Clemson University TigerPrints

Clemson Patents

4-18-2006

Polynucleotide encoding a gene conferring resistance to Bacillus thuringiensis toxins

David G. Heckel

Linda J. Gahan

Follow this and additional works at: https://tigerprints.clemson.edu/clemson_patents

Recommended Citation

Heckel, David G. and Gahan, Linda J., "Polynucleotide encoding a gene conferring resistance to Bacillus thuringiensis toxins" (2006). Clemson Patents. 217.

https://tigerprints.clemson.edu/clemson_patents/217

This Patent is brought to you for free and open access by TigerPrints. It has been accepted for inclusion in Clemson Patents by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

US007029851B2

(12) United States Patent

Heckel et al.

(54) POLYNUCLEOTIDE ENCODING A GENE CONFERRING RESISTANCE TO BACILLUS THURINGIENSIS TOXINS

(75) Inventors: **David G. Heckel**, Carlton (AU); **Linda J. Gahan**, Clemson, SC (US)

(73) Assignee: Clemson University, Clemson, SC

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 528 days.

(21) Appl. No.: 10/098,916

(22) Filed: Mar. 15, 2002

(65) Prior Publication Data

US 2003/0096983 A1 May 22, 2003

Related U.S. Application Data

- (60) Provisional application No. 60/276,180, filed on Mar. 15, 2001.
- (51) Int. Cl. C12Q 1/68 (2006.01) C07H 21/02 (2006.01) C07H 21/04 (2006.01)
- (52) **U.S. Cl.** 435/6; 536/23.1; 536/24.3

(56) References Cited

U.S. PATENT DOCUMENTS

5,254,799	A	10/1993	De Greve et al.
5,349,124	\mathbf{A}	9/1994	Fischhoff et al.
5,495,071	A	2/1996	Fischhoff et al.
5,608,142	A	3/1997	Barton et al.
5,693,491	A	12/1997	Bulla et al.
6,007,981	A	12/1999	Bulla
6,027,876	\mathbf{A}	2/2000	Kreitman et al.
6,060,039	A	5/2000	Roe et al.
6,660,497	B1	12/2003	Bulla, Jr. et al.
2003/0166891	$\mathbf{A}1$	9/2003	Flannagan et al.

FOREIGN PATENT DOCUMENTS

DE	19819829 A1	11/1999
WO	WO 98/59048	12/1998
WO	WO 01/31011 A2	5/2001
WO	WO 01/34807 A2	5/2001
WO	WO 0136639 A2	5/2001
WO	WO 0136639 A3	5/2001

(10) Patent No.: US 7,029,851 B2

(45) **Date of Patent:** Apr. 18, 2006

OTHER PUBLICATIONS

Nagaraju, J, Identification of a gene associated with Bt resistance in the lepidopteran pest, *Heliothis virescens* and its implications in Bt transgenic-based pest control. Current Science. Oct. 10, 2001, vol. 81, No. 7, pp 746-747, United States

International Search Report, PCT/US02/07872, pp 1-3, Sep. 12, 2002, United States.

International Search Report, PCT/US98/11868, pp. 1-3, Oct. 14, 1998; The Netherlands.

Gahan et al; "Identification of a Gene Associated with Bt Resistance in *Heliothis virescens," American Association for the Advancement of Science*, vol. 293, pp. 857-860, Aug. 3, 2001, United States.

Lander and Botstein, "Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps", Genetics 121:185-199, Jan., 1989, US.

Tabashnik et al, "Reversal of resistance to *Bacillus thuringienssis* in *Plutella xylostella*", *Proc. Natl. Acad. Sci. USA*, vol. 91, pp 4120-4124, May, 1994, US.

Gould et al, "Selection and Genetic Analysis of a *Heliothis virescens* (Lepidoptera: Noctuidae) Strain with High Levels of Resistance to *Bacillus thuringiensis* Toxins", J. of Economic Entomology, vol. 88, No. 6, pp 1545-1559, Dec., 1995, US.

Vadlamudi et al, "Cloning and Expression of a Receptor for an Insecticidal Toxin of *Bacillus thuringiensis*", J. of Biological Chemistry, vol. 270, No. 10, pp 5490-5494, Mar. 10, 1995, US.

Tabashnik, Commentary, "Seeking the root of insect resistance to transgenic plants", *Proc. Natl. Acad. Sci. USA*, vol. 94, pp 3488-3490, Apr., 1997, US.

Heckel, et al, "Identification of a Linkage Group with a Major Effect on Resistance to *Bacillus thuringiensis* Cry1Ac Endotoxin in the Tobacco Budworm (Lepidoptera: Noctuidae)", J. of Economic Entomology, vol. 90, No. 1, pp 75-86, 1997, US.

(Continued)

Primary Examiner—Ethan Whisenant (74) Attorney, Agent, or Firm—Dority & Manning, P.A.

(57) ABSTRACT

Nucleic acid (DNA) probes are provided which will specifically identify a gene for resistance of Bt in insect populations. Sequences are identified associated with the onset of resistance to *Bacillus thuringiensis* toxins. The sequences are used as probes to monitor the presence of acquired insect resistance associated with transgenic crops.

7 Claims, 5 Drawing Sheets

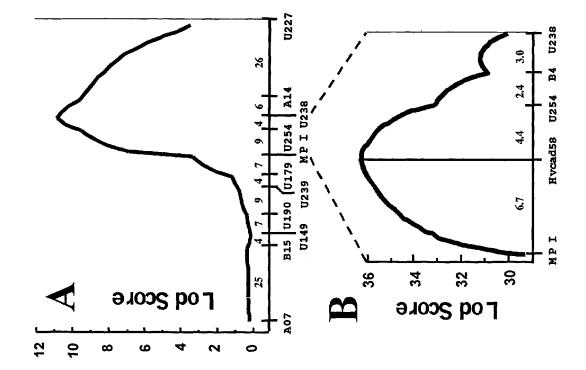
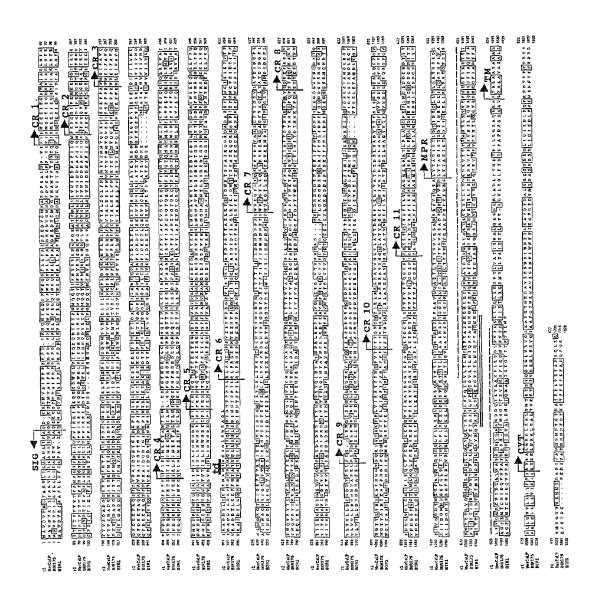
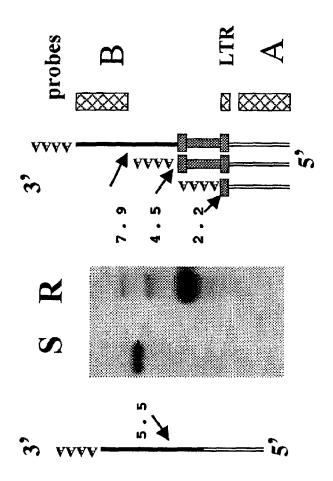
OTHER PUBLICATIONS

