-1;

pln{curr _pln_num].isl{isl_num].intpts =
(struct point *) calloc(DMEM_CONST,
sizeof(struct point));
if (pln[curr_pln _num].isl[isl_num].intpts ==
NULL) {
fprintf(stderr, "multi_slicing():
uniform : out of memory.\n"):
exit(0);
}

get_everything():
intersec[curr_pln_num][isl_num] = num;

H
printf (" \nNUMBER OF SLICES(uniform
thickness)=%d",curr_pln num-1):

}

get_adaptive_planes()

{
int act_gr,i,j,k, count=0, count2;
double sl_thick, possible_pln;
double curr_pln_min, curr_pln_max;

if(sl_axis==0) {
curr_pln_min
curr_pln_max

x_min;
X_max;

}

else

5,596,504
201 202

APPENDIX PAGE 81

if(sl_axis==1) (
curr_pln_min
curr_pln_max

y_min;
y_max;

}
else
if(sl_axis==2) (
curr_pln_min = z_min;
curr_pln_max =

all_planes[count]=curr_pln_min;
count = count+1l;
act_pln = all_planes[0];

do
{
for(act_gr=0;act_gr<total_num_groups:;
act_gr++)
{
if (act_pln>group{act_gr)]->max)
continue;
if(act_pln >= group[act_gr]->min)
break;

/* act_gr is the group number through or
just above which curr_pln is
passing through */

get_highest_angle_nor(&act_gr):
get_next_slice_thick(&sl_thick);

possible_pln = act_pln + sl_thick;
i = act_gr;
count2=0;

/* to find how many groups the possible
plane crossed from group i */
for(j=act_gr+1;j<total_num_groups;j++)

if (possible_pln<=group[j])->min) break:
)

/* if j-act_gr= 1 possible plane still falls
in group[act_gr). same as
curr_pln. if j-act_gr is 2 possible plane is
in group{act_gr+1] */

5,596,504
203 204

APPENDIX PAGE 82

if((j-act_gr) != 1)
{

if(get_highest_angle_nor(&i)== -1)

i++;
continue;

}
get_next_slice_thick(&sl_thick);

if(act_pln> group[i]->min)

if (possible_pln>act_pln+sl_thick)
{

possible_pln =
act_pln+sl_thick:
i++;
continue;
} else {
i++;
continue;
H
}
if (possible_pln>
group[i]->min+sl_thick)
{
possible_pln =
group([i}->min+sl_thick:
i++;
continue;
!
i++;
lwhile(i<j);

)
act_pln = all_planes{count++] =
possible_pln:
if(all_planes[count-1]-all_planes{count-2] <
min_slice_thick)
act_pln = all_planes[count-1] =

all_planes|[count-2])+min_slice_thick;

/*

5,596,504

205 2006
APPENDIX PAGE 83
printf ("nor=%1f\n count=%d", highest_nor,
count) ;
*/

if(act_pln > curr_pln_max) act_pln =
all_planes{count-1)= curr_pln_max;

}while(act_pln<curr_pln max);

all_slices = count;

get_highest_angle_nor(j)
int *j;
(

double sl_thick:;
int remove=0,1i,k, count;
/* normal that makes the highest angle to the
sl_axis.
highertha angle of normal lower is
slice thickness */
/* possible highest angle is 90 */

ql0:
for(i=group{*j]->first;i<=group[*j]->last;i++)
{
/* there can be some triangles in each group
which may not have an
intersection with the curr_plane. Following
condition eliminates
such triangles.eliminated triangle number is
stored in eliminate[}*/

if(act_pln>obj[obj_num].tri[i]->ver[2]->axis[sl_axis])
{

eliminated[remove]=i;
remove = remove+l:;
continue;

}

/* when the above condition is not true then

there must be an

intersection between curr_pln and curr_tri
(=i). so this triangle

need not be checked further and can be
eliminated after

calculating the intersection point */

)

5,596,504

207 208
APPENDIX PAGE 84
if (remove~1l == group[*j]->last -
group{*j]->first) {
remove=0;

if (++*j>total_num_groups) {
return(-1);
H
else goto ql0;
)

highest_nor =0;

for(i=group[*j]->first; i<= group([*j]->last; i++)
{

for (k=0;k<=remove;k++)

if{eliminated[k] == i) {
count=1;
break;

)

}

if (count==1) {
count=0;
continue;

}

if(obj{obj_num].tri[i)->nor.axis[sl_axis]<0)
obj[obj_num].tri[i]->nor.axis[sl_axis]
= =] *

obj[obj_num].tri{i]->nor.axis[sl_axis]:
/*printf("asin%lf",
asin(obj[obj_num].tri{i}->nor.axis[sl_axis]})):*/

if(asin(obj[obj_num}.tri[i]->nor.axis[sl_axis])>
highest_nor)

highest_nor =
asin(obj(obj_num].tri(i]->nor.axis{sl_axis]):

get_new_group()

{
int i,3,k=0;

for(i=0; i<=total_num_groups; i++)

5,596,504
209 210

APPENDIX PAGE . 85

{

if (curr_pln<group[i)=->min} break;
if(curr_pln >= group[i]->min && curr_pln <
group{ij->max)

for(j=group[i]->first;
j<=group[i]->last;j++)

if (curr_pln<obj(obj_num}.tri[j]->ver[2])->axis[sl_axis]

new_gri{k++} = 3j;

)
} »
tri_in curr_pln = k-1;

/* 1 is the triangle num for which intersection point
is to be cal..#*/

get_intersection_pt (i)

int i;

{

int j, common ver= -1, common_line= -1;

static double x1_old, yl_old, zl_old, x2_old,
Y2_old, z2_old;

double x_new, y_new, z_new, x1, yl, 21, x2, y2,
z22;

static double x_old, y_old, z_old;

/* checking if curr plane is passing through the
vertex j(0,lor 2) of i.
i is nothing but the current triangle */
for(j=0;j<3;:j++)
{

It
]

if(obj[obj_num].tri[i]—>ver[j]->axis{sl_axis]
curr_pln)
{
/* when the above condition is true
curr_pln is passing through
vertex j. cooords of intersection are simply
the coords of vertex j
of triangle i */
Z_new =
pln[curr_pln_num].isl[isl_num].intpts[num].axis[sl_axi
s]=

5,596,504
211 212

APPENDIX PAGE 86

obj[obj_num].tri[i]->ver{j]->axis(sl_axis];

X_new =
pln[curr_pln_numT.isl[isl_num].intpts[num].axis[axl]=

obj[obj_num].tri[i)}->ver[j]l->axis[axl]:

y_new =
pln{curr_pln_num].isl{isl_num].intpts{num].axis(ax2}=

obj[obj _num].tri[i]->ver({j]->axis[ax2];

/* following condition is necessary to
ensure that the new
intersection point is not equal to the earlier
point */
if(x_new == x_old && y_new == y_old &&
zZ_new == z_old)
{
common_ver =j;
continue;

else

¥_old = x_new;
y_old = y_new;
z_old = z_new;
/*printf("\n vertex inter
x_new=3%1lf y new=%1lf z_new=%1f", x new, y_new, z_new):;
*/ num = num +1;
/* every intersection is
identified by a number given by "num".
sequence[num] gives the triangle number for
that intersection. Each
triangle can have only one intersection
sequencefnum] = i;*/
return(j); /* vertex num is
returned */

}
}

/* this part of prog is executed only when
curr_pln does not pass
through any of the vertices of i or passes
through a vertex
which is equal to x_old, y_cld and z_old(in
which case
common_ver=j. when common_ver */

/* to check if the curr_pln is passing through

5,596,504
213 214

APPENDIX PAGE 87
one of the sides of i.»/

if(curr_pln >
obj[obj_num].tri[i}->ver[0]->axis{sl_axis] &&
curr_pln <
obj[obj_num].tri[i]->ver([1]->axis[sl_axis]) j=0:
else
ql:
if(curr_pln >
obj(obj_num].tri[i]->ver{l]->axis[sl_axis] &&
curr_pln <
obj[obj_num].tri[i]->ver(2]->axis([sl_axis]) j=1;:
else
q2:
if(curr_pln >
obj[obj_num}.tri[i}->ver[0]->axis[sl_axis] &&
curr_pln <
obj{obj_num].tri[i]->ver[2]->axis[sl_axis]) j=2;
else
(

return(common_ver) ;

H

if (common_line== -1)

else return(common_line);

/* when above condition is true curr_pln is
passing through line
joining ver0 and verl. else it is passing
through the other
two lines */

/* cal.. of point of intersection */

pln{curr_pln num].isl[isl_num).intpts(num].axis[sl_axi
s}= curr_pln;

/* for the sake of convenience following code is
written. x_new
need not always rpresent x coord of
intersection point. similarly
y and z . similarly x1,yl etc. it is true only
when sl_axis is 2

(ie. z)*/
X1 = obj[obj_num].tri{i]->ver[j}->axis{axl):
Yl = obj[obj_num].tri[i}->ver[j]->axis[ax2]:
2zl = obj(obj_num].tri[i)->ver{j]->axis[sl_axis];

if(j==2) j=-1;
X2 = objlobj_num].tri[i)->ver(j+i]->axis[ax1];

5,596,504

215 216
APPENDIX PAGE 88
y2 = obj{obj_num].tri{i)->ver{j+l]->axis(ax2];

z2 =
obj[obj_num].trif{i}->ver{j+l]->axis({sl_axis];
if(3== -1) 3=2;

if((x1_old == x1 && yl_old == yl && 21 _old == zl

&&

%2_old == X2 && y2_old == y2 && z2_old == 22)
t
(]

(x2_old == x1 && y2_old == yl && z2_old == zl
&&

x1_old == x2 && yl_old == y2 && z1_old ==
z22))

common_line = 10*(j+(j+1));
if(j==0) goto gil:

if(j==1) goto g2:

if(j==2) return(common_line):

else

{
X1l_old = x1:
Yyl _old = yi1;
zl_old = z1;
x2_old = x2;
y2_old = y2;
z2_old = z2;

}

/* X_new, y _new and z_new represent coords of
intersection */

Z_new =
pln{curr_pln num].isl[isl_num].intpts{num].axis{sl_axi
s]=

curr_pln;
X_new =

pln{curr_pln_num].isl[isl_num).intpts[num].axis[ax1]=
X1 + ((2_new - zl) * (x2 - x1) / (22 - 2z1));

y_new =
pinfcurr_pln_num].isl[isl_num].intpts[num].axis[ax2]=
Y1 + ({(z_new - zl1) * (y2 - yl) / (22 - z1)):

*
printf(®\n line inter x_new=%1f y new=%lf z_new=%1f",
X_new, y_new, z_new);
printf("\n sl_axis=%d axl=%d ax2=%d isl=%d", sl_axis,
axl, ax2, isl_num);

5,596,504
217 218

APPERDIX PAGE 89

*/
num = num+l;
/*if intersection is with line ver0 and verl
(0+1)*10 is returned. if
intersection is with verl and ver2 (1+2)*10 is
returned. intersection
with ver2 and ver0 (2+0)#%10. multiplication
with 10 is
necessary form the value returned it will be
easy to identify
type of intersection*/
if(j==2) return(20);
return(10* (j+(j+1))):

/*curr_tri is the triangle for which adjascent
triangle is to be found

out. note that curr_tri is already in the
eliminated list. ver_num is

the number of vertex of curr_tri through which
Plane passes through */
get_adj_tril (curr_tri,ver_num)
int curr tri, ver num:
{

int count,i,j,k=0;

for(k=0; k<3:k++)
if (neighbours{curr_trij[k]!=-1)
{
i=neighbours{curr_trij{k];
for(j=0;j<=bad;j++)
{

if(eliminated[j] == i) ¢
count=1;
break;
)
)
/* when count =1 that triangle need not
be checked for adjascency.
that triangle is already in eliminated list.
so loop continues #*/
if (count==1){
count=0;
continue;

)

/* comparing the three coords of
curr_tri with three coords of each

5,596,504
219 220

APPENDIX PAGE 90

vertex of triangle "i". when there is a match
i® will be one of the
adjascent triangles which share the same
vertex */
for(3=0:j<3;j++)
{

if (obj[obj_num].trifcurr_tri]->ver[ver_ num)->axis(0]

obj{obj_num).tri[i]->ver[jl->axis[0] &&

objlobj_num].tri[curr_tri)->ver[ver_num]->axis[l] ==

obj[obj_num].tri[i]->ver[j]->axis[1l] &&

obj{obj_num].tri[curr_tri]->ver{ver_ num]->axis[2] ==
obj{obj_num}.tri[i)->ver[j]->axis([2])

return(i);

for (k=0; k<=tri_in_curr_pln;k++)
(

i=new_grik];

for (j=0:j<=bad;j++)

if(eliminated(j] == i) {
count=1;
break;

}

/* when count =1 that triangle need not be
checked for adjascency.
that triangle is already in eliminated list.
so loop continues */
if (count==1){
count=0;
continue;

5,596,504
221 222

APPENDIX PAGE 91

/* comparing the three coords of curr_tri
with three coords of each
vertex of triangle "i". when there is a match
"i* will be one of the
adjascent triangles which share the same
vertex */
for(j=0;:;9<3;j++)
{

if(obj[obj_num].tri[curr_tri}->ver[ver_num]->axis[0]}

obj[obj_num].tri[i)->ver[j)->axis[0] &&

obj[obj_num]}.tri{curr_tri)->ver([ver_num]->axis[1l] ==

obj{obj_num}.tri{i]->ver[j]->axis[1l] &&

obj[obj_num].tri[curr_tri]->ver[ver_num]->axis([2] =

obj[obj_num].tri[i)->ver{jl->axis[2]) return(i);
}

return(-1);

/*curr_tri is the triangle for which adjascent
triangle is to be found

out. note that curr_tri is already in the
eliminated list. vers gives

which two vertices which form the line. we have
to find a tri that

shares same line with curr_tri */
get_adj_tri2(curr_tri,vers)
int curr_tri, vers;
{

int count,i,j,k, verl, ver2, match,h,countll=0;

for (k=0:;k<3 ;k++)
if(neighbours[curr_trij[k]!= -1)
{
i = neighbours{curr_tri]l[k]}:

for (h=0;h<bad;h++)
{

5,596,504

223 224
APPENDIX PAGE 92
if(eliminated(h] == i} {
count=1;
break;

}

if (count==1) {
count=0;
continue;

}

if (vers==10)
verl

{
0
ver2 1

.. e

}
else
if(vers==20) {
verl = 2;

ver2 = 0;
}
else
if (vers==30) {
verl = 1;
verz2 = 2;

}
for (3=0;3j<3;3++)
{

if(obj[obj_num].tri[curr_tri]}->ver([verl]->axis{0] ==

obj[obj_num].tri(i)->ver(j]->axis[0] &&

obj[obj_num].trifcurr_tri]->ver[verl]->axis[l] ==

obj[obj_num].trif{i}->ver[j]->axis[1l] &&

obj[obj_num].tri[curr_trij)->ver[verl]->axis[2]
obj{obj_num].tri[i)->ver[j]->axis(2]) {

match=1;
break:;

}
if (match==1)

{
for(j=0:;3<3:3++)

if(obj[obj_num].tri{curr_tri]->ver[ver2)->axis(0] ==

5,596,504
225 226

APPENDIX PAGE 93
obj[obj_numj.tri[i}->ver{jl->axis[0] &&

obj[obj_num}.tri[curr_trij]->ver{ver2]->axis[1l] ==

obj[obj_num).tri[i]->ver{j]->axis[1l] &&

obj{obj_num].tri[curr_tri]->ver[ver2}->axis[2] ==
obj{obj_num).trifi]->ver[jl->axis[2])

match=2;
/* if(successl % 100
==0)printf("S1l=%d", successl++); */
return(i);
}

H

match=0;

for (k=0;:k<=tri_in_curr_pln;k++}
{

i = new_grik]:

for (j=0;:j<bad;j++)

{

if(eliminated(j] == i} {
count=1;
break;

}

/* when count =1 that triangle need not be
checked for adjascency.
that triangle is already in eliminated 1list.
S0 loop continues */
if (count==1) (
count=0;
continue;
H

/* comparing the three coords of curr_ tri
with three coords of each
vertex of triangle "i". when there is a match

5,596,504
227 228

APPENDIX PAGE 94

"i* will be one of the
adjascent triangles which share the same

vertex */

if (vers==10) {
verl = 0
ver2 = 1

-
v
-
’

}
else
if(vers==20){
verl = 2;
ver2 = 0;
}
else
if(vers==30) {
verl = 1;
ver2 = 2;

}

for (j=0;3<3:j++)

if (cbj{ocbj_num].tri[curr_trij->ver[veril->axis{0] ==

obj[obj_num}.tri{ij->ver[j]->axis[0] &&

obj[obj_num].tri{curr_tri}->ver{verlj->axis(1l]

obj{obj_num}.trifi]j->ver[j]l->axis[1l] &&

obj[obj_num].tri{curr_tri]->ver[verl]->axis{2] ==
obj{obj_num}.trif[il->ver{ji->axis{2]) {
match=1;
break:
}
if (match==1)

for(j=0;:3<3;:3++)
{

if (obj[obj_num].tri[curr_tri]->ver{ver2]->axis[0] ==

5,596,504
229 230

APPENDIX PAGE 25

obj{obj_numj.trifi]->ver[j]->axis[0] &&

obj[obj_num].tri{curr_tri)->ver[ver2]->axis[1l] ==

obj[obj_num].tri[i]->ver(j]->axis[l] &&

obj[obj_num].tri[curr_tri)->ver[ver2]->axis[2] ==
obj[obj_num].tri{i]->ver[j]->axis(2])

{

match=2;

for (h=0;h<3;h++)
{

if (neighbours[curr_trij[(h] ==i) break:

if(neighbours[curr_trij[h] == -1)
{

neighbours{curr_tri](h}=i;
break;
}
}
for (h=0:h<3;h++)
{
if(neighbours[i]{h] ==
curr_tri) break;
if(neighbours{i][h] ==
_1)
{

neighbours{i]{h]=curr_tri;
break;
}

}
return(i);

}

match=0;

}
return(-1);

5,596,504
231 232

APPENDIX PAGE 96

/% This program is called "main.c" and assumes that:
BORDER POINTS SHOULD BE IN CW ORDER. PLANE NUMBER
STARTS FROM 1 BUT NOT ZERO. */

#include <stdio.h>
#include <math.h>
#include "seg.h"
#include "file.h"
#include "read_brdrpts.c"
tinclude "user_input.c"
$include "hatch_cal.c"
#$include "new_sli.c"

/%

extern read_brdrpts(), get user_input(),
get_slifile_ptr_details(), do_hatching():
*/

maing()

fpl = fopen("int_pts", "r"};
/* printf("TYPE IN NAME OF FILE TO STORE BOARDER
POINTS & HATCH POINTS"):;

scanf ("%s", file name):

fpz = fopen(file_name, "w");
*/

read_brdrpts();

get_user_input():

get_slifile_ptr_details():

do_hatching() ;
/* print_sli():
*/

write_sli(mysli);
fclose(fpl) ;

/* fclose(fp2):;

*/}

print_sli()

{

SLIVECTORS #*ptr_sli_vector;
int countl = 0;

printf("******************SLI FILE CONTENTS
ii*******“) H

5,596,504

233 234
APPENDIX PAGE 97
printf("\nFile :%s"™, mysli->filenanme);
printf("\nheader :$s¥, mysli~>header) ;
printf("z_value 134",

mysli->layers->layer num);

ptr_sli_vector = mysli->layers->vect_list;
while(ptr_sli_vector != NULL)

printf ("*\nvector_type s%a",
ptr_sli_vector->vector_type):

printf ("\nvector_count : 4",
Ptr_sli_vector->vector_count);

countl = 0;

while(countl<ptr_ sli_vector->vector_count)

{

x2=%d y2=3%4",

printf("\nvect_count=%d x1=%d yl=%d
ptr_sli_vector->vector_count,
ptr_sli_vector->vectors{countl].p[0].X,
ptr_sli_vector->vectors[countl].p[0].y,
ptr_sli_vector->vectors[countl].p(1].X,
ptr_sli_vector->vectors[countl}.p[1].y):

countl++;
}

ptr_sli_vector =
ptr_sli_vector-~>next_vectors:
)
}

235

APPENDIX PAGE

/* This program is called "io.c".

file 1/0

5,596,504

98

is handled here. */

#ifndef lint

static char scesid{] = "@(#)ioc.c

Editor";
#endif

#include

#include
#include
#include
#include

*cides.h"

<fentl.h>
<ctype.h>
<sys/file.h>
<sys/uio.h>

236

1.29 9/12/91 - All

1.29 9/12/91 CIDES

/* #define SLI_ITO /* .sli debugging output? */
/* #define STL_IO /* .stl debugging output? */

/* #define V_IO

#define SWAP4 (%) { \
register char *pl, *p2; \
unsigned long tmp;: \

p1 =

(char *)&x; \

/* .v debugging output? */

tmp = (*((unsigned long *)pl))}; \

p2 =
*pl++
*pl++
*pl++
*pl =
}

((char *)&tmp) + 3; \

= (*p2--); \
= (*p2--); \
= (*p2--); \
(*p2) 7 \

#define SWAP2(x) { \
register char tmp,*pl,*p2; \
pl=(char *)&x; \
p2=pl+l; \
tmp=(*pl); \
*pl=(*p2}: \
*p2=tmp; \

}

#define MKSHORT(x) ((unsigned short) (x[1]<<8 | x[0]))
#define STSHORT(d,s) (d[0]=s&O0Xff: dA[1]=s>>8;)

#define APROX_FACETS 1000

/* forward stuff */
OBJECT *read_binary stl(), *read_ascii_stl();

/* STL file digestion */

5,596,504
237 238

APPENDIX PAGE 99

STLFILE *read_stl(filename)
char *filename:;
{
OBJECT *obijs:
STLFILE *file;
char type buf[513], #*tp;
int stl_£d, bytes;

if((stl_fd = open(filename,O0_RDONLY)) < 0)
return((STLFILE *)NULL):

/* build us a file structure */

if((file = (STLFILE *) malloc(sizeof (STLFILE))) ==
NULL)

return(file);

strcpy(file->filename,filename) ;

file->modified = 0;

file->objs = (OBJECT *)NULL;

file->next_file = (STLFILE *) NULL;

/* attempt to figure out the file type */
type buf[512] = \0’;
bytes=read(stl_fd, type_buf, sizeof (type_buf)):
for(tp=type buf; tp < type_buf+bytes-12 &&
strncasecmp("facet normal”,tp,12);)
tp++;
lseek(stl_fd, (off_t) 0, L_SET);:
if(tp < type_buf+bytes-12)
file->objs=read_ascii_stl{stl_f£d):
else
file->objs=read_binary stl(stl_f£d);
close(stl_fd);
if(file->objs == NULL)
{
free(file);
file = (STLFILE *) NULL;

return(file):
}

OBJECT *read_ascii_stl(stl_£4)
int stl_fd;
{

FILE *stl_fp;

OBJECT *head_obj, *prev_obj, #*obj:
FACET *f ptr, *n_facets;

char line{80], *in;

int i, facets_allocated:

head obj = prev_obj = (OBJECT *) NULL;

if((stl_fp = fdopen(stl_fd,"r")) == NULL)

5,596,504
239 240

APPENDIX PAGE 100

return(NULL) ;

for(;1;prev_obj=obj)

{
/* spin looking for solid keyword */
while(in=fgets(line,sizeof(line),stl_fp))

while(isspace(*in)) in++;
if (strncasecmp(in,"solid ",6) == NULL)
break;
}

/* blow out if we have run out of file */
if(!in) break;

/* make a new object structure to fill in */
if((obj = (OBJECT *) malloc{sizeof (OBJECT))) ==
NULL)
return(obj);
obj->facet_count = 0;
obj->adj = (ADJACENCY *)NULL;
obj->next_obj = (OBJECT *) NULL:

/* maintain the linked list #*/

if(head_obj == (COBJECT *) NULL) head_obj = obj;
if(prev_cbj != (OBJECT *) NULL) prev_obj->next_obj
= obj:

facets_allocated = APROX_FACETS;
obj->facets = f_ptr = (FACET %)
calloc(APROX_FACETS,sizeof (FACET)) :

/* check for memory allocation failure */
if(obj->facets == NULL)
{

$ifdef STL_IO
printf("read_ascii_stl: unable to allocate
memory for %¥d facets.\n",
facets_allocated):
#endif STL_IO
obj~->facet_count = -1;
return(head_obj):

)

/* parse down the info line */
sscanf (in, "solid %[~\n]",cbj->info):

/* spin thru the object until we see endsolid #*/

for(;in=fgets(line,sizeof(line),stl_fp):f_ptr++,0bj->f
acet_count++)

{
if{obj->facet_count >= facets_allocated)

5,596,504
241 242

APPENDIX PAGE 101

facets_allocated += APROX_FACETS:
n_facets = (FACET *) realloc(obj->facets,

facets_allocated*sizeof (FACET)):
/* check for memory allocation failure */
if (n_facets == NULL)

{
#ifdef STL_IO
printf("read ascii_stl: unable to allocate
memory for ¥d facets.\n",
facets_allocated):;
#endif STL_IO
free(obj->facets):
obj->facets = NULL;
obj->facet_count = -1;
return(head_obj);
}

obj->facets = n_facets;
f_ptr = obj->facets + obj->facet_count;
}
while{isspace(*in)) in++;
if (strncasecmp(in,vend solid",8) == NULL)
break;
sscanf (in, "facet normal %e %e
%e",&f_ptr->norm.x,&f_ ptr->norm.y,
&f_ptr->norm.z);
if(!(in=fgets(line,sizeocf(line},stl_£fp)))

break;

while(isspace(*in)) in++;

if (strncasecmp(in, "outer loop",10) != NULL)
break;

for(i=0; i < 3; i++)
fscanf(stl_fp," vertex %e %e
¥e\n®,&f ptr-—>tri.p(i].x,
&f ptr->tri.p[i].y, &f_ptr->tri.p[i].z):
if(!(in=fgets(line,sizeof(line),stl_£p)))
break;
while(isspace(*in)) in++;
if(strncasecmp(in,"endloop",7) != NULL)

break;
if(!(in=fgets(line,sizeof(line),stl_f£p)))
break;
while(isspace(*in}) in++:
if(strncasecmp(in, "endfacet",7) != NULL)
break:;

if(obj->facet_count)
obj->facets=(FACET
*)realloc(obj->facets, obj~>facet_count*sizeof (FACET)) ;
else

5,596,504
243 244

APPENDIX PAGE 102

{
/* ignore zero facets */

$ifdef STL_IO
printf("stripping zero facet count object\n");
#endif STL IO
free (obj->facet_count);
free(obj):;
if(prev_obj)
prev_obj~>next_obj = NULL;
obj = prev_obj:
}

}

fclose(stl_fp):

return(head_obj):
)

OBJECT #*read_binary_stl(stl_f£fd)
int stl_fd;
{
OBJECT *head_obj, *prev_obj, *obj;
FACET *f_ptr;
int i,3;
short foo;
struct bin_stl_hdr hdr:
struct bin_stl_facet facet;
struct iovec iov{2]:

iov[{0].iov_base = (caddr_t) &facet;

iov[0].iov_len = sizeof(facet):

iov[1l].iov_base = (caddr_t) &foo;

iov[1].iov_len = sizeof(foo):

head_obj = prev_obj = (OBJECT *) NULL:

for(;read(stl_fd, &hdr,sizeof(hdr)) == sizeof (hdr):
prev_obj = obj)

(

SWAP4 (hdr. facet_count):;

/* skip objects with no facets */
if (hdr.facet_count == 0)

o
$ifdef STL_IO
printf("stripping zero facet count object\n"):
#endif STL 10
continue;

}

/* allocate a new object and init it properly */
if((obj = (OBJECT *) malloc(sizeof (OBJECT))) ==
NULL)
return(head_obj) :
obj->facet_count = 0;
obj->facets = (FACET *} NULL;

5,596,504
245 246

APPENDIX PAGE 103

obj->adj = (ADJACENCY *)NULL;

obj->next_obj = (OBJECT *) NULL; .

if(head obj == (OBJECT *) NULL) head_obj = obj;

if (prev_obj != (OBJECT *) NULL) prev_obij~>next_obj
= obj:

mencpy (obj->info,hdr.hdr_info,STL_INFO_LEN) ;

obj->facet_count = hdr.facet_count;

obj->facets = f_ptr = (FACET
*)calloc(hdr.facet_count,sizeof (FACET));

/* check for memory allocation failure usually
caused by a bogus file */
if (obj->facets == NULL)

(
#ifdef STL_IO
printf("read_binary_stl: unable to allocate
menmory for %d facets.\n%,
obj->facets);
#endif STL_IO
obj->facet_count = -1;
return(head_obj):
}

#ifdef STL_IO
printf("header info: %s (facets
$d) \n",hdr.hdr_info,hdr.facet_count) ;
printf("solid\n");
#endif STL_IO
for(i=0; i < hdr.facet_count; i++, f_ptr++)
{
/* read facet information */
if(readv(stl_fd,iov,2) == -1)

(
free(cbj->facets):
obj->facet_count = -1;
obj->facets = (FACET #*) NULL:
return(head_cbj) ;
}
/* byte swap the normal */
SWAP4 (facet.norm.x) ;
SWAP4 (facet.norm.y) ;
SWAP4 (facet.norm.z);
memcpy (&f_ptr->norm, &facet.norm,sizeof (VECTOR)) ;
$ifdef STL_IO
printf (" facet normal %f %f
%f\n",facet.norm.x,facet.norm.y,facet.norm.z);
#endif STL_IO

/* byte swap the triangle */
#ifdef STIL_TO
printf(" outer loop\n");

5,596,504
247 248

APPENDIX PAGE 104

#endif STL_IO
‘ for(j=0; j < 3; j++)
{

SWAP4 (facet.tri.p[j].x)

SWAP4 (facet.tri.p[i])-y)

SWAP4 (facet.tri.p{jl.2)
#ifdef STL IO

printf (" vertex %f %f %f\n",

. we we

facet.tri.p[j].x,facet.tri.p[j}.y,facet.tri.p(j].2);
#endif STL_IO

}
$ifdef STL_IO
printf("* end loop\n"):
#endif STL_IO
memcpy (&f_ptr->tri,&facet.tri,sizeof (TRIANGLE)) ;
$ifdef STL_IO
printf(" endfacet\n");
#endif STL IO

)
$ifdef STL_IO

printf ("endsolid\n");
$endif STL_IO

}
return(head_obj);
}

int write_stl(filename, file,ascii)
char *filename;

STLFILE *file:

int ascii;

int stl_fd, ret_code:

if((stl_fd=open(filename,O_CREAT}O_TRUNC|O_WRONLY, 0666
)) < 0)
return(-1):
if(ascii)
ret_code = write_ascii_stl(stl_fd,file->objs):
else
ret_code = write binary_stl(stl_fd, file->objs);
close(stl_f£d):
return(ret_code):;

}

int write_binary_ stl(fd,objs)
int fd4;
OBJECT *obijs;

OBJECT *obj:
FACET *f ptr:

5,596,504
249 250

APPENDIX PAGE 105

H

int i,3:

short zero=0;

struct bin_stl_hdr hdr:
struct bin_stl_facet facet;
struct iovec iov([2];

iov[0].iov_base=(caddr_t) &facet;
iov[0].iov_len=sizeof (facet);
iov[1].iov_base=(caddr t) &zero;
iov{1l].iov_len=sizeof (zero);

for(obj=objs; obj != NULL; obj = obj->next_obj)
{

/* build binary stl header & write it out */
memcpy (hdr.hdr_info,obj->info,STL_INFO_LEN);
hdr. facet_count = obj->facet_count;
SWAP4 (hdr. facet_count);
if(write(fd, &hdr,sizeof (hdr)) != sizeof(hdr))
return(-1);
f_ptr=obj->facets;
for(i=0 ; i < obj->facet_count; i++, f_ptr++)
{
/* build up a facet for disk & write it #*/
memcpy (&facet.norm, &f ptr->norm,sizeof (VECTOR));
SWAP4 (facet.norm.x);
SWAP4 (facet.norm.y);
SWAP4 (facet.norm.z);
mencpy (&facet.tri,&f ptr->tri,sizeof (TRIANGLE)):
for(j=0; j < 3; j++)
{
SWAP4 (facet.tri.p[j].x);:
SWAP4 (facet.tri.p[j].v);
SWAP4 (facet.tri.p[3].z);
}
if(writev(fd,iov,2) == -1)
return(-1):;
}

return(o0);

int write_ascii_stl(fd,objs)
int fd;
OBJECT #*objs;

{

FILE *fp;
OBJECT *obj:
FACET *f ptr;
int i,3j;

if((fp = fdopen(fqd,"w")) == NULL)
return(-1):;

5,596,504
251 252

APPENDIX PAGE 106
for(obj=objs; cbj != NULL; obj = obj->next_obj)

fprintf (fp,"solid %s\n",cbj->info);
f_ptr=obj->facets;
for(i=0; i < obj->facet_count; i++, f_ptr++)

fprintf(fp," facet normal %e %e
$e\n",f_ptr->norm.x,f_ptr->norm.y,

f_ptr->norm.z):

fprintf (fp,” outer loop\n"):;

for(j=0; j < 3; j++)

fprintf (fp," vertex %e %e
ge\n", f_ptr->tri.p{ijl.x,
f ptr->tri.p(jl.y, f_ptr->tri.p[jl.z};
fprintf(fp," endloop\n") ;
fprintf(fp," endfacet\n");:

)
fprintf (fp,"endsolid %s\n",obj->info);

)

fclose (fp):

return(0);
}

/* SLI file digestion */

SLIFILE *read_sli(filename)

char *filename;

{
SLIFILE *sli;
SLILAYER *cur_layer, *prev_layer;
SLIVECTORS *cur_vects, *prev_vects;
char sli_header[512], start_ found=FALSE:;
unsigned short vectors;
int sli_fad,i, len;
struct bin_sli_hdr hdr;
struct bin_sli_vector vector;

NULL;
NULL;

cur_layer
cur_vects

prev_layer
prev_vects

if((sli_fd=open(filename,O_RDONLY)) < 0}

{
#ifdef SLI_IO
printf ("ERROR: could not open .sli file
$s.\n",filename);
#endif
return (NULL) ;
}

if((s1i=(SLIFILE *)malloc(sizeof(SLIFILE))) == NULL)
return (NULL) ;

5,596,504
253 254

APPENDIX PAGE 107

strcpy(sli->filename,filename) ;

sli->max_x = sli->max y = 0:

sli->min x = sli->min_y = ~0;

sli->max_layer = sli->min_layer = sli->total layers
sli->layers = NULL;

sli->next_file = NULL;

/* skip over header info spooge */
do
{

if((len=read(sli_f£fd,sli_header,sizeof(sli_header))) <=
0)