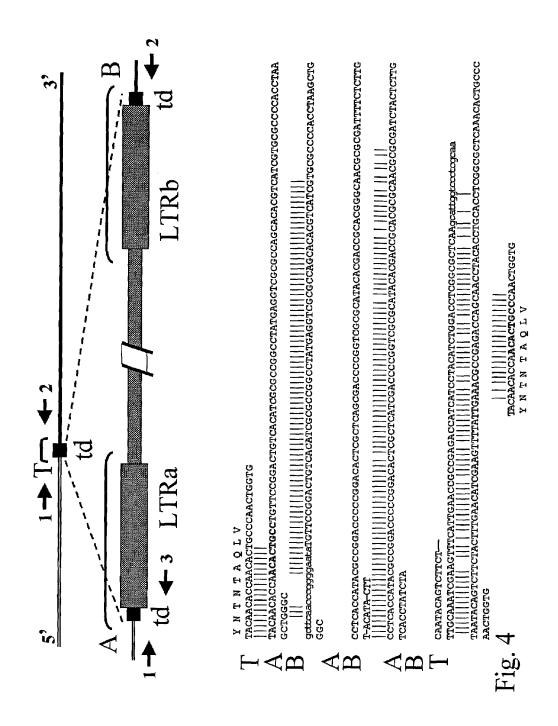
Nagamatsu et al, "The cadherin-like protein is essential to specificity determination and cytotoxic action of the *Bacillus thuringiensis* insecticidal Cry1Aa toxin", Fed. of European Biochemical Societies, Letters 460 (1999) pp 385-390, Europe.

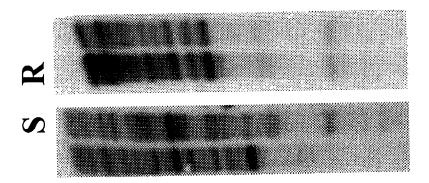
Abstract of Article—Identification of Bombyx mori midgut receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin, Y. Nagamatsu, S. Toda, F. Yamaguchi, M. Ogo, M.

Kogure, M. Nakamura, Y. Shibata, and T. Katsumoto, Biosci Biotechnol Biochem., vol. 62, No. 4, Apr. 1998, pp. 718-726, www.ncbi.nlm.nih.gov.

Article—Identification of a Linkage Group with a Major Effect on Resistance to Bacillus thuringiensis Cry1Ac Endotoxin in the Tobacco Budworm (Lepidoptera: Noctuidae), David G. Heckel, Linda C. Gahan, Fred Gould, and Arne Anderson, Journal of Economic Entomology, vol. 90, No. 1, Feb. 1997, pp. 75-86.


Fig.



Apr. 18, 2006

Fig. 3

Apr. 18, 2006

POLYNUCLEOTIDE ENCODING A GENE CONFERRING RESISTANCE TO BACILLUS THURINGIENSIS TOXINS

RELATED APPLICATIONS

This application claims the benefit of U.S. provisional application having Ser. No. 60/276,180 filed on Mar. 15, 2001, and which is incorporated herein by reference.

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

The United States Government may have rights to this 15 invention under the terms of a sponsored research agreement by the National Science Foundation, grant number MCB-9816056.

FIELD OF THE INVENTION

This invention is directed towards the occurrence and identification of pesticide tolerance of certain insects. The invention makes use of specific polynucleotide sequences associated with the onset of resistance to *Bacillus thuring-* 25 *iensis* toxins which are used as probes to monitor the presence of acquired insect resistance associated with transgenic crops. The specific polynucleotide sequences are also used to monitor changes in the frequencies of alleles which confer the resistance to the toxins.

BACKGROUND OF THE INVENTION

The bacterium *Bacillus thuringiensis* (Bt) contains genes encoding insecticidal proteins. Bt proteins are toxic when 35 ingested by susceptible insect larvae. The protein attacks the insect's midgut, causes cessation of feeding, and eventually kills the insect. Bt toxins have been produced as fermentation products of Bt cultures and used in spray formulations for crop protection. Bt genes have also been used commercially to transform crop plants; these transgenic crop plants' cells then produce the insecticidal protein which attacks susceptible insects that attempt to feed on the plant.

The general mode of action of Bt toxins is well known in the art and is described for example by Rajamohan F, Lee M 45 K, Dean D H (1998) Progress in Nucleic Acid Research and Molecular Biology 60: 1–27. The protein produced by the bacterium is usually a protoxin, which itself is not toxic until it is proteolytically cleaved by the insect's own proteases. The smaller protein resulting from proteolysis is the active 50 toxin. This toxin diffuses through the peritrophic membrane to the midgut epithelium, where it binds to one or more sites in the membrane. This initial binding step may be reversible, but eventually the toxin becomes irreversibly bound to the membrane. A conformational change occurs in the toxin, 55 whereby membrane-spanning alpha helices are inserted into the membrane, where they aggregate and form pores. These pores disrupt the normal osmotic balance of the epithelial cells. The cells swell and lyse, leading to destruction of the midgut epithelial cell layer and eventual death of the insect. 60

The initial binding step is believed to be necessary for toxin action; consequently there have been many studies on binding interactions of Bt toxins and components of the midgut, described for example by Pietrantonio P V and Gill S S (1996) in *Biology of the Insect Midgut*, Chapman & Hall, 65 London, pp 345–372. Techniques used to study binding often start with the isolation of a brush border membrane

2

vesicles (BBMVs) from the microvillar portion of columnar epithelial cells. Binding to BBMVs in suspension can be measured using labeled toxin. Alternatively, proteins can be isolated from BBMVs, separated by denaturing electrophoresis conditions, transferred to membranes, and probed with toxin. In addition, histological sections of insect midguts can be prepared and binding of labeled toxin can be visualized using microscopy.