{
#ifdef SLI_IO
printf ("ERROR: could not find data start in file
$s.\n",filename) ;
fendif
free_sli(sli);
return(NULL) ;
)
for(i=0; i < len-4 && !start_found; i++)
if(strncmp(SLI_DATA_ START,sli header+i,6) ==
NULL)
start_found = TRUE;
} while(!start_found);

/* park the file pointer at the right place */
1seek(sli_fd, (off_t)(i-len+6), L_INCR);

while (TRUE)

while((len=read(sli_#fd, &hdr,sizeof(hdr))) ==
sizeof (hdr))
{
/* swap the byte ordering to be the normal way
around */
vectors=MKSHORT (hdr.sli_vectors);
if(hdr.sli_type > 15)

{
#ifdef SLI_IO
printf(" Vector type: %u out of
range\n", hdr.sli_type};
#endif SLI_IO
free_sli(sli);
return(NULL) ;
}
if(hdr.sli_type == layer_start)

{
#ifdef SLI_IO
printf ("START LAYER: %d \n",vectors):

5,596,504
255 256

APPENDIX PAGE 108

#endif SLI_IO
prev_layer = cur_layer:
if((cur_layer=(SLILAYER
*)malloc(sizeof (SLILAYER))) == NULL)

free_sli(sli);
return(NULL) ;
}
cur_layer->layer num = vectors;
cur_layer->vect_list = NULL;
cur_layer->next_layer = NULL;
cur_layer->prev_layer = prev_layer;
if (prev_layer == NULL)
sli->layers = cur_layer:;
else
prev_layer—->next_layer = cur_layer;
prev_vects = cur_vects = NULL;
sli->total_layers++;
continue;
}
else
{
vectors = vectors / 4:
#ifdef SLI_IO
printf (" Vector type: %u
(%¥d)\n*, hdr.sli_type,vectors);
#endif SLI_IO
prev_vects = cur_vects;
cur_vects = (SLIVECTORS *)
malloc({sizeof (SLIVECTORS)) ;
cur_vects->vector_type = hdr.sli_type;
cur_vects->vector_count = vectors;
cur_vects->next_vectors = NULL:
if(prev_vects == NULL)
cur_layer->vect_list = cur_vects;
else
prev_vects->next_vectors = cur_vects;
cur_vects->vectors = (struct bin_sli_vector
*)calloc(vectors,
sizeof (struct bin_sli_vector)):

if (read(sli_fd,cur_vects->vectors,sizeof (struct
bin_sli_vector)*vectors)
!= sizeof(struct bin_sli_vector) * vectors)

{
#$ifdef SLI_IO
printf ("ERROR: reading vector\n");
#endif SLI_IO
free_sli(sli);
return(NULL}) ;
)

for(i=0; i < vectors; i++)

5,596,504
257

APPENDIX PAGE 109

SWAP2 (cur_vects~->vectors[i].p[0}.Xx);
SWAP2 (cur_vects->vectors[i].p[0].y):
SWAP2 (cur_vects->vectors[i].p(1].x);
SWAP2 (cur_vects->vectors[i).p[l].y):
#ifdef SLI_IO
printf(" (%u,%u) -
(%u, $u) \n", cur_vects->vectors[i].p([0]).X,
cur_vects->vectors[i].p[0].Y,
cur_vects->vectors(i}.p[l].x,
cur_vects->vectors[i).p[l].Y):
$endif SLI_IO

if(cur_vects~>vectors(i].p[0]).x < sli->min_x)
sli->min_x=cur_vects->vectors(i].p[0]).x;

if (cur_vects~->vectors[i].p[l].x <
sli->min_x)

sli->min_x=cur_vects->vectors{i].p[1].x;

if (cur_vects->vectors[i].p[0].y <
sli->min_y)

sli->min_y=cur_vects->vectors[i]}.p[0].y;

if (cur_vects->vectors{i}.p[l].y <
sli->min_y)

sli->min_y=cur_vects->vectors[i].p[1].y:

if (cur_vects~>vectors[i].p[0].x >
sli->max_x)

sli->max_x=cur_vects~>vectors[i].p[0].x:

if (cur_vects->vectors[i].p[1].x >
sli->max_x)

sli->max_x=cur_vects->vectors{i].p{l].x;

if(cur_vects->vectors[i].p[0].y >
sli->max_y)

sli->max_y=cur_vects->vectors[i].p[0].y:

if (cur_vects->vectors[i].p[l]).yY >
sli->max_y)

sli->max_y=cur_vects->vectors{i].p[l]).y;

}
: }
if(len != sizeof(hdr))

break;
}

if(cur_layer)

{
#ifdef SLI_IO
printf("SLI file min: (%u,%u) max:
(%u,%u)\n",sli->min_x,sli->min_y,
sli->max_x,sli->max_y);
#endif SLI_IO

sli->max_layer = cur_layer->layer_num;
sli->min_layer = sli->layers->layer_ nunm;

5,596,504
259 260

APPENDIX PAGE 110

}
else

{
$ifdef SLI_IO
printf("SLI file EMPTY\n"):;
#endif SLI_IO

free_sli(sli):
sli = NULL;
}

return(sli):

}

write_sli(sli)

SLIFILE *sli;

{
SLILAYER *layer;
SLIVECTORS *vect;
int sli_fd, i, h_len:
struct bin_sli_hdr bsh:
struct bin_sli_vector *vects:
unsigned short vect_sz:

if((sli_fd=open(sli->filename,
O_WRONLY | O_CREAT}O_TRUNC, 0666)) < 0)

{
$ifdef SLI_IO
printf("write_sli(): could not open
$s.\n",sli->filename) ;
#endif SLI_IO
return(-1}:;
}

/* write header info */
if(write(sli_fd, sli->header,
h_len=strlen(sli->header)) != h_len)

{
#ifdef SLI_IO
printf("write sli(): could not write header.\n"):
jendif SLI_IO
close(sli_fd);
return(-1);
)

if(write(sli_fd,SLI_DATA_START,7) != 7}

{
§ifdef SLI_IO
printf("write_sli(): could not write data start
marker.\n");
gendif SLI_IO
close(sli_fd);

5,596,504
261 262

APPENDIX PAGE 111
return(-1);

}
for(layer=sli->layers; layer;
layer=layer->next_layer)
{
/* write out layer start info %/
bsh.sli type = layer_ start:
STSHORT (bsh.sli_vectors, layer->layer_num) ;
if(write(sli_fd,&bsh,sizecf(bsh)) != sizeof(bsh))

{
#ifdef SLI_IO
printf("write_sli(): could not write layer start
header.\n"):;
#endif SLI_IO
close(sli_f£fqd);
return(-1) ;
}

for(vect=layer->vect_list; vect;
vect=vect->next_vectors)
{
/% write out vector header #*/
bsh.sli_type = vect->vector_type;
vect_sz = vect->vector_count * 4;
STSHORT (bsh.sli_vectors,vect_sz)
if(write(sli_fd,&bsh,sizeof(bsh)) !=
sizeof (bsh))

{
#ifdef SLI_IO
printf("write sli(): could not write vector
header.\n"):;
#endif SLI_I0O
close(sli_f£fd):
return(-1):
}

/* lets do the byte swap again, its just a ...

*/

if((vects = (struct bin_sli_vector #*)
calloc(vect->vector_count,

sizeof(struct bin_sli_vector))) == NULL)

{
$ifdef SLI IO
printf("write_sli(): could not allocate memory
for vectors.\n");
#endif SLI_JO
close(sli_fa);
return(-1):
}
for(i=0; i < vect->vector_count; i++)

STSHORT (((unsigned char *)

5,596,504
263 264

APPENDIX PAGE 112

&vects[i].p[0].X),vect->vectors{i].p[0].x};
STSHORT(((unsigned char ¥)
&vects[i].p[0].y),vect->vectors([i].-p[0].Y):
STSHORT(((unsigned char *)
&vects[i].p[1].x),vect->vectors[i].p[1l].x);
STSHORT (((unsigned char *)
&vects[i).p[1].Y)},vect->vectors[i].p[l].¥);

)

/* write them vectors out */

if(write(sli_fd,vects,vect->vector_count*sizeof(struct
bin_sli_vector))

f= vect->vector_count*sizeof(struct
bin_sli_vector))

(
#ifdef SLI_IO
printf(“write_sli(): could not write
vectors.\n");
#endif SLI_IO
free(vects);
close(sli_fd);
return(-1):
}

/* release that memory */
free(vects) ;
}
)
close(sli_f£fd);
return(0) ;
}

VFILE *read_v{filename)

char *filename:;

{
VFILE *v;
VLAYER *cur_layer, *prev_layer;
VVECTORS *cur_vects, *prev_vects;
char ignore;
int i,v_fd4;
struct v_hdr v_header:

if((v_fd=open(filename,O_RDONLY)) < 0)

{
#ifdef v_I0
printf ("ERROR: could not open .v file
$s.\n", filename) ;
$#endif v_I0
return(NULL) ;
}

5,596,504
265 266

APPENDIX PAGE 113

/* read zero byte at beginning of file %/

if(read(v_fd, &ignore, sizeof(ignore)) !=
sizeof(ignore) || ignore != 0)

{
#ifdef V_IO
printf("ERROR: %s is not a .v file (ignore byte =
%x) .\n",filename, ignore) ;
#endif v_Io0
close(v_£d):
return (NULL) ;
}

/* allocate VFILE structure */
if ((v=(VFILE *)malloc(sizeof(VFILE))) == NULL)

close(v_£fd);
return(NULL) ;

strcpy (v->filename, filename) ;

V->max_x = v->max_y = 0;

v=>min_x = v->min_y = ~0;

v->max_layer = v->min_layer = v->total_layers = 0;
v->layers = NULL;

v->next_file = NULL;

prev_layer = cur_layer = NULL;
while(read(v_fd,&v_header,sizeof(v_header)) ==
sizeof (v_header))
{
SWAP2 (v_header.layer);
SWAP4 (v_header.vectors) ;

if (v_header.vectors == 0)

/* layer start */
#ifdef V_I0

printf("Layer Start: %d File: %d Type: %d\n",
v_header. layer,

v_header.file no,v_header.type);
#endif v_Io

prev_layer = cur_layer;

if ((cur_layer=(VLAYER *)malloc(sizeof (VLAYER)))
== NULL)

{
free_v(v):
close(v_f£f4d);
return(NULL) ;
}

cur_layer->file = v_header.file_no;
cur_layer->layer num = v_header.layer;
cur_layer->vect_list = NULL;
cur_layer->next_layer = NULL;

5,596,504
267 268

APPENDIX PAGE 114

cur_layer->prev_layer = prev_layer;
if (prev_layer == NULL)

v->layers = cur_layer;
else

prev_layer->next_layer = cur_layer;

prev_vects = cur_vects = NULL;
v->total_layers++;

}

else

/* load vector block #*/
#$ifdef V_IO

printf(" Vector Block: 3d File: %d Type: %d
Vectors: %d\n",

v_header.layer,v_header.file_no,v_header.type,v_header
.vectors) ;
#endif V_IO
prev_vects = cur_vects;
cur_vects = (VVECTORS %)
malloc(sizeof (VVECTORS)) ;
cur_vects->vector_type = v_header.type;
cur_vects->vector_count v_header.vectors:;
cur_vects->next_vectors NULL;
if (prev_vects == NULL)
cur_layer->vect_list = cur_vects;
else
prev_vects->next_vectors = cur_vects;
cur_vects->vectors = (struct v_vector
*)calloc(v_header.vectors,
sizeof (struct v_vector)):
if(read(v_fad,cur_vects->vectors,sizeof(struct
v_vector) *v_header.vectors)
!= sizeof (struct v_vector)*v_header.vectors)

(]

{
#ifdef V_I0
printf (YERROR: reading vector\n");
fendif v_I0
free_v(v)i:
close(v_f£fd):;
return(NULL) ;
)
for(i=0; i < v_header.vectors; i++)
{
SWAP2 (cur_vects->vectors{i].p[0].x):
SWAP2 (cur_vects->vectors[i].p[0]).y):
SWAP2 (cur_vects->vectors{i].p{l).x)};
SWAP2 (cur_vects->vectors[i].p{1l]).y}?
#ifdef V_IO
printf(" (%u, %u) -
(%u,%u)\n",cur_vects->vectors[i].p[0].x,
cur_vects->vVectors{i].p[0].Y.,

5,596,504
269 270

APPENDIX PAGE 115

cur_vects->vectors(i}.p[1]).X%,
cur_vects->vectors{i).p{1]).y):
#endif v_Io
if (cur_vects->vectors(i].p[0].x < v->min_x)
v=->min_x=cur_vects->vectors[i].p[0].x;
if({cur_vects->vectors{i].p[l).x < v=->min_x)
v->min_x=cur_vects->vectors[i].p[1].x;
if (cur_vects->vectors{i).p{0].y < v->min_y)
v=>min_y=cur_vects->vectors[1].p[0].y:
if (cur_vects->vectors[i].p[l].y < v->min_y)
v->min_y=cur_vects->vectors{i].p[l].¥y:
if(cur_vects->vectors[i].p[0].x > V->max_x)
v->max_x=cur_vects->vectors[i].p[0].X;
if (cur_vects->vectors{i].p[1l].x > v->max_x)
v=->max_x=cur_vects->vectors[i).p[1].x:
if(cur_vects~>vectors[i].p[0]}.y > v->max_y)
v->max_y=cur_vects->vectors[i}.p[0].y:
if (cur_vects->vectors(i].p{1].y > v->max_y)
v->max_y=cur_vects->vectors[i].p[l].¥y:
}
}
}

/* record min and max layer numbers */
v->max_layer = cur_layer->layer_num;
v->min_layer = v->layers->layer_ num;

close(v_fd);
return(v);
}

/* free up memory associated with an STLFILE */

free_stl(stl)
STLFILE *stl;

{
OBJECT *obj, *nobj;

for(obj=stl->objs; obj; obj = nobj)
nobj = obj->next_obj;
if (obj~>facets)
free(obj->facets) ;
free(obj):

free(stl);
}

/* free up memory associated with an SLIFILE #/

free sli(sli)
SLIFILE *sli;

5,596,504
271 272

APPENDIX PAGE 116

{
SLILAYER #*layer, *nlayer;

SLIVECTORS *vect, *nvect;

for(layer=sli->layers; layer:; layer = nlayer)

nlayer = layer->next_layer;
for (vect=layer->vect_list; vect; vect = nvect)

{
nvect = vect->next_vectors;

if (vect->vectors)
free{vect~->vectors);
free(vect);

}
free(layer);

)
free(sli):
}

/* free up memory associated with an VFILE */

free_v{v)

VFILE #v;

{
VIAYER *layer, *nlayer;
VVECTORS *vect, *nvect;

for (layer=v->layers; layer; layer = nlayer)

nlayer = layer->next_layer;
for(vect=layer->vect_list: vect: vect

{

= nvect)

nvect = vect->next_vectors;
if (vect->vectors)

free(vect->vectors);
free(vect):

)
free(layer) ;

free(v):

5,596,504
273 274

APPENDIX PAGE 117

/* This program is called “cides.h". 1.49 9/12/91 -
contains the definitions for the various sizes,
structures, and such. */

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <sys/types.h>
#include <sys/param.h>

/* #define SGI /* For compiling on SGI machines */
/* booleans */

#define TRUE 1
#define FALSE 0

/* These define the size of the window, and are HOOPS
constants, */

#define MAXX 1
#define MINX -1
fdefine MAXY 1.
#define MINY -1

#define MAX_SEG_LEN 256

#define PI 3.141592654 /* value of pi */
/*
HOOP screen segmentation layout
(-1.0,1.0)
y + (1.0,1.0)
i menu_seqg i
[1
(-1.0,0.7)
! e e ! (1.0,0.7)
! message_seg !
(-1.0,0.6)
i ; = i (1.0,0.6)
| |
| |
{ object_seg : |
I |
| |
| !
] 1
(-1!1)
+ T (1r1)

5,596,504
275 276

APPENDIX PAGE 118 -

/* menu segment window dimensions */
{define MENU_LEFT (-1.0)

$define MENU_RIGHT 1.0

#define MENU_TOP 1.0

#define MENU_BOTTOM 0.7

/* message segment window dimensions */
#define MESSAGE_LEFT (-1.0)

#define MESSAGE_RIGHT 1.0

$define MESSAGE_TOP 0.7

#define MESSAGE_BOTTOM 0.5

/* object segment window dimensions */
#define OBJECT_LEFT (-1.0)

#define OBJECT_RIGHT 0.7

#define OBJECT_TOP 0.5

#define OBJECT_BOTTOM (-1.0)

/* immediate menu segment window dimensions */
fdefine NOW_LEFT 0.7

#define NOW_RIGHT 1.0

#define NOW_TOP 0.5

$define NOW_BOTTOM (-1.0)

/* These are for the horizontal menu windows. */
fdefine MENU1l_IOWER 0.5

fdefine MENUl_STEP 0.25

#define MENU2_IOWER 0.0

#define MENUZ_STEP 0.2

#define MENU3_LOWER (-0.5)

/* These are for the vertical listing menu windows */
fdefine LIST LEFT (~1.0)

#define LIST TOP 0.0

#define LIST_STEP 0.5

fdefine LIST_WIDTH 0.25

#define LIST BOTTOM (-1.0)

#define LIST MAX DISP 16

/* effective origin offsets #*/

tdefine X_ORGOFF 0.1
#define Y_ORGOFF 0.1
fdefine 2_ORGOFF 0.5

/* set up some useful data types */

typedef struct /* 2d vector */
{

unsigned short x,y:
} VECTOR2;

5,596,504
277 278

APPENDIX PAGE 119
typedef struct /* 3d vector */
{

float x,y,z:
} VECTOR:

typedef struct /* a 3d triangle */
{

VECTOR p[3]:
} TRIANGLE;

typedef struct facet /* a 3d facet */

VECTOR norm; /* the facet normal #*/
TRIANGLE tri: /* the triangle facet */
long key: /* key for putzing with
graphics */
} FACET:

typedef struct adj

{
int af3};
} ADJACENCY;

#include "3d_io.h" /* file formats */
/*#include "slice.h" /* mostly int stuff for slicing

speed */

typedef struct obj /* The structure of an SLA cbject
read from a .stl file */

char info{80}; /* ascii info about the object %/

int facet_count; /* number of facets for this
ocbject */

FACET *facets: /* an array of the facets */

ADJACENCY *adj: /* pointer to adjacency

linkings, for checks */

struct obj *next_obj; /* the next object in this
file »/
) OBJECT:

typedef struct stlfl
{

char filename[MAXPATHLEN]; /* the actual path name

*
/

char modified; /* have the contents of objs
been changed */

OBJECT *obijs; /* linked list of
objects in this file %/

struct stlfl *next_file; /* next file in the list

*/

5,596,504
279 230

APPENDIX PAGE 120

}

STLFILE;

/* These next 3 types are important! */

typedef struct slivectors

{

)

enum sli_hdr_types vector_type:;
unsigned int vector_count;
struct bin_sli_vector *vectors;
struct slivectors *next_vectors;
SLIVECTORS;

typedef struct slilayer

{

)

unsigned short layer_num;
SLIVECTORS *vect_list:
struct slilayer #*prev_layer;
struct slilayer *next_layer;
SLILAYER;

typedef struct slifl

{

}

char filename[MAXPATHLEN];

unsigned short max_x, min_x, max_y, min_y;
unsigned short max_layer, nmin_layer, total layers:
unsigned char *header;

SLILAYER *layers;

struct slifl *next_file;

SLIFILE; /% <---- This is what I will pass you !

*/

typedef struct vvectors

{

)

enur sli_hdr_types vector_type:;
unsigned int vector_count;
struct v_vector *vectors;
struct vvectors *next_vectors;
VVECTORS;

typedef struct vlayer

{

}

short file;

unsigned short layer_ num;
VVECTORS *vect_list;
struct vlayer *prev_layer;
struct vlayer *next_layer;
VLAYER;

typedef struct vfl

char filename[MAXPATHLEN]:
unsigned short max_x, min_x, max_y, min_y;

5,596,504
281 282

APPENDIX PAGE 121

unsigned short max_layer, min_layer, total_layers;
VLAYER *layers;
struct vfl *next_file;

} VFILE:;

typedef struct text

int segnum;
char segname[B], descr[30];
float value;

} TEXT;

typedef struct toggle
{

int segnum, choice:

char strings[2][20], segname[8];
} TOGGLE;

/* forward function definitions */
STLFILE *read_stl():

SLIFILE *read_sli():

VFILE #*read_v{():

char **dir_read(), *open_menu();
VECTOR find_normal();

int check_integrity():

/** External Variables *%/
/* head of stl file list */
extern STLFILE #*stl_file head;

/* rooted segment names #*/
extern char *menu_seq, *message seg, *object_seq,
*now_menu_seg, *hilite_seq;

/* root segment expansion */
extern char root_segment[MAX SEG_LEN];

extern char *vector_colors{j: /* list of vector
colors #*/

extern unsigned char quick_draw; /* whether to use
Z-sort for hidden surface */

extern float theta, phi, roll; /* camera angle */

/* macros #*/
#define STREQ(a,b) (!stremp(a,b))
/* compare 2 VECTORS */

#define VCMP(vl, v2) ((vl).x == (v2).X && (V1).y ==
(v2).y && (vl).z == (v2).z)

5,596,504
283 284

APPENDIX PAGE 122

$define VCOMP_EPS(a,b,eps)\
{((a).x-(b).x) < eps && ((b).x—-(a).x) < eps
&&\

A

((a).y-(b).y) < eps && ((b).y-(2a).Y) eps

E&\

A

((a).z-(b).z) < eps && ((b).z-(a).2) eps)
#define VECT2_COMP(a,b,eps)\
{(((int) (a) .x—-({int) (b) .x) < eps &&
{(int) (b) .x-(int) (a) .xX) < eps &&\
((int) (a) .y-{int) (b).y) < eps &&
((int) (b) .y-(int) (a).y) < eps)

/* Copy 1 vector to another. Faster than bcopy. */
#define VCOPY(vl, v2) (\
(v2).x = (v1).%x; \
(v2).y

= (v1}.¥: \
(v2).2 = (

v1l).2; \
}

/* Copy 1 vector to another, with offset. Faster
than bcopy. */
#define VCOPY_OFF(vl1l, v2, off) {\
(v2).x = (Vv1).x; \
(v2).y =
(v2).2 =

(vi).y: \
(vl) .z + off:\

}

/* add 2 vectors together #*/
#define VADD(v, v1, v2) \

{\
(V) .x = (V1).x + (Vv2).x; \
(V).y = (v1).y + (v2).y; \
(Vvi.z = (Vv1).z2 + (Vv2}.2; \

H

/* subtract 2 vectors */
$define VSUB(vr, v1, v2) \

{\
{(vr).x = (V1) .x -~ (v2}.x;\
(vr).y = (v1}.y - (v2).y:\
(vr).z = {vl).z - (v2).2:\

}

/* Yep, you guessed, multiply 2 vectors */
#define VMULT(a,b,c)\
A\
(a).x
(a) .y
(a) .z
}

(b).x * {(c).x;:\
(b).y * (c).y:\
(b).z2 * (c).z:\

nn

5,596,504
285 286

APPENDIX PAGE 123

#define ASSIGN_VECT(vect, x1, y1, zl1)\
{\

vect.x = (float) (x1):\
vect.y = (float) (yl):\
vect.z = (float) (zl):\

#define MATMULT3X1(p, r, tot) \
(\

tot.x = (p).x * r[0]J[0)+ (p).y * r[1][0] +
(p).z * rr2)[o0]:\

tot.y = (p).x * r(0]J[1])+ (p).y * r[1]{1] +
(P).z * r[2][1]:\

tot.z = (p).x * r(0][2]+ (pP).y * r{1][2) +
(p).z2 * ?[2][217\

5,596,504
287 288

APPENDIX PAGE 124

/* This program is called "3d_io.h". 1.4 4/17/91 - 3d
Systems file format descriptions and definitons. */

/*
.STL binary file format:

#1st object
struct bin_stl_hdr
struct bin_stl_facet § facet 1

struct bin_stl_facet # facet
bin_stl_hdr.facet_count
#2nd object
struct bin_stl_hdr
struct bin_stl_facet § facet 1

struct bin_stl_facet § facet
bin_stl hdr.facet_count

[continues until EOF]
*/

#define STL_INFO_LEN 80

struct bin_stl_hdr

(
char hdr_info[STL_INFO_LEN];
unsigned facet_count:;

}i

struct bin_stl_facet

VECTOR norm:;
TRIANGLE tri;
1;:

/*
.SLI binary file format:

Arbitrary length descriptive header terminated by
"\ 001\002\003\004"
#info for first layer
struct bin_sli_hdr (type = layer_start)
struct bin_sli_hdr (type = < any sli_hdr_types
except layer_start >)
struct bin_sli_vector #vector 0

5,596,504
289 290

APPENDIX PAGE 125

struct bin_sli_vector #vector
bin_sli_hdr.vectors
struct bin_sli_hdr (type = < any sli_hdr_types
except layer_start >)
struct bin_sli_vector #vector 0

struct bin sli_vector #vector
bin_sli_hdr.vectors

{continues until struct bin_sli_hdr.type =
layer_start)
#info for second layer
struct bin_sli_hdr (type = layer_start)
struct bin_sli_hdr (type = < any sli_hdr_types
except layer_start >)
struct bin_sli_vector #vector o

struct bin_sli_vector #vector
bin_sli_hdr.vectors
struct bin_sli hdr (type = < any sli_hdr_types
except layer_start >)
struct bin_sli_vector #vector 0

struct bin sli_vector jvector
bin_sli_hdr.vectors

fcontinues until struct bin_sli_hdr.type =
layer_start]}

[continues until EOF]

*/
#define SLI_DATA_START "\001\002\001\002\003\004"

/* Dietmar - These are the important lines !
*****ti**t***t***********/

enum sli_hdr_types
(layer_start,1b,lh,nfub,nfuh,nfuf,nfdb,nfdh,nfdf,fdb,
fdh, £df, fub, fuh, fuf);

struct bin_sli_ hdr
(

5,596,504
291 292

APPENDIX PAGE 126

u_char sli_type;
u_char sli_vectors[2]:
)i

struct bin_sli_vector

VECTOR2 p[2];:
yi

/it******ti**********t************i*******/

/*
.V file format:

0 #first byte of file is zero.

#start of layer 1st
v_hdr # v_hdr.vectors == 0 indicating start of new
layer
#start of vector block 1st
v_hdr # v_hdr.layer != 0
v_vector # vector 1

v_vector # vector v_hdr.vectors
#start of vector block 2nd
v_hdr # v_hdr.layer != 0
v_vector # vector 1

v_vector # vector v_hdr.vectors

#start of layer 2nd
v_hdr # v_hdr.vectors == 0 indicating start of new
layer

iend of file

v_hdr # v_hdr.layer == 0 indicating no more vectors
*/
struct v_hdr
{

char type; /* vector block type #*/

char file_no; /* source file number #*/

unsigned short layer; /* cad z-layer number 2/
unsigned vectors; /* vector count */
}3

#define v_vector bin_sli_ vector

5,596,504
293 294

APPENDIX PAGE 127
/* This program is called "seg.h".

#include <stdioc.h>
#include <math.h>
#include <string.h>
#include <sys/types.h>
#include <sys/param.h>

#include "cides.h"

5,596,504
295 296

APPENDIX PAGE 128
/* This program is called "file.h". */

SLIFILE *mysli;

SLILAYER *curr_layer, *bottom layer ptr;
SLIVECTORS *curr_vect_list, *bottom_vect list ptr:
struct bin_sli_vector *curr vect ptr;

§define P 5000 /#* Limiting the number of cutting
planes to P */
#define Q 200 /* Limiting the number of islands per
plane to Q */
#define R 9000 /* Limiting the number of boarder
points per island per

plane to R */

#define A 5000 /% Limiting the number of hatch lines
per plane */

#define B 500 /* Limiting the number of hatch points
per hatch line per pln */

#define C 50 /* Limiting the number of different
hatch spacings */

$define D 50 /% Limiting the number of hatch angles
per pln %/

#define DMEM_CONST 100
struct peint{short axis{3}:}:

/* with the following 3 structures you can access
say x cocrd of 20th
shortersection poshort of island 4 of cutting
plane 2 by writing
pln[2].is1[4].poshort{20][0] */
/* structure to hold intersection points for each
island */
struct islands {struct point *boarder_pts }:

/* structure to hold number of islands for each
cutting plane */
struct plane (struct islands isl([Q]:; }:;

/* structure to hold number of cutting planes */
struct plane #*pln;

int isl num=0, curr_pln_num=0;
char file_name[20]};
FILE *fpl, *fp2;

short x_resolution, y_resolution, z_resolution;
short z_max, z_min, hatch_heights{50];

5,596,504
297 298

APPENDIX PAGE 129

short total_num_layers=50;
short isls_per pln{P], brdrpts_per pln_per_isl(P][Q]:
short islx max[Q], islx_min{Q), isly_max[Q],
isly_min([Q], plnx_max([P], plnx_min{P],
plny max[P],
plny_min[P), brdr_x[Q][R], brdr_y[Q][R]}:

short angle0_islx_max([P][Q), angleoO_islx min[P][Q],
angleo_isly min[P])[Q], angle0O_isly max[P}[Q]:

short angle0 plnx_max[P],

angleO_plny max({P},angle0_plnx min[P]},angle0_plny_min[
P]:

float curr_hatch_angle, hatch_angle(C][D];:

int hatch_spacing[C], curr_hatch_spacing,
num_of hatch_angles[C], zone_starting height[C],
show_this_pln, numl, num2, num of_zones;

short ii, line_type, prev_line_type,seq_num,
hatch_x[A][B], hatch_y[A], new_hatch y[A][B]}; /*
perhaps hatch_y[] can be replaced by new_hatch _y[][]
*/

short curr_hatch_y:

short max_seq_num, nin_seq num,first_time;

char sli_filename[20]:

short vec_num_per_hatch_y[9000];

int special_hatching:

5,596,504
299 300

APPENDIX PAGE 130
/* This program is called "read brdrpts.c".

/*

#include <stdio.h>
#include <math.h>
#include "seg.h"
#include "kkk.h"

*/

read_brdrpts()

{

short i,j,k, countl=0,earlier_pln_num=-1;
int factor=5000;

double temx, temy, temz, tem_zmax, tem_zmin;

/*
printf ("\nTYPE IN MULTIPLICATION FACTOR") ;
scanf ("%d", &factor):

fscanf(fpl, " %1f %1f", &tem_zmin, &tem_zmax);
z_max = tem_zmax * factor:
z_min = tem_zmin * factor;

pln = (struct plane *) calloc(P, sizeof(struct
plane)):
if (pln == NULL)

fprintf (stderr, "read_boarder_pts(): planes :
out of memory.\n"):

exit(0);

}

for(:feof (fpl)==0;)

fscanf (fpl, "%d %d", &curr_pln num, &isl_num);
if(feof (fpl) !=0)break;

if(earlier pln_num != curr pln_num ||
isls_per pln[curr_pln_num] != isl_num)
{
countl=0;
isls_per_pln{curr_pln_num] = isl_ num;

earlier_pln_num=curr_pln_num;

5,596,504
301 302

APPENDIX PAGE 131

if (countl == 0)
t

pPln{curr pln num].isl{isl_num]).boarder_pts =
(struct point *) calloc(DMEM_CONST,
sizeof (struct point));

if
(plnfcurr_pln_num}.isl{isl_num].boarder_pts == NULL)
(
printf(“"read_boarder_pts(): calloc : out
of memory.\n");
exit(0);
)

if(countl != 0)
if((countl % DMEM_CONST) == 0)
{

pln{curr pln_num].isl[isl_num]).boarder_pts =
{struct point *) realloc((char *)

pln[curr_pln_num].isl(isl_num].boarder_ pts,

(count1+DMEM_CONST)* sizeof (struct point));

if
(pln[curr_pln_num}.isl{isl_num].boarder_pts == NULL)

{
printf{"read_boarder_pts(): realloc : out

of memory.\n");
exit(0);
)

fscanf (fpl, "$1f %1f %1f", &temx, &temy, &temz):

pln[curr_pln _num].isl[isl_num].boarder_pts{countl].axi
s[0] = temx * factor:;

pln(curr_pln_num}.isl{isl_num].boarder pts{countl].axi
s{1l] = temy * factor;

pln[curr_pln_num].isl[isl_num].boarder pts[countl).axi
s[2] = temz * factor;

5,596,504
303 304

APPENDIX PAGE 132

brdrpts_per_pln_per_isl{curr_pln_num][isl_num}=countl

countl++;

total_num_layers = curr_pln_num;

/%
for(i=0;i<=total_num_layers;i++)
for(j=0;j<=isls_per_pln[j]:j++)

for (k=0:Xk<=boarder_pts_per_pln per_isl[i]([]j]ik++)
printf("\n%d %d %d %d %a %d", i,j, k,
pin[i].isl(j}.boarder_pts[k).axis[0],
pln(i].isl{j).boarder_pts{k].axis[1],
pln{i].isl{j].boarder_pts([k].axis[2]):

*/

5,596,504
305 306

APPENDIX PAGE 133

/* This program is called "user_input.c".