Binding of Bt toxins to specific insect proteins can also be 10 measured. Several proteins that interact with Bt toxins are well known in the art. Aminopeptidases exist in many different forms in insect midguts, and many of them have been shown to bind Bt toxins (Knight P J K, Knowles B H, Ellar D J (1995) Journal of Biological Chemistry 270 (30): 17765-17770; Gill S S, Cowles E A, Francis V (1995) Journal of Biological Chemistry 270 (45): 27277–27282; Luo K, Sangadala S, Masson L, Mazza A, Brousseau R, Adang M J (1997) Insect Biochemistry and Molecular Biology 27 (8-9): 735-743). Members of the cadherin super-20 family have also been shown to bind Bt toxins (Vadlamudi R K, Weber E, Ji I H, Ji T H, and Bulla L A (1995) Journal of Biological Chemistry 270: 5490–5494; and Nagamatsu Y, Koike T, Sasaki K, Yoshimoto A, Furukawa Y, (1999) FEBS Letters 460: 385–390). Phosphatase enzymes have also been implicated in Bt toxin binding (Sangadala S, Walters F S, English L H, Adang M J, (1994) Journal of Biological Chemistry 269 (13): 10088-10092). TPP-75, an elastaselike serine protease, binds to certain Bt toxins and causes them to precipitate (Milne R E, Pang A S D, Kaplan H (1995) Insect Biochemistry and Molecular Biology 25 (10): 1101–1114). BTR-270, a peptidoglycan, binds Cry1A toxins with high affinity (Valaitis AP, Jenkins JL, Lee MK, Dean DH, Garner KJ (2001) Archives of Insect Biochemistry and Physiology 46 (4): 186-200). Bt toxins have also been shown to bind to nonprotein components of midgut epithelial membranes. Glycolipids from Manduca sexta have been shown to bind Cry1A toxins using an overlay technique (Garczynski S F and Adang M J (2000) in Entomopathogenic Bacteria: From Laboratory to Field Application, Kluwer Academic Publishers, pp 181–197). Neutral lipids are involved in Bt toxin binding to Manduca sexta brush border membranes (Sangadala S, Azadi P, Carlson R, Adang M J (2001) Insect Biochemistry and Molecular Biology 32 (1): 97-107). Neutral glycolipids, especially hexa- and trisaccharylceramides, are implicated in Cry1A toxin binding in diamondback moth (Kumaraswami N S, Maruyama T, Kurabe S, Kishimoto T, Mitsui T, Hori H, (2001) Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 129 (1): 173–183).

The relationship between binding targets for Bt-toxins and susceptibility or resistance to Bt is very complicated and not completely understood at the present time. Several hundred strains of *Bacillus thuringiensis* exist, with considerable specificity toward various groups of insects. Coevolution between the insects and Bt has resulted in specificity of the interaction between Bt-toxin and the membranes of insect gut cells. The Bt-toxin of a particular strain of *Bacillus thuringiensis* may bind to the gut of some insect larvae but not to others. Thus, the Bt-toxins may have a high specificity for a small number of insect pest species while having no significant activity against beneficial insects, wildlife, or humans.

Plants transformed to carry Bt genes and express insecticidal proteins are known in the art and include potato, cotton, tomato, corn, tobacco, lettuce, and canola. Transformed plants are known in the art as reflected in U.S. Pat. Nos. 5,608,142; 5,495,071; 5,349,124; and 5,254,799, the

specifications of which are incorporated in their entirety herein by reference. The use of genetically engineered plants is designed to reduce the use of broad spectrum insecticides.

There is concern that resistance may evolve to Bt toxins, whether they are applied to plants in spray formulations or 5 the plants are genetically engineered to express them. The development of resistance to Bt-toxin expressing crops may also result in resistance to commercial formulations of fermented strains of Bt such as DIPEL® (Abbott Laboratories).

Rapid, reliable methods for broad screening to distinguish and detect the development of Bt resistance in populations of insects are needed. Heretofore, all methods require living or fresh-frozen insect larvae or preparations derived from them. The simplest methods employ bioassays on living 15 insects, in which survivorship or larval metabolic rates are determined over time following a diet containing a specified concentration of a Bt-toxin. One such bioassay based on reduced metabolic rates after exposure to low doses of toxin mixed into artificial diet is discussed in U.S. Pat. No. 20 6,060,039 to Roe et al. which is incorporated herein by reference. Other bioassays are based on survival after exposure to a single, high diagnostic dose of toxin (for example, Diaz-Gomez O, Rodriguez J C, Shelton A M, Lagunes-T A, Bujanos-M R, (2000) Journal of Economic Entomology 93 25 (3): 963–970).

In principle, these bioassay methods can detect resistance no matter what its biochemical or physiological mechanism is. However, they require living, healthy larvae for their use, which are not always available. A more severe limitation on 30 these methods is that, depending on the frequency of resistance genes in the populations, millions of individuals may need to be tested to detect a single resistant larva. High-level resistance to Bt is usually recessive, which means that an resistant. To a very good approximation, the frequency of such homozygous individuals is given by the square of the frequency of the resistance allele. For example, if the resistance allele frequency is one in a thousand, the fremillion. In this example, more than a million larvae would need to be screened to detect resistance.

One solution to this problem is to develop methods for detecting the resistance genes directly. In the example just given, the frequency of heterozygous carriers of one copy of 45 the resistance allele is 2×0.001×0.999 or approximately 2 in a thousand. When resistance is recessive, these individuals would not be identified by bioassay because the one resistance allele they carry is not enough to make them fully resistant. But a direct, DNA-based method for detecting the 50 resistance allele would identify these individuals, and sample sizes on the order of a thousand, rather than a million, would suffice.

The main limitation to developing DNA-based methods for detecting resistance alleles is that, up to now, the identity 55 of resistance-causing genes has been unknown. In spite of much work on Bt toxin mode of action, prior to the invention described herein there has not been a demonstration of which genes, when mutated, actually cause resistance. Accordingly, there is room for variation and improvement in 60 the art of screening assays useful in detecting the presence of genes conferring Bt resistance in natural populations.

SUMMARY OF THE INVENTION

It is one aspect of one of the present inventions to provide a genetic probe to identify and monitor resistance for the

Bt-toxin in target insect populations. One such insect pest is the tobacco budworm (Heliothis virescens) which is a major economic pest of cotton.

It is yet another aspect of one of the present inventions to develop a DNA probe and assay protocol which distinguishes between the conditions of homozygotes and heterozygotes with respect to resistance to Bt in populations of Heliothis virescens and other insects.

It is yet another aspect of one of the present inventions to provide a process and useful sequences in which nucleotide probes are used to monitor the presence of acquired insect resistance associated with a transgenic crop.