/*

f#include <stdio.h>

$include <math.h>

#include "seg.h"

#include "kkk.h"

*/

/* multiplication factor is assumed to be 5000 and
used in this program*/

get_user_input ()

{
int i=0,k=0;
float starting_height, tem_hatch_spacing;

hatch_spacing{0}=1000;
hatch_spacing{l] = 1000;
hatch_spacing[2] = 1000;

hatch_angle{1]{0] = 0;

hatch_angle{1}{1]= 90;
hatch_angle[1]){2] = 45;
hatch_angle{1][3] = 135;

hatch_heights{0] = 200;
hatch_heights{1] = 5000;

x_resolution = 2500;
y_resolution = 2500;

printf ("\nNOTE: UNITS ARE SAME AS THE CAD MODEL");

printf ("\n\nFOR CLEMSON HATCHING STYLE ENTER 1, ELSE
ANY OTHER NUMBER ");
scanf ("%d", &special_hatching);

if(special_hatching == 1)
{

printf ("\nENTER HATCH SPACING FOR BOTTOM AND TOP
MOST LAYERS ");

scanf ("$f", &tem_hatch_spacing):;

hatch_spacing[0] = tem_hatch_spacing * 5000:;

printf ("\nENTER NUMBER OF HATCH ANGLES FOLIOWED BY
THEIR VALUES ");

scanf ("¥d", &num_of_hatch_angles[0]):

while (k<num_of_hatch_angles[0])
scanf ("3f", &hatch_angle[0][k++]):

k=0;
pPrintf ("\nENTER THE NUMBER OF DIFFERENT ZONES (2
HEIGHTS) YOU WOLUD LIKE TO HAVE FOR HATCHING. IF YOU

5,596,504
307 308

APPENDIX PAGE 134

TYPE IN 1 THERE WILL BE ONLY ONE ZONE WHICH INCLUDES
ALL LAYERS OTHER THAN BOTTOM AND TOP LAYERS “):
scanf (*$d", &num_of_zones);

for(i=1: i<=num_of_zones; i++)

{
if (i==1)

printf ("\nENTER HATCH SPACING FOR ZONE 1
WHICH STARTS FROM SECOND LAYER FROM BOTTOM "“);

scanf ("$f*, &tem_hatch_spacing);

hatch_spacing[1] = tem_hatch_spacing * 5000;

printf ("\nENTER NUMBER OF HATCH ANGLES
FOLLOWED BY THEIR VALUES FOR ZONE 1 ");

scanf ("%d", &num_of_hatch_angles[1}]):;

while (k<num_of_hatch_angles[1])
scanf("$f", &hatch_angle[1l][k++]):
k=0;

}
else

{

printf ("\nENTER STARTING Z-HEIGHT FOR ZONE

gd v, i):
printf("\n $(NOTE: Z_MIN AND Z_MAX OF THIS

PART ARE %f and %f . COMPUTE Z_HEIGHT ACCORDINGLY%)

", (float) z_min/5000, {(float) z_max/5000):

scanf ("$f", &starting_height):;

zone_starting_height[i] = starting height *

5000;
printf ("\nENTER HATCH SPACING FOR ZONE %d
u’ i);
scanf ("%f", &tem_hatch_spacing);
hatch_spacing{i] = tem_hatch_spacing *
5000;

printf("\nENTER NUMBER OF HATCH ANGLES
FOLLOWED BY THEIR VALUES FOR ZONE %¥d *, 1i):
scanf ("3d", &num_of_hatch_angles[i]):

while (k<num_of_hatch_angles[i])
scanf("%$f", &hatch_angle[i][k++]):
k=0;

5,596,504
309 310

APPENDIX PAGE 135

}

else

{

printf ("\nENTER HATCH SPACING ");
scanf ("$£f", &tem_hatch_spacing);
hatch_spacing[0)= tem_hatch_spacing * 5000;

printf ("\nENTER NUMBER OF HATCH ANGLES
FOLLOWED BY THEIR VALUES "™);
scanf ("3d", &num_of_hatch_angles{0]):

k=0;
while(k<num_of_hatch_angles[0])
scanf ("%f", &hatch_angle[0][k++]);

/* printf ("\nTYPE NAME OF SLI FILE"):

while(sli_filename[0] == ’\0’)
gets(sli_filename);
*/

strepy(sli_filename, "Clemson.sli%);

5,596,504
311 312

APPENDIX PAGE 136

/* This program is called "hatch_cal.c". */
*
$include <stdio.h>
#$include <math.h>
$include "seg.h"
#include "kkk.h"
*/

do_hatching()

int i=0;

/* curr_pln_num starts from 1 because that is how
int_pts file is written */

for (curr_pln_num=1; curr_pln_num< total num_layers;
curr_pln_num++)

{

if (special_hatching==1)} get_hatching_details():
else

{

numl = 0;
nup2 = 0;
}

get_new_sequence_of_hatch_angles();

get_slilayers_ptr_details():
i=0;

while(i< num_of_hatch_angles[numl])

curr_hatch_angle= hatch_angle[numl][i++];
curr_hatch_spacing = hatch_spacing[num2];
rotate_brdrpts_in_opposite direction():
get_xy_ max_min():
get_hatchpts_for_curr_angle();
put_hatchpts_in_sliformat():

}
put_brdrpts_in_sliformat();
}

5,596,504
313 314

APPENDIX PAGE 137

get_hatching_details()
{

int k:
if(curr_pln_num < 2 || curr_pln _num >=
total_num_layers-l)
{
numl = 0;
num2 = 0;

)

else
{

for(k=1: k<=num_of_zones;k++)
{

if(pln[curr_pln num).isl[0].boarder_pts[0).axis[2]>=
zone_starting_height[k])
{

numl = k;
num2 = k;
}

/* control comes here once for each plane and
sequence of angles gets
changed each timex/
get_new_sequence_of_hatch_angles()

{
short i, k:

/* storing first angle in k */
k = hatch_angle[numl][0];

/* num_of_hatch _angles is 4 if there are 4
angles. not 3. ie.
count is started from 1 not 0 */
for(i=0:; i<num_of_ hatch_angles[numl]-1; i++)
hatch_angle[numl][i] = hatch_angle[numl][i+1]:

5,596,504
315 316

APPENDIX PAGE 138

/* earlier first angle becomes last angle now */
hatch_angle{numl}f[i] = k;

rotate_brdrpts_in_opposite direction()

{
short i;
double sine_theta, cos_theta:;

sin{-curr_hatch_angle*22.0/7.0/180.0);

sine_theta
cos (-curr_hatch_angle*22.0/7.0/180.0};

cos_theta

for(isl_num=0; isl_num<=isls_per_ pln[curr_pln num]:
isl_num++)

for(i=0; i<=

brdrpts_per_pln_per_isl[curr_pln_num][isl_num];i++)
{

/* when angle is 0 it is x hatching. brdrpts need
not be rotated */

if(curr_hatch_angle==0)
brdr_x{isl_num][i] =
pln[curr_pln num].isl{isl num].boarder_pts{i).axis[0];
brdr_y[isl_num][i] =
pln[curr pln num}.isl{isl_num].boarder_pts(i].axis[1];
}

/* when angle is 90 it is y hatching. newx
becomes old y and
newy is -oldx . Now you rotate back by 90 (ie

5,596,504
317 318

APPENDIX PAGE 139
-90) and get hatch points.
then rotate them back*/
else if(curr_hatch_angle==90)
{
brdr_y{isl_num](i] =

-1*(pln{curr_pln_num].isl[isl_num].boarder_pts[i].axis
[0]):

brdr_x{isl_num}[i] =
pln[curr_pln_num).isl[isl_num).boarder_pts(i].axis[1]:
}

/* -—curr_hatch_angle is to rotate back */
else

{

/* applying rotation formula newx =
oldx*cos_theta - oldy*sine_theta */

brdr_x{isl_num][i] = cos_theta *
pln{curr_pln_numj.isl[isl_num].boarder_pts[i].axis[0])

sine_theta *

(pln{curr_pln num].isl[isl_num].boarder pts({i].axis[1}]
):

/* applying rotation formula newy =
oldx*sine_theta + oldy*cos_theta */

brdr_y[isl_num][i] = sine_theta *

(
pln{curr_pln_num].isl{isl_num].boarder pts[i].axis[0])
+
cos_theta *

(pln{curr_pln_num].isl{isl_num].boarder_ pts(i].axis{1]

}

}

/* to get xy max and min of each island after
rotation */

5,596,504
319 320

APPENDIX PAGE 140
get_xy max minf{)

{
short count3;

/* countl is for incrementing pln_num
count2 is for incrementing isl_num
count3 is for incrementing boarder_pts */

/* Initialization of xy max and min variables */

plnx_max{curr_pln_num} = brdr x[0][0
plnx_min{curr_pln_num] = brdr_x[0](
plny max[curr_pln_num] = brdr_ y[0]

0

1
(4]
[
plny min{curr_pln_num] = brdr_ y[O0]

)
0]
[0}:

for(isl_num=0; isl_num<=isls_per_pln(curr_pln_num];
isl_num++)

islx_max[isl_num] = brdr_x[isl_num][0];
islx_min[isl_num] = brdr_x[isl_num][0];
isly max[isl_num]= brdr_y(isl_num][0];
isly min(isl_num] = brdr_y[isl _num][(0]:;

for (count3=0;count3<=brdrpts_per pln per_isl{curr_pln_
num} {isl_num];count3++)
{

if(brdr_x[isl_num}{count3} > islx_max[isl_ num])
islx_max[isl_num] =
brdr_x[isl_num][count3];

if(islx_max[isl_num] > plnx_max[curr_pln_num]}
plnx_max{curr_pln_num] =
islx_max[isl_num};

if (brdr_x[isl_num][count3] < islx_min(isl_num])
islx min[isl_num] =
brdr_x{isl_num][count3]:

if(islx_min[isl_num] < plnx_min{curr_pln_num])}
plnx_min[curr_pln_num) =
islx_min{isl_num];

3,596,504
321 322

APPENDIX PAGE 141

if (brdr_y[isl_num][count3] > isly _max[isl_num})
isly max[isl_num] =
brdr_y{isl_num][count3];

if(isly_max[isl_num] > Plny max{[curr_pln_num])
plny_maxfcurr_pln_num] =
isly_max(isl_num]:

if (brdr_y[isl_num][count3] < isly_min[isl_num])
isly min[isl_num) =
brdr_y[isl_num][count3];

if(isly_min{isl_numj < Plny_min{curr_pln_numj)
plny_minf{curr_pln_num] =
isly min{isl numj:

}

for(isl_num=0; isl_num<=isls_per_pln[curr_pln num);
isl_num++)
{
if(curr_hatch_angle == 0)

angle0_islx_max[curr_pln_num]}[isl num] =

islx_max[isl _num]’;
angle0_islx min{curr_pln num][isl_num] =

islx _min[isl_num];

angleo_isly_max[curr_pln_num][isl_num]
isly_max({isl_num];

angle0_isly min{curr_pln num][isl num]
isly_min{isl num];

angleO_plnx max[curr_pln_num] =
Plnx_max(curr_pln_num]};
angleO_plnx_min{curr_pln num] =
plnx_min[curr_pln numj]:
angle0_plny_max[curr_pln_num] =
Plny_max({curr_pln_num];:
angleo_plny_min[curr_pln_num] =
plny_min[curr_pln_num];
}

}

/*
for{isl_num=0; isl_num<=isls_per pln[curr_pln_num];

isl_num++)

pPrintf ("\npin=%d isl=%d angle=%fix mx=%d ix_min=%d
iy_max=%d iy min=%4", curr_pln_num,
isl_num,curr_hatch_angle,

5,596,504
323 324

APPENDIX PAGE 142

islx max[isl_num],islx_min[isl_num]},
isly_max{isl_num},isly minf{isl_num]);
*/
}

/* to calculate hatch points for one angle for
all the islands in a pln#*/

get_hatchpts_for_curr_angle()
{

int i,j, tem_x:

unsigned short total_hatch_ys;

get_num_of hatch_ys_for_ curr pln(&total_hatch_ys);

/* initialization of hatch_x[][] and
new_hatch_y{]{] to -111. this
bad programming practice of initializing
should be eliminatedx/
for(i=0;i<= total_hatch_ys;i++)
hatch_x{i][0] = ~-111:

/* initialization of hatch_y[] to -111 #*/
for(i=0; i<=total_hatch_ys; i++)
hatch_y[i] = -111;

/* initialization of hatch_x{][] and
new_hatch_y[][] to =111 */
/* for(i=0;i<=Aa;i++)
for(j=0;j<=B;j++)
hatch_x[i][j] = =-111;
*/

/* initialization of hatch_y[] to -111 */
/% for(i=0; i<A; i++)
hatch_y[i] = -111;
*/
for(isl_num=0: isl_num<=isls_per_ pln[curr_pln_num]);
isl_num++)
{

/* last line connects fist point and last point
of the contour
as it takes more time to write this condition
in the
program one first point is again written next

5,596,504
325 326

APPENDIX PAGE 143
to the last point */

brdr_x[isl_num][brdrpts_per_pln_per_isl[curr_pln_num][
is)_num]+1]=
brdr x[isl_num][0]:

brdr_y[isl_nun][brdrpts_per_pln_per_isl{curr_pln_num][
isl_num]+13y=
brdr y[isl_num])[0}:

get_seq_num_and_hatch_y();

/* ii is the glogal variable to count brdrpts #*/

for(ii=0; .
ii<=brdrpts_per_p1n_per_isl[curr_pln_num][isl_num]:1i+
+)

{

/* this function returns -1 when ii and ii+1
points are identical */
if(get_upper_or_lower_or_parallel() == -1}
continue;
chk_for_possible_intersection():
}

}

/*
if(curr_hatch_angle!:0.0)rotate_again_to_get_hatch_pts
():

*/

/* when angle is 0.0 no rotation is necessary */

rotate again_to_get_hatch_pts():

/* by keeping this draw function here you can
draw hatch lines
for different angles without storing them in
different arrays.
in a2 way you are using HOOPS memory ?? */

/* this function is to get number of hatch ys
for current plane */
get_num_of hatch_ys_for_curr_pln(total_hatch_ys)

unsigned short *total_hatch_ys;
¢

int distance;
static short earlier_hatch_ys;

327

APPENDIX PAGE

5,596,504
328

144

distance = plny max[curr_pln_num] -

plny_min[curr_pln_num];

*total_hatch_ys = distance /

curr_hatch_spacing;

if(earlier hatch_ys > *total_hatch_ys)
*total_hatch_ys =

earlier_hatch_ys;

island.

else
earlier hatch_ys = #*total_hatch_ys:

/* this function used only once for each

to find nearest
hatch line and its seq_num wrt to the first

brdr line ii=0, ii=1%/
get_seq num_and_hatch_y()

int distance, mod;

line .
zero

seq num = 0;

/* to get the y value of the bottom most hatch
when mod is

it will through plane y minimum. else it

will be slightly above

*/

mod =

abs(plny_min[curr_pln_num])3curr_hatch_spacing:

/* hatch_y(0)] will be equal to plane y min or

slightly more. */

hatch_y(0] = plny_min[curr_pln_num] + mod;

if(brdr_y[isl_num]}[0] ==

plny_min[curr_pln_num]

{ Il brdr_y[isl_num][0] <= hatch_y[0])

seq_num = 0;
curr_hatch_y = hatch_y[0]:

else
{

/* distance is calculated from hatch_y[0] ¢

obtained above) and

5,596,504
329 330

APPENDIX PAGE 145

to brdr_y[0] and it should be always
positive.. hatch_y(0] will hever be more
than brdr_y[isl_num][0] bec. of <= used above#/

distance = brdr_y(isl_num}[0}- hatch_y(0};
mod = distance % curr_hatch_spacing;

/* seq_num is the hatch line number. Its count
starts from 0 %/
seq_num = (distance - mod) /
curr_hatch_spacing ;

/* finding the nearest hatch line to ii=0,
ii=1 brdr line. Its
seq_nul is found above #*/

hatch_y[seq_num] = brdr_y([isl_num][0]
- mod;
curr_hatch_y = hatch_y[seq num]:

/* it is necessary to initialize hatch_x[][] to
=111 to break for loops
later in the program. here == 0 indicates
that there are no values in them that belong
to earlier islands. also ==0 condition will
work only when there is no x coordinate
which is zero. this should
be true bec. minimum x always 0.1%/
if(hatch_x[seq num][0] == 0)
hatch_x[seq num][0} = -111;
if (hatch_x[seq num+1][{0] == 0)
hatch_x([seq num][0] = -111;
if(seq num > 0 && hatch_x[seq_num-1][0] == 0)

hatch_x[seq_num-1][0]= -111;
}

/* this function used only once for each island.
to find nearest
hatch line and its seq num wrt to the first
brdr line ii=0, ii=1%/
old_get_seq_num_and_hatch_y()
{

5,596,504
331 332

APPENDIX PAGE 146
int distance, mod;

/* distance is to be positive always */
distance = brdr_y[isl_num][0] -
plny_min[curr_pln num}:

mod = distance % curr_hatch_spacing:

/* seq_num is the hatch line number. Its count
starts from 0 */
seq_num = (distance ~ mod) /
curr_hatch_spacing -1:;

/* finding the nearest hatch line to ii=0, ii=1
brdr line. Its
seq_hum is found above #/
hatch_y([seq num] = plny min{curr_pln num]+
(seq_num + 1) *
curr_hatch_spacing;
curr_hatch_y = hatch_y({seq num];

get_upper_or_lower_ or_parallel()

/* line_type 1 upper bound, 2 lower bound, 3
parallel */
prev_line_type = line_type;
/* previous line for the first line is last line
of the contour.
so when ii=0 prev_line_type should be obtained
from the
last line */
if(ii==0)
{
/* see difficulty in writing last point of
contour */

if(brdr_y[isl_num][brdrpts_per_pln_per_isl[curr_pln_nu
m}[isl_num]} <
brdr_y[isl_num][ii])) prev_line_type=1;
else
if(brdr_y{isl_num][brdrpts_per_pln_per_isl[curr_pln_nu
m][isl_num]] >
brdr_y{isl_num]{ii]) prev_line_ type=2;
else prev_line_type=3;

H

/* when the boarder line is upper bound this

5,596,504
333 334

APPERDIX PAGE 147

condition is true #*/ .
if(brdar_y[isl_num][ii] < brdr_y([isl_num)[ii+1])
return(line_type = 1);

/* when the boarder line is lower bound this
condition is true */

if(brdr_y[isl_num][ii] > brdr_y[isl_numj]{ii+1])
return(line_type = 2);

/* control comes here when brdr_y{]1{ii] =
brdr_y[][ii+1] which is
the condition for a parallel line. but then if
X cords are also
equal it is no line at all. then both the
points are identical
and one point is redundant#/
if(brdr x[isl_num][ii] == brdr_x[isl_num}[ii+1])
return(-1):;

/* control reaches here only when x coords are
not equal but y coords
are equal */
return(line_type = 3);

chk_for_possible_intersection()
{

/* parallel lines are parallel to x axis.*/

if(line_type ==1)all_upper bound_lines();

else if(line_type ==2)all_lower_bound_lines();
else if(line_type ==3)all_parallel_ lines();

else printf("ARE YOU CRAZY? CHK line_type. IT CAN
BE 1,2 OR 3 ONLY"):;

}

/* puts x points in ascending order for each

hatch line. this

also gives max and min seg _num. note that
minimum seq_num need

not be zero and seg_num need not be
continuous. ie it need not

be 3,4,5,6 etc. it can be 3,4,8,9.
discontinuity can be there

5,596,504
335 336

APPENDIX PAGE 148

when hatching multiple islands */
put_hatch_x in order(tem_x)
int tem_x;
{
int value=0, j, k1, k2:
static int first;

for(j=0; hatch_x([seq_num}{j] != =-111; j++)
if(hatch_x[seq num][j] < tem_x)
{

value = 1;
continue;
}

else
{
if(value !=2)
{
value = 2;
k1 = hatch_x[seq_num][j];
hatch_x[seq num}{j] = tem_ x;
}

k2 = hatch_x{seq_num][j+1];
hatch_x[seq_num][j+1] = k1;
k1l = kx2;

)
if(value !=2) hatch_x[seq numj{j] = tem_x;

/* to find max_seq_num and min_seq num */
if(firsti=-1)
{
max_seq_num = seq_num;
min_seq num = seg_num;
first = -1;
}

if(max_seq num < seq num) max_seq num = seqg_num;
if (min_seq num > seq num) min_seq num = seq num;

/* to avoid initialization of hatch_x{][)
everytime following code
is written. hatch_x[][j+1] is initialized as a
precaution. ==0

condition will work only when x min of
object is >0 */

5,596,504
337 338

APPENDIX PAGE 149

if (hatch_x[max_seq_num+1}==0)
hatch_x[max_seq num+1][0]) = -111;

if(min_seq num > 0 &&
hatch_x[min_seq num-1}[0]}==0)

hatch_x[min_seq num-1}[{0] = ~-111;
hatch_x[seq_num][j+1] = -111;
hatch_x{seq num][j+2] = -111;
/*

for(j=0; hatch_x[seq_num][j]!=-111;j++)
printf("seg=%d x=%4a", seg_numn,
hatch_x[seq num}([3j]):
printf("max_seq=%d min_seqg=%d", max_seq_num,
nin_seq num);
*

}

all_upper_bound_lines()
{

int tem_x;

/* when hatch line passes through bottom point of
upward bound line #*/
if (curr_hatch y == brdr_y[isl_num])[ii}])
{
if(upper_chk_validity_of_intersection()== 2)
{

tem_x = brdr_x[isl_num]fii]:
put_hatch_x_in_order(tem_x);

/* printf("\nilisl_num=%d ii=%d ii+l1=%d seq_num=%d
curr_hatch_y=%d hatch_x=%d",isl_num, ii, ii+1,
seq_num, curr_hatch y, tem_x):

*/

/* whether the above condition is true or not
while loop is executed.
Note simple formula used to get x co-ord#*/

while(upper_chk_for_another_intersection(1)==
2)

5,596,504
339 340

APPENDIX PAGE 150

tem_x =
(curr_hatch_y - brdr_y[isl_num](ii]}*
(brdr_x[isl_num][ii+1] -
brdar_x[isl_num]{ii})/
(brdr_y[isl_num}[ii+l] -
brdr_y[isl_num][ii]) +
brdr_x[isl_num][ii]s

put_hatch_x_in_order{tem_x):
/* printf("™\n22isl_num=%d ii=%d ii+1=%d seq num=%d
curr_hatch_y=%d hatch_ x=%d",isl_num, ii, ii+i,
seq_num, curr_hatch y, tem_x):
*/)

return;

/* when curr_hatch_y is below the current contour
line */

if(curr_hatch_y < brdr_y[isl_num][ii})

{

/* ASSUPTION IS ONE ADDITION IS ENOUGH TO REACH
ii ii+1 LINE. OK?? */
/* add one hatch spacing to current position.
then it may 1. equal
y[ii] or 2. be in the middle of y[ii and
y[ii+1] 3. equal y[ii+1]
4. or go above the line. Cases 3 and 4 will
not result in an
intersection */

/* casel: when hatch line equals y[ii] after
addition*/

if (curr_hatch_y + curr_hatch spacing ==
brdr_y[isl_num][ii])

{

if (upper_chk_validity_of_intersection() == 2)
{
seq num = seqg num + 1;
curr_hatch_y = curr_hatch_y +
curr_hatch_spacing;
hatch_y[seq_num] = curr_hatch_y;
tem_x = brdr_x([isl_num][ii]:
put_hatch_x_in_order (tem_x);

/* printf ("\n33isl_num=%d ii=%d ii+1=%d seq_num=%d
curr_hatch_y=%d hatch_x=%d",isl_num, ii, ii+1,

5,596,504
341 342

APPENDIX PAGE 151

seq_num, curr_hatch_y, tem_x}:
*/

}

)
/*while loop is to chk for other
intersections with same linex/

while(upper_chk_for another intersection(l)== 2)
{
tem x =
(curr_hatch_y - brdr_y([isl_num][ii])*

(brdr_x[isl num][ii+1) -

brdr_x{isl_num][ii])/
(brdr_y[isl_numj{ii+1] -

brdr y[isl num][ii]) +

brdr_x[isl_numj(ii]:

put_hatch_x_ in_order(tem x):;

/* printf("\n44isl num=%d ii=%d ii+1=%d
seq_nun=3%d curr_hatch_y=%d hatch_x=%d",isl num, ii,
ii+l, seq_num, curr_hatch_y, tem_x):

*

}

return;

/* when hatch line passes through top point of
upward bound line */
if(curr hatch y == brdr_y[isl_num][ii+1])

/* no intersection is recorded when hatch line

equals top point.
while loop checks for another intersection */

while (upper_chk_for_another_intersection(-1)==
2)
(
tem_x =
(curr_hatch_y - brdr_y[isl num][ii])*
(brdr_x[isl_num][ii+1] -
brdr x[isl_num}fii})/
{brdr_y[isl_num){ii+1] -
brdr_y({isl_num][ii]) +
brdr_x[isl_num][ii]);:
put_hatch_x_in_order(tem x):

5,596,504
343 34

APPENDIX PAGE 152

/* printf("\n55isl_num=%d ii=%d ii+l=3%d
seq_num=%d curr_hatch_y=%d hatch_x=%4d",isl_num, ii,
ii+l, seq_num, curr_hatch_y, tem_x):

*/ }
return;

/* when curr_hatch_y is above the current contour
line */

if(curr_hatch_ y > brdr_y{isl_num][ii+l1])

(
/* ASSUPTION IS ONE SUBTRACTION IS ENOUGH TO
REACH ii, ii+1 LINE. OK??%/

/* subtract one hatch spacing from current
position. then it may 1l.egual
y[ii+1] or 2. be in the middle of y{ii and
y[ii+1]) 3. equal y{[ii)
4. or go below the line. Cases 1 and 4 will
not result in an
intersection */

/* casel: when hatch line equals y[ii+l1] after
addition*/

if(curr_hatch_y - curr_hatch_spacing ==
brdr_y(isl_num][ii+1})

{

/* no intersection is recorded. only seq_num
etc ate updated */

seq_num = seq nhum - 1;
curr_hatch_y = curr_hatch_ y -
curr_hatch_spacing;
hatch_y[seq num] = curr_hatch_y:

/*while loop is to chk for other
intersections with same linex/

while(upper_chk_for_another_intersection(-1)== 2)

tem_x =
(curr_hatch_y - brdr_y{isl_num][ii])*
(brdr_x[isl_num][ii+1] -
brdr x[isl_num}{iil)/
(brdr_y[isl_num)[ii+1] -
brdr_y([isl_num][ii}) +

5,596,504
345 346

APPENDIX PAGE 153

brdr_x{isl_num][ii]:
put_hatch_x_in_order({tem_ x);

/% printf(¥\n66isl_num=%d ii=%d ii+1=%d ..
seq_num=%d curr_hatch_y=%d hatch_x=%d",6isl_num, ii,
ii+1, seq _num, curr_hatch_y, tem_x):;

*/ }

return;

/* when current hatch line is in the middle of
current contour line */
if(curr_hatch_y> brdr_y[isl _num){ii] && curr_hatch_y
< brdr_y[isl_num][ii+1))

/* ASSUMPTION IS THERE ARE NO INTERSECTIONS
TOWARDS ii POINT */

tem_x =
(curr_hatch_y - brdr_y[isl_num][ii])=*

(brdr_x(isl_num)(ii+1] =-

brar_x[isl_num][ii])/

(brdr_y[isl_num]{ii+1] -

brdr_y{isl_num][ii]) +

brdr_x[isl_num]){ii};:
put_hatch_x_in order(tem_x);

/* printf("\n77isl_num=%d ii=%d ii+1=%d seg_num=%d
curr_hatch_y=%d hatch_x=%d",isl num, ii, ii+1,
seq_num, curr_hatch y, tem_x);

*/

/*while loop is to chk for other intersections
with same line*/

while(upper_chk_for_another_intersection(l)== 2)

tem_x =
(curr_hatch_y - brdr_y(isl _num]{ii])=*
(brdr_x[isl_num]}[ii+1] -
brdr_x(isl_num)[ii])/
(brdr_y[isl_num][ii+1] -
brdr_y[isl numj(ii}) +
brdr_x[isl_num][ii];

5,596,504
347 348

APPENDIX PAGE 154
put_hatch_x_in_order(tem_x);

/* printf(*\n88isl num=%d ii=%d ii+1=%d seq num=%d
curr_hatch_y=%d hatch_x=%d",isl _num, ii, ii+l,
seq_num, curr_hatch y, tem x);

*/ }

return;
}

pPrintf("IT APPEARS THAT SOMETHING WENT WRONG WITH
UPPER BOUND LINE i=%d i+1=%d", ii, ii+1);

}

/* control come to this function only when hatch
line passes through
bottom point of an upward bound line */

upper_chk_validity of_intersection()
{

/* when hatch line passes through bottom point of
ii, ii+1 line and
the previous line is lower bound then that
intersection is invalid */
if (prev_line_type==2) return(-1):;

/* when hatch line passes through bottom point of
ii, ii+1 line and
the previous line is upper bound then that
intersection is valid */
if(prev_line_type == 1) return(2):

/%* control comes here onlr if previous line is
parallel */
if(ii !1=0)

/* when hatch line passes through bottom point of
ii, ii+1 line and
the previous line is parallel brdr_x[ii-1]
should be < brdr x(isl_num]}{ii]*/
if(brdr_x[isl_num]}[ii-1] < brdr_x[isl_num]}[ii])
return(2);

}
else if(ii == 0)

5,596,504
349 350

APPENDIX PAGE 155

{
/* see the difficulty in getting the last
point of island */

if (brdr_x[isl_num][brdrpts_per pln_per_ isl{curr_pln_nu
m){isl_num}) <
brdr_x{isl_num][ii])
return(2);

/* control comes here when hatch line is on the
current contour line */

upper_chk_for_ another_ intersection(j)

int j;
{
/* when j=1 intersections are checked from top to
bottom of
the current upper bound line */
if(j==1)

{

/* add one hatch spacing to current position.
then it may
1. be in the middle of y[ii and y[ii+1] 2.
equal y{ii+1]
3. or go above the line. Cases 2 and 3 will
not result in an
intersection #/

/* case 1 */

if(curr_hatch_y + curr_hatch_spacing <
brdr_y[isl_num)[ii+1])

{

seq_num = seq_num + 1:
curr_hatch_y = curr_hatch_y +
curr_hatch_spacing:;
hatch_y[seq_num] = curr_hatch_y;
return(2):

}

/* when j=-1 intersections are checked from
bottom to top of
the current upper bound line */

5,596,504
351 352

APPENDIX PAGE 156

else if(j== -1)

/* subtract one hatch spacing from current
position. then it may
1. be in the middle of y[ii and y[ii+l1] 2. or
equal y[ii)
3. or go below the line. Case 3 will not
result in an
intersection */

/% case 1 */

if(curr_hatch_y - curr_hatch_spacing >
brdr_y(isl_num]{ii])

{

seq num = seq_num - 1;
curr_hatch_y = curr_hatch_y -
curr_hatch_spacing;
hatch_y[seq_num)} = curr_hatch_y:
return(2);

/* case 2 */

if(curr_hatch_y ~ curr_hatch_spacing ==
brdr_y[isl_num]}[ii])

{

if (upper_chk_validity of_intersection()==2)

seq hum = seq _num - 1;
curr_hatch_y = curr_hatch_y =
curr_hatch_spacing;
hatch_y[seq num] = curr_hatch_y:
return(2);

5,596,504
353 354

APPENDIX PAGE 157

all_lower_ bound_lines()
{

int tem_x:

/* when hatch line passes through top point
(ii)of lower bound line */

if (curr_hatch_y == brdr_ y[isl_num](ii})

if(lower_chk validity_of intersection()== 2)
{
tem_x = brdr_x[isl_num][ii];
put_hatch_x_in_order(tem_x);

/* printf ("\n99isl_num=3%d ii=%d ii+1=%d seq_num=%d
curr_hatch_y=%d hatch_x=%d",isl_num, ii, ii+1,
seg_num, curr_hatch_y, tem_x):
*/

}

/* whether the above condition is true or not
while loop is executed.
Note simple formula used to get x co-ord*/

while(lower_chk_for another_intersection(~1l)==
2)
{
tem_x =
(curr_hatch_y - brdr_y{isl_numj[ii])*
(brdr_x{isl num}[ii+1] -
brdr_x(isl_num]{iij}}/
(brdr_y[isl num][ii+1] -
brdr_y[isl_num][ii]) +
brdr_x[isl _num][ii]:
put_hatch_x_in_order(tem_x):

/* printf(“\nl010isl num=%d ii=%d ii+1=%d seq_num=%d
curr_hatch_y=%d hatch_x=%d",isl_num, ii, ii+1,
seq_num, curr_hatch_y, tem_x);

*/ }

return;

/* when curr_hatch_y is above the current lower
bound line */
if{curr_hatch_y > brdr_y[isl_num]{ii})

5,596,504
355 356

APPENDIX PAGE 158

{

/* ASSUPTION IS ONE SUBTRACTION IS ENOUGH TO
REACH ii ii+1 LINE. OK?? */
/* subtract one hatch spacing to current
position. then it may 1. egqual
y[ii) or 2. be in the middle of y[ii and
y{ii+1] 3. equal y[ii+1]
4. or go above the line. Cases 3 and 4 will
not result in an
intersection */

/* casel: when hatch line equals y[ii] after
subtraction*/

if (curr_hatch_y - curr_hatch_spacing ==
brdr_y{isl_num][ii})

t

if(lower_ chk_validity_of_intersection(l) ==
2)
{
seq_num = seq num - 1;
curr_hatch_y = curr_hatch_y -
curr_hatch_spacing;
hatch_y[seq num] = curr_hatch y:
tem_x = brdr_x[isl_num][ii];

put_hatch_x_in_order(tem_x);

/* printf("\n1111isl_nun=%4d ii=%d ii+1=%d seq_num=3%d
curr_hatch_y=%d hatch_x=%d",isl_num, ii, ii+1,
seq_num, curr_hatch_y, tem x):

*/

}

/*while loop is to chk for other
intersections with same line*/

while(lower chk_for_another_ intersection(-1)== 2)
{
tem_x =
(curr_hatch_y - brdr_y[isl_num][ii])*
(brdr_x{isl_num}[ii+1] -
brdr_x[isl_num][ii])/
(brdr_y[isl num][ii+1] -
brdr_y[isl_num][ii]) +
brdr_x{isl_numj[ii}:
put_hatch_x_in order(tem_x);

/* printf("\nl212isl_num=%d ii=%d ii+1=%4d seq_num=%d
curr_hatch_y=%d hatch x=%d",isl_num, ii, ii+1,

5,596,504
357 358

APPENDIX PAGE 159

seq_num, curr_hatch_y, tem x):
*/
)

return;

/* when hatch line passes through bottom point
(ie. ii+l) of lower
bound line #*/
if(curr_hatch_y == brdr_y[isl_num][ii+1])

/* no intersection is recorded when hatch line
equals bottom point.
while loop checks for another intersection */

while(lower_chk_for_another_intersection(1)==
2)
{
tem x =
(curr_hatch_y ~ brdr_y[isl_num)[ii])*
(brdr_x{isl num][ii+1] -
brdr_x[isl_num][ii})/
(brdr_y({isl_num]}[ii+1] -
brdr_y{isl_num)[ii]) +
brdr x[{isl_num}{ii];:
put_hatch_x_in_order(tem_x)

Vad printf(*\nl1313isl_num=%d ii=%d ii+1=%d seq_num=%d
curr_hatch_y=%d hatch_x=%d",isl_num, ii, ii+1,
seq_num, curr_hatch y, tem_x);

*/ }

return;

/* when curr hatch_y is below the current lower
bound line */

if(curr_hatch_y < brdr_y[isl_num]{ii+1])

{
/* ASSUPTION IS ONE ADDITION IS ENOUGH TO REACH
ii, ii+1 LINE. OK2?%/

/* add one hatch spacing to current position.
then it may l.equal
y{ii+1] or 2. be in the middle of y[ii and
y[ii+1] 3. equal y[ii)

5,596,504
359 360

APPENDIX PAGE 160

4. or go above the line. Cases 1 and 4 will
not result in an
intersection */

/* casel: when hatch line equals y[ii+1] after
addition¥/

if(curr_hatch_y + curr_hatch_spacing ==
brdr_y({isl_num][ii+l1])