It is yet another aspect of one of the present inventions to provide a process and useful nucleotide sequences which are used to monitor population changes in the frequency of alleles which are associated with the resistance to Bt toxin.

These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description and appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

A full and enabling disclosure of the present invention, including the best mode thereof, to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying

FIG. 1 is a QTL map of the Cry1Ac resistance trait on linkage group 9 of Heliothis virescens.

FIG. 2 is a conceptual translation of HevCaLP (s1 allele and r1 allele) in alignment with BmBtR175 of Bombyx mori and BtR1 of Manduca sexta.

FIG. 3 is a northern analysis of mRNA isolated from insect must have two copies of the resistance gene to be 35 susceptible and resistant strains following probing with the gene sequences set forth herein.

> FIG. 4 sets forth the insertion point of the Hel-1 element in the r1 allele of HevCaLP.

FIG. 5 shows the multi-copy occurrence of Hel-1 in quency of homozygous resistant individuals is one in a 40 genomic DNA of resistant and susceptible strains of Heliothis virescens.

BRIEF DESCRIPTION OF THE SEQUENCE LISTINGS

The accompanying sequence ID listings are identified below. The sequence listings appear following the claims and are incorporated herein by reference.

The first sequence 1 identifies SEQ ID NO: 1 which is the DNA sequence of the susceptible allele s1 of HevCaLP.

Sequence 2 is the protein sequence SEQ ID NO: 2 of a conceptual translation of allele s1 as used in the protein alignment to Bombyx and Manduca.

Sequence 3 is the DNA sequence of SEQ ID NO: 3 which is the resistant allele r1 of HevCaLP, including the Hel-1 insert and the duplicated target sequences.

Sequence 4 is the DNA insert identified as SEQ ID NO: 4 for the Hel-1 insert which does not include duplicated target sequences.

Sequence 5, having SEQ ID NO: 5, is a DNA sequence corresponding to the left LTR of the Hel-1 insert.

Sequence 6, having SEQ ID NO: 6, is a DNA sequence corresponding to the right LTR of the Hel-1 insert.

Sequence 7, having SEQ ID NO: 7, is a DNA sequence of primer F1 corresponding to bases 1982 to 2001 of SEQ ID NO: 3.

Sequence 8, having SEQ ID NO: 8, is a DNA sequence corresponding to primer R2 consisting of the reverse complement of bases 4322 to 4351 of SEQ ID NO: 3.

Sequence 9, having SEQ ID NO: 9, is a DNA sequence corresponding to primer R3 consisting of the reverse 5 complement of bases 2029 to 2052 of SEQ ID NO: 3.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Reference now will be made in detail to the embodiments of the invention, one or more examples of which are set forth below. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifi- 15 cations and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment, can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present 20 invention cover such modifications and variations as come within the scope of the appended claims and their equivalents. Other objects, features, and aspects of the present invention are disclosed in the following detailed description. It is to be understood by one of ordinary skill in the art that 25 the present discussion is a description of exemplary embodiments only and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions.

In describing the various figures herein, the same reference numbers are used throughout to describe the same material, apparatus or process pathway. To avoid redundancy, detailed descriptions of much of the apparatus once described in relation to a figure is not repeated in the descriptions of subsequent figures, although such apparatus 35 or process is labeled with the same reference numbers.

Applicants' protocols and procedures may be found in reference to "Identification of a Gene Associated with Bt resistance in Heliothis virescens" which was published in Science, volume 293, pp 857–860, on Aug. 3, 2001; and 40 which is incorporated herein by reference.

A resistant strain of *Heliothis virescens* was previously developed in the laboratory by selection using artificial diet containing various concentrations of Bt toxin (Gould F, Anderson A, Reynolds A, Bumgarner L, Moar W (1995) 45 *Journal of Economic Entomology* 88 (6): 1545–1559). The strain, named YHD2, is 10,000 fold more resistant to the toxin Cry1Ac and is conditioned in a large part by a single recessive gene named BtR-4 which is located in linkage group 9 of *H. virescens*. The initial localization of the 50 resistance gene BtR4 has been reported in the Applicants' prior publication (Heckel D G, Gahan L C, Gould F, Anderson A (1997) *Journal of Economic Entomology* 90: 75–86) and which is incorporated herein by reference.

Further localization of BtR-4 to a particular region of 55 linkage group 9 was carried out using a total of 11 polymorphic markers spanning a length of 105 cM. The markers were scored on a segregating backcross family derived from YHD2 females crossed with susceptible males. The linkage group was scanned for quantitative trait loci (QTLs) conferring Bt resistance following the methods of Lander, E S and Botstein D (1989) *Genetics* 121: 185–193. A single, highly significant peak of the log-likelihood function indicated that the BtR-4 resistance gene is located between A14 and MPI as set forth in FIG. 1.

The cadherin superfamily was chosen as a candidate for BtR-4. Partially degenerate oligonucleotide primers Bmtp5

6

and Bmtp8 as shown in Table 1 were designed based on published sequence of the BtR175 gene from *Bombyx mori* (GenBank Accession No AB026260, described by Nagamatsu Y, Toda S, Koike T, Miyoshi Y, Shigematsu S, Kogure M (1998) *Bioscience, Biotechnology and Biochemistry* 62 (4): 727–734). These primers were used in the polymerase chain reaction (PCR) with cDNA prepared from midgut mRNA of larval *Heliothis virescens*. A PCR product of 334 basepairs designated Hvcad58 was amplified, cloned and sequenced using conventional methodology well-known to those skilled in the art. The sequence of Hvcad58 corresponds to bases 4279 to 4612 of SEQ ID NO: 1.

Radiolabeled Hvcad58 was used to probe Southern filters made from additional segregating backcross families for further mapping on linkage group 9. Finer scale QTL mapping in this region using 268 backcross progeny yielded a single peak of the log-likelihood function directly above the map location of Hvcad58 (FIG. 1). The data clearly indicates that the gene containing Hvcad58 is a strong candidate for the BtR-4 resistance gene.

The Hvcad58 probe was used to screen midgut cDNA libraries made from resistant (YHD2) and susceptible strains of *Heliothis virescens*. Clones recovered from these libraries were sequenced and used to design additional primers to amplify the full-length coding sequence from susceptible cDNA. In addition to the cDNA methods, a five-prime RACE (rapid amplification of cDNA ends) technique was used to complete the full sequence.