{

/* no intersection is recorded. only seq_num
etc ate updated */

seq_num = seq_num + 1;
curr_hatch_y = curr_hatch_ y +
curr_hatch_spacing;
hatch_y([seq_num] = curr_hatch_y:
}
/*while loop is to chk for other
intersections with same linex/

while(lower_chk_for_another_intersection(l)== 2)
{
tem_x =
{curr_hatch_y - brdr_y[isl_num][ii])*
(brdr_x{isl_num){ii+1] -
brdr_x[isl_num}[ii])/
(brdr y{isl num]){ii+1] -
brdr_y[isl_num}{ii]) +
brdr_x{isl_num)[ii]):
put_hatch_x_in_ order(tem_ x);

/* printf(”"\nl414isl_num=%d ii=%d ii+1=3%d seq_num=%d
curr_hatch_y=%d hatch_x=%d",isl_num, ii, ii+1,
seq_num, curr_hatch_y, tem_x);

*/ }

return;

/* when current hatch line is in the middle of
current contour line */
if(curr_hatch_y< brdr_y[isl_num}{ii] && curr_hatch_y
> brdr_y(isl_num][ii+1)])
{

/* ASSUMPTION IS THERE ARE NO INTERSECTIONS
TOWARDS ii POINT */

5,596,504
361 362

APPENDIX PAGE 161

tem x = .
(curr_hatch_y - brdr_y([isl_num][ii])*
(brdr_x{isl_num]}[ii+1] -
brdr_x[isl_num]){ii}))/
(brdr_y{isl_num]){ii+1] -
brdr_y[isl_num}{ii}) +
brdr_x({isl_num][ii]:
put_hatch_x_in_order(tem_x):

/* printf("\n1515isl_num=%d ii=%d ii+1=%d seq num=%d
curr_hatch_y=%d hatch_x=%d",isl_num, ii, ii+1,
seq_num, curr_hatch_y, tem_x):;

*/

/*while loop is to chk for other intersections
with same line*/

while(lower chk_for another_intersection(-1)== 2)
¢
tem x =
(curr_hatch_y - brdr_y[isl num]{ii])}*
(brdr_x[isl_num]}[ii+1] -
brdr_x(isl_num][ii])/
(brdr_y[isl_num]j[ii+l) -
brdr_y{isl_num][ii]) +
brdr x[isl_num}[ii];
put_hatch_x_in_order (tem_x);

/* printf("\n1616isl num=%d ii=%d ii+1=%d seq num=%d
curr_hatch_y=%d hatch_x=%d",isl num, ii, ii+1,
seq_num, curr_hatch_y, tem_x):

*/ }

return;
)

printf("IT APPEARS THAT SOMETHING WENT WRONG WITH
LOWER BOUND LINE i=%d i+1=%d4d%, ii, 1i+1);

}

/* control come to this function only when hatch
line passes through
top point of lower bound line ii */

lower_chk_validity of_ intersection()

5,596,504
363 364

APPENDIX PAGE 162

{

/* when hatch line passes through top point (ii)
oflower bound line and
the previous line is upper bound then that
intersection is invalid */
if(prev_line_type==1) return(-1);

/* when hatch line passes through top point (ii)
of lower boundline and
the previous line is lower bound then that
intersection is valid */
if(prev_line_type == 2) return(2):

/* control comes here only if previous line is
parallel */
if(ii !=0)

{
/* when hatch line passes through top point (ii)
of lowerbound line and
the previous line is parallel brdr_x[ii-1)
should be >

brdr x[isl_num][ii]*/
if(brdr_x[isl num][ii-1] > brdr_x[isl_num]}[ii])
return(2):

else if(ii == 0)

{
/* see the difficulty in getting the last
point of island */

if(brdr_x{isl_num] [brdrpts_per pln per_isl[curr_pln_nu
m]{isl_num]] >
brdr_x[isl_num][ii])
return(2):

/* control comes here when hatch line is on the
current contour line */

lower_chk_for_another_ intersection(j)
int j:
{

5,596,504
365 366

APPENDIX PAGE 163

/* when j=1 intersections are checked from bottom
to top of
the current lower bound line ie. from ii+l
to iix/
if(j==1)
{

/* add one hatch spacing to current position.
then it may
1. be in the middle of y[ii and y([ii+1] 2.
equal y[ii]
3. or go above the line. Case 3 will not
result in an
intersection */

/* case 1 */

if (curr_hatch_y + curr_hatch_spacing <
brdr_y[isl_num][ii})

{

seq num = seq num + 1;
curr_hatch_y = curr_hatch_y +
curr_hatch_spacing;
hatch_y[seq_num] = curr_hatch_y:;
return(l);
}

/* case 2 */

if(curr_hatch_y + curr_hatch_spacing ==
brdr_y[isl_num][ii])

{

if(lower_chk_validity of_intersection()== 2)
{

seq_num = seq_num + 1;
curr_hatch_y = curr_hatch_y +
curr_hatch_spacing:;
hatch_y[seq num] = curr_hatch_y;
return(2);

H

/* when j=-1 intersections are checked from top
to bottom of
the current lower bound line (ie. ii to
ii+1) =/
else if(j== -1)
{ .

/* subtract one hatch spacing from current

5,596,504
367 368

APPENDIX PAGE 164

position. then it may
1. be in the middle of y[ii and y[ii+1] 2. or
equal y{ii+l]
3. or go below the line. Case 2 and 3 will not
result in an
intersection */

/* case 1 */
if (curr_hatch_y - curr_hatch_spacing >
brdr_y[isl_num][ii+1])
{
seq_num = seq_num - 1;
curr_hatch_y = curr_hatch_ y -
curr_hatch_spacing;
hatch_y(seq num] = curr_hatch_y:
return(2);

all_parallel_lines()
(

int tem x;

/* when hatch line passes through the parallel
line */

if(curr_hatch_y == brdr_y[isl_num]{ii])}

if(parallel_chk_validitity of_intersection()== 2)

tem_x = brdr_x([isl num][ii];
put_hatch_x_in_order (tem_x);

/* printf("\n1717isl_num=%d ii=%d ii+1=%d seq num=%d
curr_hatch_y=%d hatch_x=%d",isl_num, ii, ii+1,
seq num, curr_hatch_y, tem_x);

*)

return:

}

/* when curr_hatch_y is below the current
parallel line */

if(curr_hatch_y < brdr_y(isl_num][ii])

{

/*ASSUPTION IS ONE ADDITION IS ENOUGH TO REACH

5,596,504
369 370

APPENDIX PAGE 165
OR OVERSHOOT LINE. OK?%/

/* add one hatch spacing to current position.
then it may 1. equal
y[ii] or 2. go above the line. case 2 is not
required#*/

/* casel: when hatch line equals y[ii] after
addition*/

if (curr_hatch y + curr_hatch_spacing ==
brdr_y[isl_num][ii])

{

if(parallel_chk validitity of_intersection()
== 2)
{
seq_num = seq_num + 1;
curr_hatch_y = curr_hatch_y +
curr_hatch_spacing;
hatch_y[seq_num] = curr_hatch_y;
tem x = brdr_x[isl_num][ii];
put_hatch_x_in_order(tem_x);

VA printf("\n1818isl_num=%d ii=%d ii+1=3%d seg_num=3%d
curr_hatch_y=%d hatch_x=%d",isl _num, ii, ii+1,
seq_num, curr_hatch_y, tem x):;

*/

return;

/* when curr_hatch_y is above the current
parallel line */

if(curr_hatch_y > brdr_y[isl_num][ii])

(

/*ASSUPTION IS ONE SUBTRACTION IS ENOUGH TO
REACH OR OVERSHOOT LINE.OK?*/

/*subtract one hatch spacing from current
position. then it may l.equal
y[ii) or 2. go below the line. case 2 is not
reguired*/

/* casel: when hatch line equals y([ii] after
subtraction*/

if(curr_hatch_y - curr_hatch_spacing ==
brdr_y[isl_num}{ii])

{

5,596,504
37 372

APPENDIX PAGE 166

if(parallel_chk_validitity of_ intersection()
{
seq num = seq hum - 1;

curr_hatch_y = curr_hatch_y -

curr_hatch_spacing:
hatch_y[seq_num] = curr_hatch_y:
tem_x = brdr_x[isl_num){ii]:

put_hatch_x in_order(tem_x):

/* printf("\n1919isl_num=%d ii=%d ii+1=%d seq num=%d
curr_hatch_y=%d hatch_x=%d%,isl_num, ii, ii+1,
seq_num, curr_hatch_y, tem_x):

*/

return;

parallel_chk_ validitity_of_intersection()
{

/* if previous line is also parallel which means
line is colinear
with current parallel line intersection is
invalid */
if (prev_line_type==3) return(-1):

if(prev_line_type == 2)

if(brdr_x{isl_numj{ii}] < brdr_x(isl_num][ii+1)])
return(2):;
else return(-1);
}

/* control comes here only if prev_line_type is 1
*/
if (brdr_x{isl_num][ii] > brdr_x[isl_num][ii+l1])
return(2);

}

/* this is to rotate newly calculated points to
get hatch peints. this
is not requied when angle of rotation is zero.

5,596,504
373 374

APPENDIX PAGE 167

also note that

this rotation is done only after all the
points are caculated for

all the islands of current plane this

function is invoked every

time the plane is rotated by an anglex*/
rotate_again_to_get_hatch pts()
{
short i, j, tem x, tem_y:
double sine_theta, cos_theta;

sine_theta = sin(curr_hatch_angle*22.0/7.0/180.0);
cos_theta = cos{curr_hatch_angle*22.0/7.0/180.0):

for(i=min_seg num;i<=max_seq num ; i++)
if(hatch_x{i][0]==-111) continue;

for(j=0; hatch_x[i][j]'=-111; j++)
{

/* this is necessary bec. earlier in the prog
hatch_y is one dim array */
if (curr_hatch_angle == 0)
new_hatch y[i][j] = hatch_y{i]:

/* when angle is 90 newx becomes ~old y and
newy is oldx . Now you are rotating back by
+90 %/
else if(curr_hatch_angle==90)

/%
printf("\nBFi=%d j=3%d hatch x=%d hatch_y=%4", i, j,
hatch_x(i])[j], hatch_y(i]}):

*/

tem_x = hatch_x[i][j]):
hatch_x{i)[j] = -hatch_y[i];
new_hatch_y[i]{j] = tem_x;

/* printf("\nAFi=%d j=%d hatch_x=%d hatch_y=%4", i,
j, hatch_x[i][j], tem x); */

}
/* when angle is not zero nor 90 */

else

{

5,596,504
375 376

APPENDIX PAGE 168

/* applying rotation formula newx =
oldx*cos_theta - oldy*sine_theta */

tem_x = cos_theta * hatch_x[i][j] - sine_theta
*hatch_vy[i);

/* applying rotation formula newy =
oldx*sine_theta + oldy*cos_theta */

tem_y = sine_theta * hatch _x[i][]j] + cos_theta
*hatch_y([1];

hatch_x[i}{)] = tem_x:
new_hatch_y[i][]j] = tem_ y:

}
)
vec_num_per_hatch_y(i] = j-1:
}

5,596,504
377 378

APPENDIX PAGE 169
/* This program is called "new_sli.c". */

get_slifile ptr_details()

{

mysli = (SLIFILE *) malloc(sizeof {SLIFILE)):
if (mysli == NULL)}

{ .
pPrintf("could not allocate memory for mysli in
function get myslifile ptr details"):;

exit(~-1):

}

mysli->next_file = NULL:
strcpy(mysli->filename, sli_filename);

mysli->header = (unsigned char*)strdup("!3DSYS SLA-1
SLICE FILE\n!SLICE=-VER 3.64 -RES 5000.000000 HX 0 -HY
0 ~HFX 0 -HFY 0 ~HA 0 -MSA 0 -MIA O -SCL 1.0000 -2§ 8
-B -DELTA 0.05\n\032");

mysli->max_layer = z_max;
mysli->min layer = z_min:
mysli->total_layers = total num layers;

get_slilayers ptr_details()
{

static short first time=0;

curr_layer = (SLILAYER *)
malloc(sizeof (SLILAYER)) ;
if(curr_layer == NULL)

printf("could not allocate memory for curr_layer in
get_myslilayers_ptr details function");
exit(~1);

curr_layer->layer_num =
pln[curr_pln_num].isl[O].boarder_pts[O].axis[Z]:

if(first time==0)
{

5,596,504
379 380

APPENDIX PAGE 170

curr_layer->prev_layer = NULL;

curr_layer->vect_list = NULL;
mysli->layers = curr_layer;
bottom_layer_ptr = mysli->layers:;

curr_layer->next_layer = NULL:
first time = 1;

else

bottom_layer_ptr->next_layer =

curr_layer;
curr_layer->next_layer = NULL;

curr_layer->prev_layer =

bottom layer_ ptr;
bottom_layer ptr = curr_layer;
curr_layer->vect_list = NULL:

}

curr_vect_list = NULL;
curr_layer->vect_list = NULL;

get_slivectors_ptr_details()
SLIVECTORS *new_vect_list;

new_vect_list = (SLIVECTORS *)
malloc(sizeof (SLIVECTORS)) ;
if(new_vect_list == NULL)

{
printf("could not allocate memory for curr_vect_list
in function get_myslivectors_ptr_ details"):
exit(-1);
H

if(curr_vect_list != NULL)

{
curr_vect_list->next_vectors =
new_vect_list;
}

curr_vect_list = new_vect_list;

Mo

5,596,504
381 382

APPENDIX PAGE 171

put_brdrpts_in_sliformat()
{

short brdrpt_num, isl num, first_time = 1;

for(isl_nuw=0;
isl_num<=isls_per_ pln{curr_pln_num}; isl_num++)
{
get_slivectors_ptr_details():
curr_vect_list->vector_count =
brdrpts_per_pln_per_isl{curr_pln num]{isl_num}+1;
curr_vect_list->vector_type = 1b;

curr_vect_ptr ={struct bin_sli_vector ¥*)
calloc(curr_vect_list->vector_count, sizeof(struct
bin_sli_vector)):

if(curr_vect_ptr== NULL)

{
printf ("could not allocate memory for

curr_vect_ ptr%);
exit(~1):
}

for (brdrpt_num=0; brdrpt_num <=

brdrpts_per_pln_per isl[curr_pln_num]{isl_num];
brdrpt_num++)
{

curr_vect_ptr(brdrpt num].p[0].x =
Pln{curr_pln_num].isl{isl_num}.boarder pts{brdrpt_num]
.axis[0];

curr_vect_ ptr[brdrpt_num].p[0).y =

pln[curr_pln_num).isl[isl_num].boarder_pts[brdrpt_num]
.axis{1];

/* to ensure last point is joined with the first
point */
if (brdrpt_num<
brdrpts_per_pln per_isl{curr pln num][isl_numj)
(
curr_vect ptr({brdrpt num].p{1].x =

pln{curr pln _num).isl[isl_num].boarder_pts[brdrpt num+

5,596,504
383 384

APPENDIX PAGE 172
1]}.axis[0]:
curr_vect_ptr{brdrpt_num].pf{l].y =
pln[curr_pln_num].isl[isl_num].boarder_pts[brdrpt_num+

l].axis[1]};

/* control reaches here when brdrpt _num is the
last point. then
as there is no brdrpt_num+l next point is again
0 point */
else
{

curr_vect_ptr{brdrpt_num].p[l].x =
pln{curr_pln_num].isl[isl_num].boarder_pts[0].axis[0];
curr_vect_ptr{brdrpt_num].p[l]).y =

pln{curr_pln_num).isl[{isl_num].boarder_pts[0].axis[1];

} /* End for each border pt */
curr_vect_list->vectors = curr_vect_ptr;

/* if(first_time==1) */
if (curr_layer->vect_list == NULL)
{

curr_vect_list->next_vectors = NULL:
curr_layer->vect_list = curr_vect_list;
bottom _vect list ptr = curr_vect_list:
first_time =0;
)

else
bottom_vect list ptr->next_vectors =
curr_vect_list;

curr_vect list->next_vectors = NULL;
bottom_vect_list_ptr = curr_vect_list;

} /* End for each Island */

}

5,596,504
385 386

APPENDIX PAGE 173

/* this function is invoked for each hatch angle
for each plane #*/
put_hatchpts_in_sliformat()

{
short count=0, i, j;
short first_time=1;

for(i=min_seq_num, count=0;i<=max_seq_num;i++)
{

}

count += vec _num per_hatch_y[i]+1:

get_slivectors_ptr_details():
curr_vect_list->vector_count
curr_vect_list->vector_type

count;
1lh;

curr_vect_ptr =(struct bin_sli_vector ¥*)
calloc{curr_vect_list->vector_count,sizeof({struct
bin_sli_vector));

if(curr_vect_ptr== NULL)

{
printf("could not allocate memory for curr_vect ptr in
function put_hatchpts_in_sliformat™);

exit(-1);
}

for(i=min_seq num, count=0;i+l<=max_seq_num;i=i+2)

if(hatch_x[i][0} == -111) continue;

for(j=0; hatch_x[i][j+1]!=-111; j=j+2)
{

curr_vect_ptr{count].p[0].x
curr_vect ptr{count].p{o0].y

hatch_x{11(3]:
new_hatch_y[i]1[j]:

curr_vect_ptr[count].p[l].x
curr_vect_ptr[count).p[1l].y
new_hatch _y{i}[j+1];

hatch_x[i][j+1]}:

count++;

} /* End of for loop for vectors for each y */

5,596,504

387 388
APPENDIX PAGE 174
/* this for loop is to have the laser move
backward */
if(hatch_x[i+1](0] == -111) continue;

for (j=vec_num_per_ hatch_y[i+1]:j-1>=0:3=j-2)
{
curr_vect_ptr{count].p(0

).x
curr_vect_ptr[count].p[0}.y
new_hatch_y[i+11([]j]:

hatch_x[i+1]{3]:

curr_vect_ptr[count].p[1].x = hatch_x[i+1])[j-1]):
curr_vect ptr[count].pll].y

new_hatch_y{i+1][j-1]:

count++;