The sequencing yielded one transcript (s1) cloned from a susceptible strain as given in SEQ ID NO: 1. Conceptual translation of this transcript produced a protein product (that we have named HevCaLP, Heliothis virescens cadherin-like protein) of 1732 amino acids as given in SEQ ID NO: 2. HevCaLP is 70% identical to the BtR175 protein, sharing a signal sequence at the amino terminus, 11 extra-cellular cadherin-type repeats, a non-cadherin proximal membrane region, a transmembrane region, and a highly conserved cytoplasmic domain at the carboxy terminus as shown in FIG. 2. It shows somewhat less similarity to the BT-R1 protein from Manduca sexta, as given in GenBank Accession No. AAB33758 and reported by Vadlamudi R K, Weber E, Ji I H, Ji T H, and Bulla L A (1995) Journal of Biological Chemistry 270: 5490-5494. The transmembrane and cytoplasmic domains are absent from that sequence of BT-R1.

Expression of the mRNA encoding HevCaLP in susceptible and resistant larval midguts was studied using northern analysis and sequencing of clones from the resistant library. As shown in FIG. 3, susceptible larvae show a single transcript of 5.5 kb. YHD2 larvae show three transcripts. The sequence of the rarest (7.9 kb) is denoted as the r1 allele, and given as set forth in SEQ ID NO: 3. It is similar to the susceptible transcript except for a 2.3 kb insert denoted as Hel-1 as given in the accompanying SEQ ID NO: 4. Hel-1 shows several hallmarks of the LTR-type retrotransposons. Hel-1 has an approximately 255 nucleotide long terminal repeat (LTR) sequence at both ends and an unrelated sequence in the middle. The left LTR sequence, LTRa, is given in SEQ ID NO: 5 and the right LTR sequence, LTRb, is given in SEQ ID NO: 6. Hel-1 is flanked by an 8-nt duplication of the host sequence ACACTGCC, as shown in FIG. 4. The transcript of intermediate abundance (4.4 kb) is an abbreviated form, truncated at the second LTR of Hel-1 by a poly-A tail. The third, highly abundant transcript (2.1 kb), is truncated at the first LTR of Hel-1 by a poly-A tail.

Because of an in-frame stop codon 30 bases into the first LTR of Hel-1, conceptual translation of the three different YHD2 transcripts produces the same truncated 622-aa pro-

tein (as shown in the translation of the r1 allele in FIG. 2). Multiple stop codons in all three reading frames of the LTR follow the initial stop codon, preventing translation of a larger protein containing the carboxy-terminus of HevCaLP. Thus, the predicted protein product of the YHD2 r1 allele (if 5 one is produced) would possess the same signal sequence as HevCaLP (possibly directing its secretion into the midgut lumen) but no predicted transmembrane domain or toxin-binding region.

Genomic Southern blots probed with the LTR region of 10 Hel-1 show that it occurs with a copy number of 10-15 in both YHD2 and susceptible insects (FIG. 5). Insertion of this Hel-1 element into the gene encoding HevCaLP has created the novel, knockout r1 allele which confers resistance when homozygous (present in two copies in an individual insect). 15 This insertion event could have occurred in the laboratory during the Bt-resistance selection protocol that produced YHD2, or may already have been present in the field-collected founders of the selection line. Thus it is now evident that a DNA-based method for detecting Bt resistance 20 in *Heliothis virescens* may be devised, based on detection of the specific insertion of the Hel-1 element into the gene encoding HevCaLP, producing the r1 allele.

To illustrate detection of the r1 allele, a PCR assay was designed using two primers flanking the insertion point (F1 25 and R2) and a third (R3) internal to the left LTR (FIG. 4). Primer F1 consists of bases 1982 to 2001 of SEQ ID NO: 3, 5' ATA CGA GCT GAC GAC ACG CTG GGA GA 3', primer R2 consists of the reverse complement of bases 4322 to 4351 of SEQ ID NO: 3, 5' TCT GAG CGT AGG AGG 30 TGT GTT GTT GAT GTC 3', and primer R3 consists of the reverse complement of bases 2029 to 2052 of SEQ ID NO: 3, 5' GCG CGA TGT GAC AGT CCG GM CAG 3'. Primers F1 and R3 produce a 71-bp band from the r1 allele. Primers F1 and R2 amplify a 99-bp band from s1 or other susceptible 35 alleles lacking the Hel-1 insert. Heterozygotes produce both bands. This is a marked improvement on a conventional bioassay, which would not distinguish heterozygotes from homozygous susceptibles because the resistant allele is recessive. It also confirms that the resistant strain is fixed for 40 the r1 allele, as all YHD2 individuals examined to date have the 71-bp band only. It will be evident to those skilled in the art that the detection method for the r1 alelle is not limited to PCR with these specific primers, and that there are many other molecular methods of detecting the specific insertion 45 of the Hel-1 element into the HevCaLP gene, based on the sequence information disclosed herein.

It is believed that the gene encoding HevCaLP is identical to BtR-4, the major resistance gene in YHD2. Recessivity of the resistant allele at BtR-4 is explained by Hel-1 inactivation of HevCaLP. HevCaLP functions as a "lethal target" of Bt-toxin, since two copies of the disrupted allele are required for 10,000-fold resistance. Heterozygotes still present a "lethal target" since they have one copy of the susceptible allele.

The normal physiological function of HevCaLP is unknown, although other members of the cadherin superfamily are involved in cell adhesion and signalling (T. Uemura (1998) *Cell* 93 (7): 1095–1098). Whatever its function, it is not essential for life, as YHD2 is viable and 60 fertile under laboratory conditions, despite being a "natural knockout" strain for HevCaLP. Whether its absence confers a fitness disadvantage in the field has important implications for resistance management, and this question can now be addressed with the information developed here. Target-site 65 resistance to other insecticides usually involves modification but not knockout of the target, which is generally essential

8

for life (e.g., acetylcholinesterase for organophosphates, sodium channel for pyrethroids, GABA receptor for cyclodienes) (French-Constant R H, Pittendrigh B, Vaughan A, Anthony N (1998) *Philosophical Transactions of the Royal Society of London Series B-Biological Sciences* 353 (1376): 1685–1693,). However, methoprene resistance in *Drosophila melanogaster* provides another example of resistance by gene inactivation (Wilson T G & Ashok M, (1998) *Proceedings of the National Academy of Sciences of the USA* 95 (24): 14040–14044).

The present invention now makes possible the application of molecular methods to Bt-resistance monitoring. We previously estimated the frequency of YHD2-type resistant alleles in field populations of Heliothis virescens prior to widespread planting of transgenic Bt-cotton to be 0.002 (Gould F, Anderson A, Jones A, Sumerford D, Heckel D G, Lopez J, Micinski S, Leonard R, Laster M (1997) Proceedings of the National Academy of Sciences of the USA 94 (8): 3519-3523). This labor-intensive, bioassay-based estimate was derived by testing progeny of more than 1,000 fieldcaught males mated to YHD2 females, for alleles which would confer resistance when heterozygous with r1. Our results now suggest that this estimate covers the entire class of HevCaLP knockouts regardless of the nature of the molecular lesion, as well as other mutants preventing any expressed HevCaLP from functioning as a toxic target. Development of efficient DNA-based methods to detect these other types of mutants at BtR4 should be a high priority and is now possible with the methods described

Only by monitoring allele frequencies at resistance genes like BtR-4 will it be possible to verify that the high-dose/refuge resistance management strategy for Bt-cotton mandated by the US Environmental Protection Agency (EPA) is actually working to keep resistance allele levels low. The present invention affords a new method of complying with EPA regulations which require monitoring resistance levels in *Heliothis virescens*. The present invention provides a nucleic acid probe that will specifically identify genes for resistance in field populations. Further, the probes and protocols set forth herein provide for a method of monitoring the population of homozygous and heterozygous resistant individuals in field populations.

Bt resistance in *Heliothis virescens* caused by other types of mutations that inactivate the HevCaLP gene product may also be screened for using the information provided herein. Such methods may include obtaining portions of the gene or its homologues by cDNA cloning or the polymerase chain reaction, determining the DNA sequence by standard methods, and examining the sequence for the occurrence mutations that may include nucleotide substitution, insertions, or deletions. Such mutations may affect protein sequences encoded by the gene by causing amino acid substitutions, insertions, or deletions as well as incorrect intron splicing, premature chain termination due to nonsense mutations, or errors in the normal initiation or termination of the transcription or translation.

By way of example, DNA or RNA isolated from individual *Heliothis virescens* is used as the template for PCR using primers specifically designed from SEQ ID NO: 1. The PCR products are directly sequenced, or cloned and sequenced, using standard methods. The sequences are examined using commercially available computer programs well known in the art, such as the Wisconsin Genetics Computer Group package. Mutations, such as individual nucleotide substitutions, insertions, or deletions; or insertions or deletions of several nucleotides, are detected by

comparison to SEQ ID NO: 1. Such mutations may alter the amino acid in the protein sequence, leading to reduced binding of Bt toxins to the HevCaLP gene product and thereby conferring resistance. Or such mutations may cause frameshifts or premature occurrence of stop codons, resulting in a truncated or absent protein that fails to bind to Bt toxins and thereby confers resistance.

In the course of this invention, an isolated nucleic acid molecule of the present invention includes a nucleic acid that is at least about 85%, preferably at least about 90%, and 10 still more preferably at least about 95%, and even more preferably at least about 99% identical to the sequence of the susceptible allele s1 of HevCaLP. Additionally, any isolated polynucleotide or naturally occurring polynucleotide that hybridizes to the sequence set forth in SEQ ID NO: 1 at 60° 15 C. in 1×SSC will have properties useful in carrying out the present invention.

Other embodiments of the present invention include isolated nucleic acid molecules that are at least about 85%, preferably at least about 90%, still more preferably at least 20 about 95%, and even more preferably at least about 99%, identical to the sequences set forth in SEQ ID NO: 3 and SEQ ID NO: 4.

Bt resistance in other insect species may also be screened for using the same approach. These species may contain one 25 or more genes homologous to the *Heliothis virescens* Hev-CaLP gene, whose products interact with Bt toxins. Resistance in these other species can be detected by obtaining the sequence of those genes, designing PCR primers, and amplifying and sequencing DNA from individual insects collected 30 from the field or reared in the laboratory. Examination of the sequence for inactivating mutations as described herein will detect Bt resistance in those species. Representative sequences of HevCaLP homologues in other species and which may be used in the screening process described herein 35 include the following:

- Manduca sexta BT-R1, GenBank Accession No.177078, U.S. Pat. No. 5,693,491 (SEQ ID NO: 1) and U.S. Pat. No. 6,007,981 (SEQ ID NO: 1);
- Bombyx mori BtR175, GenBank Accession No. 40 AB026260, described by Nagamatsu Y, Toda S, Koike T, Miyoshi Y, Shigematsu S, Kogure M (1998) Bioscience, Biotechnology and Biochemistry 62 (4): 727–734;
- 3) Pectinophora gossypiella BT-R2, GenBank Accession No. AX150183, Patent Application, International Publi- 45 cation No. WO01/34807 (SEQ ID NO: 1);
- 4) Ostrinia nubilalis, GenBank Accession No. AX147201, Patent application, International Publication No. WO 01/36639 (SEQ ID NO: 1);
- 5) Helicoverpa zea, GenBank Accession No. AX147203, 50 Patent application, International Publication No. WO01/36639 (SEQ ID NO: 3);
- Spodoptera frugiperda, GenBank Accession No. AX147205, Patent application, International Publication No. WO0/136639 (SEQ ID NO: 5); and
- 7) Lymantria dispar BTR-CAD, GenBank Accession No. AF317621.

10

The above identified sequences and the referenced publications are all incorporated herein by reference as is set forth in their entirety.

The current methodology includes detecting resistance to *Bacillus thuringiensis* endotoxin in insect populations by screening for mutations that alter the structure or function of a protein as set forth in SEQ ID NO: 2. For the purposes of screening protocols, it is believed that using the sequence set forth in SEQ ID NO: 2 may include homologues and other species which would display at least 60% similarity to the sequence set forth in SEQ ID NO: 2. More preferably, the sequence similarity is at least about 75%, preferably at least about 80%, more preferably at least about 85%, even more preferably at least about 90%, still more preferably at least about 95%, and even more preferably at least about 99% identical to the amino acid sequence set forth in SEQ. ID. NO: 2.

Several of the mutations in other species detected by this approach may not have an obvious effect of activating the HevCaLP homologue. In that case, evidence that the mutation confers resistance may be obtained by conducting a linkage analysis and mapping the gene as described herein for Heliothis virescens. For that purpose, a strain of the species of interest with the mutation is crossed with a wild-type strain, and the F1 hybrids are intercrossed or backcrossed to one of the parental strains. The F2 or backcross progeny are tested for resistance by any of the bioassay methods described previously and well known in the art, and DNA is isolated from each individual progeny. The DNA is analyzed for the presence of the mutation, using restriction fragment polymorphism analysis, allele-specific PCR, denaturing gradient gel electrophoresis, singlestranded conformation polymorphism, denaturing high-performance liquid chromatography, or any other mutation detection system well known in the art. Evidence that the mutation confers resistance is obtained from the correlation across progeny between presence of the mutation and presence of resistance.

A straightforward extension of this method of detecting Bt- resistance is to examine the DNA sequence of genes encoding other proteins that interact with Bt toxins, including but not limited to aminopeptidases, alkaline phosphatases, elastin-like serine proteases, and peptidoglycans.

All cited references, publications, and sequence listings set forth herein are incorporated by reference in their entirety.

These and other modifications and variations to the present invention may be practiced by those of ordinary skill in the art, without departing from the spirit and scope of the present invention. In addition, it should be understood that aspects of the various embodiments may be interchanged both in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention.

TABLE 1

Primers Used in Determining the Structure of BtR4, the Cadherin-like Polynucleotide in Heliothis virescens

 Bmtp
 5
 -GTR
 CTG
 ACK
 GTT
 AAY
 ATC
 GAG
 CCC
 ACK
 GC-3'

 Smtp
 8
 5'-TAG
 GGG
 YAC
 RTT
 RTC
 SCG
 KAT
 GAA
 GTG
 KCC-3'

 Hvtp05
 5'-AGC
 CCA
 CTG
 CAT
 CTA
 TGC
 ACG
 GCA
 TGT
 TTG
 A-3'

Hvtp08 5'-CCT GAG TTG GGT CTG GTG GTC CCT GGC-3'

TABLE 1-continued

	Primers Used in Determining the Structure of BtR4, the Cadherin-like Polynucleotide in Heliothis virescens
GGp1 CGnotp2	5'-TGT GGA GTC AGC TTC CAT AGA GTC TTG TAT GAG CGT GTA-3' 5'-GAT ACG CGG CCG CAG GTC AGC AGA GCT CTG TTG ATG GTG TCG AGG GTG GAG A-3'
T7p1	5'-TAA GTT GGG TAA CGC GAG GGT TTT CCC AGT GAC-3'
T7p2	5'-GGC CAG TGA ATT GTA ATA CGA CTC ACT ATA GGG CG-3'
T3p1	5'-GAT AAC AAT TTC ACA CAG GAA ACA GCT ATG ACC ATG-3'
T3p2	5'-GAA ATT AAC CAC CCT TAA AGG GAA CAA AAG CTG GAG-3'
CGp3	5'-GGC ACG TTT TTT TCC ACT GAC GGG GTC GTG CG-3'
Cgnotp4	5'-GAT ACG CGG CCG CGG GCA GTC TGA GCG TAG GAG GTG TGT TGA T-3'
RC36T4	5'-GAC GTG TGT TCG CCT GAT CCT AAC TAC T-3'
RC36cg5 RC36cg5+	5'-AGC CTC TTA AAT CCA TAG GGG TCT CCA G-3' 5'-CTG GAG ACC GCT ATG GAT TTA AGA-3'
SC3T6	5'-ATG TTC GAG GTG CTG TAC CTC ACC G-3'
SC3cg7	5'-ACA CGA ACA CAG GAT CGT GGA AGT T-3'
CGp5	5'-TGT ATC TTC TGG AAC TCC GGC ACT TCG AAG TC-3'
CGnotp6	5'-GAT ACG CGG CCG CAT GTG ATG GTT CTG CGT GCC GAC GAT GAA GGA CTG-3'
Sint1	5'-GCT AAG GAC CGG GAT ATT GAT GAT AGA GT-3'
Sint2	5'-CGT GCG GGG CAG TCT GAG AGT AG-3'
RUNI1 RUNI2	5'-CAT ACA CGA CCG CAC GCG CAA CG-3' 5'-TGA GCG CCG AGG TGC AGG TGT AGG-3'
Hvtp13	5'-CTG TAC ACA GCC GGC ATC TCC AC-3'
Hvtp14	5'-CTG GAA GTT GAG GGT CAG CAC TCC AGT-3'
Hvtp15	5'-AAC CGT CGT GTG GAA GCT CT-3'
Hvtp16	5'-TCT TCG ATG CCG ATC AGA TCC GAG TC-3'
Hvtp17	5'-GCG GCG CCG GGC ACC AAC AAG CA-3'
HvA11-RT	5'-AAT AGA TGC TCT TAC ATA ATA CGA GTA TCT TAC-3'
5'R5A4/8	5'-GAT ACG CGG CCG CGA GAA CTA TGA GAT GGC AGT CGA CGT GAG AAT A-3'
HvA11F1	5'-GAA CTA TGA GAT GGC AGT CGA CGT GAG AAT-3'
HvA11F3	5'-TTA ACT TTC GCG CAA GAT TGT TCC TAT ATG-3'
HvA11R2	5'-GAA CTC TGG GCT GAA GGG GGT AGC-3'
HvA11R4	5'-CCC GAA GTT RTT GTT ATG GTT TGC TAC TGA-3'
USTP01	5'-ATG GGC AAC GCA GTT AAC TAC CTG-3'
USTP02	5'-CAT CCT CGT GAC AAT CGA CGA TGC-3'
USTP03	5'-CAG ACA GAA CGA GCT CTT TGT GCA-3' 5'-GCC GTG CAG CAG TTC GAT GAG AAG-3'
F771-5Ksp1 F771-5Ksp2	5'-CTC CCA CTG TAT CAG TAG CCA TCA-3'
738-3.4Ksp1	
738-3.4Ksp2	
738-3.4Ksp3	5'-CCT GAT CAA CTG GAA CGA TGA GCT G-3'
738-3.4Ksp4	5'-CCA AAG TCC ACG GGC GGT TGC GCA C-3'
738-3.8sp6	5'-GTG TAA CGT AGT GTG CTC GTG TAA TGC-3'
738-C10sp8-	
TBR01	5'-GAG ACT AGC ACC TAC ACG GTC GCT-3'
TBR02	5'-TCC AAC GAG CTG TTC CTG CTG ACG-3'
CR9TBR LTR-Pr1	5'-CAC TGT TAC TGT CAA TGT TCG AGA-3' 5'-CAC ACG TCA TCG TGC GCC CCA CCT AAG CTG-3'
LTR-Pr2	5'-CTG GCG CGA CCT CAT AGG CCG GCG CGA TGT-3'
LTR-1.9Ksp1	5'-CGA ATC AGC TGA TTC ATT GTC GCT-3'
LTR-1.9Ksp2	
Rint-Fwd1	5'-ATA CGA GCT GAC GAC ACG CTG GGA GAG CC-3'
Rint-Rev2	5'-TCT GAG CGT AGG AGG TGT GTT GTT GAT GTC-3'
C36RESEQ-F	5'-CCC GGC ACC GAC TCC-3'
C36RESEQ-R	5'-CTC CAT GGT CGT ATG CCT TGA CAT GTA-3'
pc11Fa	5'-GAG ATG GCA GTC GAC GTG AGA ATA CTG A-3'
pc12Fa	5'-CCC GTT TCG CCG TGT TCA GGA ATG TC-3'
pc12Ra	5'-TGG TAC CTC GGT AGT TAA GCC TGG CAA T-3'
pc13Fa	5'-GAA CAC GGC GAA ACG GGC ACC ACA GA-3'
pc13Ra	5'-TGC CAG GCT TAA CTA CCG AGG TAC CA-3'
pc14Fa	5'-AAC CCG CTG CAT TTG TTT AGA GTT ACA G-3'
pc14Ra	5'-CGA ACT GCT GCA CGG CGA AGA TCT CCA T-3'
pc15Ra	5'-TTC CTT CCA CGT CAT TGT CGC CAT ATT T-3'
RintS-F1	5'-ATA CGA GCT GAC GAC ACG CTG GGA GA-3'
RintS-R2	5'-TCT GAG CGT AGG AGG TGT GTT GTT GTC-3'
RintR-R3	5'-GCG CGG ANG CGC CGA MCM ACM CMM 2'
RintR-F4	5'-ACG CGC AAC GCG CGA TCT ACT CTT-3'

SEQUENCE LISTING

<160)> NU	IMBER	OF	SEQ	ID N	ios:	16								
<210> SEQ ID NO 1 <211> LENGTH: 5355 <212> TYPE: DNA <213> ORGANISM: Heliothis virescens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (10)(5205)															
<400)> SE	QUEN	ICE:	1											
aact	atga										ır A.			g att eu Ile	51
						gtc Val									99
						cca Pro									147
						ccc Pro									195
	_	_				gac Asp	_	_	-	_			_	_	243
						atc Ile 85									291
						act Thr									339
				_	_	ggg ggg	_	-		-					387
						gtt Val									435
						atc Ile									483
Gln				Val	Met	ctc Leu 165	Ile		Val		Ile				531
						gag Glu									579
						aag Lys									627
						acg Thr									675
						gtc Val									723
						atc Ile 245									771

								gct Ala							819		
								gta Val 280							867		
								gtg Val							915		
			-			-		atc Ile	-		-	-			963		
								act Thr							1011		
								ggt Gly							1059		
	-	-			-	 -		cta Leu 360	-	_	-	-			1107		
								gac Asp		_		-		_	1155		
								gtc Val							1203		
	-	_		_			-	cct Pro					-		1251		
								tta Leu							1299		
								tac Tyr 440							1347		
		_						ttc Phe				_			1395		
								ggc Gl y							1443		
								aag Lys							1491		
								gtt Val							1539		
								ctg Leu 520							1587		
								gag Glu							1635		
								att Ile							1683		
		_			_			ctg Leu	_		-		_		1731		

	_				aca Thr 580		_	_	_					_	_	1779		
					cag Gln		-	-	-	-	-	-			-	1827		
					gcc Ala											1875		
					ctc Leu											1923		
			_	-	ggg ggg							_		-		1971		
					gcc Ala 660											2019		
Ser	Tyr	Ala	Thr	L y s 675	cag Gln	Gly	Arg	Asp	Ala 680	Asp	Ala	Glu	Glu	Phe 685	Val	2067		
Asn	Cys	Ile	Glu 690	Ile	gag Glu	Thr	Val	Tyr 695	Pro	Asn	Leu	Asn	Asp 700	Arg	Gly	2115		
Thr	Ala	Ile 705	Gly	Arg	gtg Val	Val	Val 710	Arg	Glu	Ile	Arg	Glu 715	His	Val	Thr	2163		
Ile	Asp 720	Tyr	Glu	Met	Phe	Glu 725	Val	Leu	Tyr	Leu	Thr 730	Val	Arg	Val	Thr	2211		
Asp 735	Leu	Asn	Thr	Val	att Ile 740	Gly	Asp	Asp	Tyr	Asp 745	Ile	Ser	Thr	Phe	Thr 750	2259		
Ile	Ile	Ile	Ile	Asp 755	Met	Asn	Asp	Asn	Pro 760	Pro	Leu	Trp	Val	Glu 765	Gly	2307		
Thr	Leu	Thr	Gln 770	Glu	Phe	Arg	Val	Arg 775	Glu	Val	Ala	Ala	Ser 780	Gly	Val	2355		
Val	Ile	Gly 785	Ser	Val	Leu	Āla	Thr 790	Āsp	Ile	Asp	Gly	Pro 795	Leu	Tyr	Asn	2403		
Gln	Val 800	Arg	Tyr	Thr	atc Ile	Thr 805	Pro	Arg	Leu	Asp	Thr 810	Pro	Glu	Asp	Leu	2451		
Val 815	Glu	Ile	Asp	Phe	aat Asn 820 gag	Ser	Gly	Gln	Ile	Ser 825	Val	Lys	Lys	His	Gln 830	2499		
Āla	Ile	Asp	Ala	Asp 835	Glu tgc	Pro	Pro	Arg	Gln 840	His	Leu	Tyr	Tyr	Thr 845	Val	2547		
Val	Ala	Ser	Asp 850	Lys	Cys	Asp	Leu	Leu 855	Ser	Val	Asp	Val	Cys 860	Pro	Pro	2643		
Asp	Pro	Asn 865	Tyr	Phe	Asn	Thr	Pro 870	Gly	Asp	Ile	Thr	Ile 875	His	Ile	Thr	2691		
					Val											2071		

	880					885					890							
									gac Asp							2739		
									gaa Glu 920							2787		
									cgt Arg							2835		
									gtc Val							2883		
									acg Thr							2931		
									gat Asp							2979		
							_	Leu	gac Asp 1000			-	Asn		-	3027		
Glu	Leu	Pro	Glu 1010	Gly	Leu	Ser	Trp	Asp 1015	atc Ile	Ser	Glu	Gly 1	Leu 1020	Leu	Gln	3075		
Gly	Val	Arg 1025	Val	Thr	Pro	Asp	Ile 1030	Phe	gcc Ala	Pro	Asp	Arg 1035	Asp	Glu	Pro	3123		
Gly 1	Thr 1040	Asp	Asn	Ser	Arg	Val 1045	Ala	Tyr	gac Asp	Ile	Val 1050	Ser	Leu	Ser	Pro	3171		
Thr 1055	Asp	Arg	Asp	Ile	Thr 1060	Leu	Pro	Gln		Phe 1065	Thr	Met	Ile	Thr	Ile 1070	3219		
Glu	Lys	Asp	Arg	Gly 1075	Ile	Asp	Gln	Thr	gga Gly 1080	Glu	Leu	Glu	Thr	Ala 1085	Met	3267		
		Arg					Thr		gaa Glu			Val				3315		
Asp	His 1	Gly 1105	Val	Pro	Gln	Arg	Ile 1110	Ser	tac Tyr	Glu	Lys	Ty r 1115	Pro	Leu	Val	3363		
Ile 1	Arg	Pro	Tyr	