} /* End of for loop for vectors for each y */

} /* End of for loop for current hatch angle for
current plane*/

curr_vect_list->vectors = curr_vect_ptr:;
curr_vect list->vector_count = count: /* This is

wrong */

/* if (first_time==1) */
if (curr_layer->vect_list == NULL)

{
curr_vect_list-~>next_vectors = NULL;
curr_layer->vect_list = curr_vect_list;
bottom_vect_list_ptr = curr_vect_list;

first_time = 0;
)

else

bottom_vect_list ptr->next_vectors =
curr_vect_list;
curr_vect_list->next_vectors = NULL;

bottom_vect_list_ptr = curr_vect_list;

3,596,504
389 390

APPENDIX PAGE 175
/* This program is called “header". */

sli->header = sprintf(sli->header,"!3DSYS SLA-1 SLICE
FILE\n!SLICE= -VER 3.64 ~RES %.6f -HX %.0f -HY %.0f
-HFX %.0f -HFY %.0f ~HA %.0f -MSA %.0f -MIA %i -SCL
¥.4f -Z5 50 -B -DELTA 0.05\n\032", RESOLUTION,
HATCH1*RESOLUTION, HATCH2*RESOLUTION,
FILL1*RESOLUTION, FILL2*RESOLUTION, HATCH3+*RESOLUTION,

MSA, 0, SCALE);

5,596,504
391 392

APPENDIX PAGE 176
/* This program is called "tata_to_vouze.c". */

#include <stdio.h>
#include <math.h>

double x[1500), y[500]}, 2z[500],earlier_z:

int count=0;
char filename{80]:

typedef struct

{
int type;
double z;
double x1, yl1;
short refl, flagl;
double x2, y2;
short ref2, flag2:
double cx, cy;
double r;
int 4;
double offset;

) entity:

entity 1ist({50000];

FILE *fpl, *fp2, *file, *fopen():

main()

{
read_int pts file();

read_int_pts_file()
{

int i, earlier_isl num, curr_isl_num;

fp1 = fopen("int_pts™, "r%};

fscanf (fpl, "%*f 3*£f%);

fscanf(fpl, "%*d %*d %1f %1f %1f", &x{0], &y[O0],
&z[0]);

earlier_z = z[0]:
earlier_isl_num =0;

5,596,504
393 394

APPENDIX PAGE 177

{
i++;
fscanf (fpl, "%*d %d %1f %1f %1f", .
&curr_isl_num, &x[i]),&y[i],&z[i]):

jwhile(earlier_z == 2z[i] &&
earlier_isl num == curr_isl_num &&
feof (fpl)==0);

if(earlier_z != z[i] || earlier_isl_num!=
curr_isl_num || feof(fpl)==1)

{

if(i>=3)

(
}

x[0] = x[i]:;
y[o] = yli);
zZ[0])] = z[1]:
if(earlier_z!=z[1i])
{

write_into_file(i-1);

earlier_z = z{i}:
earlier_isl_num=curr_isl_num=0;

)

if(earlier_isl_num!=curr_isl_num)
earlier_isl num=curr_isl_num;
if(feof (fpl)==0) goto gl:

}

write_file();

write_into_file(3)
int j:

{

int temp_ count=0;

list[count].type = 0;
list[count].z = j+1;
list[count].d = j;
list[count].flagl = 1;

5,596,504
395 396

APPENDIX PAGE 178

list{count].refl = 0;

do
{

temp_count++;
count++;

list{count].type = 17
list[count].offset = 1.:
list[count].refl = 0;
list[count].flagl = 0;
list[count].ref2 = 0;
list[count]}.flag2 = 0;
list[count].d 1;
list{count).z = z[0];

list{count).x1l = x[temp count-1];
list{count].yl = y[temp count-1):

if (temp_count == j+1)

{

list{count].x2 = xX[0];
list{count]).y2 = y[0];
}
else
{

list[count].x2
listfcount].y2
}

x[temp_count];
y[temp_count]:

}while(temp_count<j+1):;
count++;

/*
i=o0;
while (i < (int) list[0].z)
{
fwrite(&list[i],sizeof(entity),1,file):
it+;

*/

5,596,504
397 398

APPENDIX PAGE 179

}

write_file()

{

int i;
strcpy(filename, "vouze");
file = fopen(filename, "w"):;

i=o0;
while (i < count)

fwrite(&list[i),sizeof (entity),1,file);
i++;

.

5,596,504

399

What is claimed is:

1. A device for effecting automatic operation of a stere-
olithography apparatus (SLA) with respect to a part to be
built by the SLA, the part having a desired profile charac-
terized by at least one key characteristic and at least two
local complexity levels, wherein the operation of the SLA is
controlled based on a two-dimensional sliced model of the
local profile of the cross-section of the part to be built with
each slice plane disposed transversely with respect to and
along a slice axis of the part, which is represented by a
tesselated model of the part and provided as an input to the
device in the form of an STL file specifying triangular facets
obeying the vertex-to-vertex rule, the device comprising:

a programmable computer;

a facet processor means for operating on the STL file
input to produce a processed facet file, said facet
processor means being programmed on said computer,
said facet processor means including a facet sorting
means, said facet sorting means being configured to
sort the facets of the STL file according to the slice axis
to produce a sorted facet file;

said facet processor means including a facet grouping
means for operating on said sorted facet file to produce
a grouped facet file, said facet grouping means being
configured to group the facets of said sorted facet file
according to facets having common minimum vertex
values with respect to the slice axis and to produce a
grouped facet file;

said facet processor means including a facet subgrouping
means for operating on said grouped facet file to
produce a subgrouped facet file, said facet subgrouping
means being configured to subgroup the facets of said
grouped facet file according to fatets having common
maximum vertex values with respect to the slice axis
and to produce a subgrouped facet file;

a key characteristic identifier means for operating on said
sorted facet file, said grouped facet file and said sub-
grouped facet file, said key characteristic identifier
means being programmed on said computer, said key
characteristic identifier means being configured to
identify key characteristics of the profile represented by
the STL file and to produce a key characteristic data file
from said key characteristics of the profile represented
by the STL file;

a thickness calculator means for operating on said sorted
facet file, said grouped facet file, said subgrouped facet
file and said key characteristic data file, said thickness
calculator means being programmed on said computer,
said thickness calculator means being configured to
calculate a thickness for each layer of the model of the
desired profile represented by the STL file of the part
such that the geometrical error between the desired
profile of the part and said model profile of each said
layer having said layer thickness, remains no greater
than a preselected geometrical error and to produce a
layer thickness data file containing the results of such
calculations;

a slicer means for operating on said sorted facet file, said
grouped facet file, said subgrouped facet file and said
layer thickness data file, said slicer means being pro-
grammed on said computer, said slicer means being
configured to calculate the intersection of each slice
plane disposed at a height above the previous slice
plane by said thickness calculated by said thickness
calculator means for each layer of the model of the
intended profile represented by the STL file and to
produce a slice plane intersection data file;

20

25

30

35

40

45

50

55

400

a directional ordering means for finding the direction of
each contour defining each intersection of each slice
plane and ensuring uniformity of such direction with
the direction of each other contour defining each other
intersection of each other slice plane;

a model generating means for using said layer thickness
data file and said slice plane intersection data file to
generate at least a portion of a model of the part
wherein said portion of said model of the part includes
a plurality of successive layers wherein the cross-
section of each layer in a plane of view is defined by the
intersection with said plane of view, of a pair of paraliel
planes and a model profile connecting said parallel
planes, and wherein for each layer the minimum dis-
tance separating its pair of paralle]l planes defines the
thickness of said layer; and

an interface means for controlling the operation of the
machine based on said portion of a model of the part.

2. An apparatus for effecting automatic operation of a

machine with respect to an intended object having a desired
profile characterized by at least one key characteristic and at
least two local complexity levels, wherein the intended
object is represented by a tesselated model of the intended
object oriented with respect to a slice axis and provided as
an input to the apparatus in the form of an STL file
specifying triangular facets obeying the vertex-to-vertex
rule, the apparatus comprising:

a programmable computer;

a facet processor means for operating on the STL file
input to produce a processed facet file, said facet
processor means being programmed on said computer,
said facet processor means including a facet sorting
means, said facet sorting means being configured to
produce said sorted facet file by sorting the facets of the
STL file according to the slice axis; and

said facet processor means including a facet grouping
means for operating on said sorted facet file to produce
a grouped facet file, said facet grouping means being
configured to produce said grouped facet file by group-
ing the facets of said sorted facet file according to facets
having one of the following characteristics: common
minimum vertex values with respect to the slice axis
and common maximum vertex values with respect to
the slice axis.

3. An apparatus as in claim 2, further comprising:

a facet subgrouping means for operating on said grouped
facet file to produce a subgrouped facet file, said facet
subgrouping means being programmed on said com-
puter and configured to subgroup the facets of said
grouped facet file according to facets having the other
of: common minimum vertex values with respect to the
slice axis and common maximum vertex values with
respect to the slice axis.

4. An apparatus as in claim 2, further comprising:

a thickness calculator means for operating on at least said
sorted facet file and said grouped facet file to produce
a layer thickness data file defining the profile of the
tesselated model in terms of at least two stacked layers,
said thickness calculator means being programmed on
said computer.

5. An apparatus as in claim 4, wherein:

said thickness calculator means being configured to pro-
duce said layer thickness data file by calculating a
thickness for each layer defining the tesselated model
of the desired profile represented by the STL file of the
intended object such that the geometrical error between

ST AVAILABLE COt

5,596,504

401

the desired profile of the intended object and said
model profile of each said layer having said layer
thickness, remains no greater than a preselected geo-
metrical error.

6. An apparatus as in claim 4, further comprising:

a slicer means for operating on at least said sorted facet
file, said grouped facet file, and said layer thickness
data file to produce a slice plane intersection data file,
said slicer means being programmed on said computer,
said slicer means being configured to produce a slice
plane intersection data file by calculating the intersec-
tion of each slice plane disposed at a height above the
previous slice plane by said thickness calculated for
each layer defining the tesselated mode! of the intended
profile represented by the STL file.

7. An apparatus as in claim 6, further comprising:

an interface means for controlling the operation of the
machine based on a two-dimensional sliced model of
the local profile of the cross-section of the intended
object with each slice plane disposed transversely with
respect to and along the slice axis.

8. An apparatus as in claim 5, wherein said thickness
calculator means includes a simple back tracking means for
determining the thickness of the next layer while retaining a
single change in compiexity level in the local profile.

9. An apparatus as in claim 5, wherein said thickness
calculator means includes a repeated back tracking means
for determining the thickness of the next layer while retain-
ing more than a single change in complexity level in the
local profile.

10. An apparatus as in claim 4, wherein said thickness
calculator means includes a means for selecting the thick-
ness of the next layer based on a predetermined geometrical
parameter relating the selected thickness of the next layer to
the profile of the intended object in the vicinity of the next
layer, said predetermined geometrical parameter being the
volumetric error per unit of perimeter.

11. An apparatus as in claim 6, further comprising:

a marching means for ordering at least said grouped facet
file to produce a geometrically ordered facet file, said
marching means being programmed on said computer
and configured 10 peometrically order the facets of at
least said groun-- ' .c. file to produce a continuous
chain of facet r=ach facet in said continuous
chain interse« «: slice planes.

12. An apparatus . =i 11, wherein said marching
means is configured : ¢ an adjacency list for each
facet that is intersectec ane slice plane.

13. An apparatus as in . .1 2, further comprising:

a key characteristic idenufier means for operating on at
least said sorted facet file and said grouped facet file,
said key characteristic identifier means being pro-
grammed on said computer, said key characteristic
identifier means being configured to identify key char-
acteristics of the profile represented by the STL file and
to produce a key characteristic data file from said key
characteristics of the profile represented by the STL
file.

14. An apparatus as in claim 4, wherein said thickness
calculator means includes a back tracking means for deter-
mining the thickness of the next layer while retaining at least
one key characteristic in the local profile.

15. An apparatus as in claim 6, further comprising:

a model generating means for using said layer thickness

data file and said slice plane intersection data file to
generate at least a portion of a model of the intended

10

15

20

25

30

35

40

45

55

60

65

402

object wherein said portion of said model of the
intended object includes a plurality of successive layers
wherein the cross-section of each layer in a plane of
view is defined by the intersection with said plane of
view, of a pair of parallel planes and a model profile
connecting said parallel planes, and wherein for each
layer the minimum distance separating its pair of
paralle] planes defines the thickness of said layer.

16. An apparatus as in claim 18, further comprising:

an interface means for converting said generated portion

of said model of the intended object in a format for
operating the machine with respect to at least a corre-
sponding portion of the intended object in successive
steps with each said step based on a separate one of said
layers of said generated portion of said model of the
intended object.

17. A method involving automatic operation of 2 machine
with respect to an intended three-dimensional object having
a desired profile characterized by at least two local com-
plexity levels, wherein the operation of the machine is
conirolled based on a two-dimensional sliced model of the
profile of the cross-section of the intended object along a
slice axis of the intended object, which is representated by
a three-dimensional tesselated model of the three-dimen-
sional intended object and provided as an input in the form
of an STL file specifying triangular facets obeying the
vertex-to-vertex rule, the method comprising:

using a computer to sort the facets of the STL file

according to the slice axis;

using a computer to group said sorted facets according to
facets having one of common minimum vertex values
with respect to the slice axis and common maximum
vertex values with respect to the slice axis;

generating at least a portion of a model of the object, said
portion of said model including a plurality of succes-
sive layers wherein the cross-section of each layer in a
plane of view is defined by the intersection with said
plane of view, of a pair of parallel planes and a model
profile connecting said parallel planes, and wherein for
each layer the distance separating its pair of parallel
planes defines the thickness of said layer; and

operating the machine with respect to at least a portion of
the object in successive steps with each said step based
on a separate one of said layers.

18. A method as in claim 17, further comprising:

using a computer to subgroup said grouped facets accord-
ing to facets having the other of common minimum
vertex values with respect to the slice axis and common
maximum vertex values with respect to the slice axis.
19. A method as in claim 17, wherein said step of
generating at least said portion of said model of said object
includes selecting each layer thickness such that the geo-
metrical error between the desired profile of said portion of
said object and said model profile of said layer with said
layer thickness, remains no greater than a preselected geo-
metrical error;
wherein more than one layer thickness is selected during
said step of generating at least said portion of said
object.
20. A method as in claim 17, further comprising:
before the step of generating at least said portion of the
model of the object, identifying each key characteristic
in the intended object and using a back tracking means
for retaining in said portion of said model each said
identified key characteristic of said portion of said
model.

5,596,504

403

21. A method as in claim 17, further comprising:

before the step of generating at least said portion of the
model of the object, identifying each change in com-
plexity level in the local profile in the intended object
and using a back tracking means for retaining in said
portion of said model each said identified change in
complexity level of said portion of said model.

22. A method involving automatic operation of a machine
with respect to an intended three-dimensional object having
a desired profile characterized by at least two local com-
plexity levels, wherein the operation of the machine is
controlled based on a two-dimensional sliced model of the
profile of the cross-section of the intended object along a
slice axis of the intended object, which is representated by
a three-dimensional tesselated model of the three-dimen-
sional intended object and provided as an input in the form
of an STL file specifying triangular facets obeying the
vertex-to-vertex rule, the method comprising:

producing from the STL file input a sorted facet file that

is sorted according to the slice axis;

producing from said sorted facet file a grouped facet file

that is grouped according to facets having one of the
following: common minimum vertex values with
respect to said slice axis and common maximum vertex
values with respect to said slice axis;

producing from said grouped facet file a subgrouped facet

file that is subgrouped according to facets having the
other of the following: common minimum vertex val-
ues with respect to said slice axis and common maxi-
mum vertex values with respect to said slice axis;

identifying from said grouped facet file and said sub-
grouped facet file at least one key characteristic of the
profile represented by the STL file and producing a key
characteristic data file containing each key character-
istic so identified;

10

15

20

25

30

35

404

using said grouped facet file, said subgrouped facet file
and said key characteristic data file to calculate a
thickness for each layer of the model of the desircd
profile represented by the STL file of the intended
object such that the geometrical error between the
desired profile of the intended object and said model
profile of each said layer having said layer thickness,
remains no greater than a preselected geometrical error
and producing a layer thickness data file containing the
result of each such calculation;

using said grouped facet file, said subgrouped facet file
and said layer thickness data file to calculate the
intersection of each slice plane disposed at a height
above the previous slice plane by said thickness cal-
culated for each layer of the model of the intended
profile represented by the STL file and producing a
slice plane intersection data file;

using said layer thickness data file and said slice plane
intersection data file to generate at least a portion of a
model of the intended object, said portion of said model
including a plurality of successive layers wherein the
cross-section of each layer in a piane of view is defined
by the intersection with said plane of view, of a pair of
parallel planes and a model profile connecting said
paralle] planes, and wherein for each layer the mini-
mum distance separating its pair of parallel planes
defines the thickness of said layer;

wherein more than one layer thickness is selected during
said step of generating at least said portion .of said
model of the intended object; ‘and

operating the machine with respect to at least a portion of
the intended object in successive steps with each said
step based on a separate one of said layers of said
model of said intended object.

* * * * ok

	Clemson University
	TigerPrints
	1-21-1997

	Apparatus and method for layered modeling of intended objects represented in STL format and adaptive slicing thereof
	Kamesh Tata
	Amit Bagchi
	Nadim M. Aziz
	Recommended Citation

	USA105596504

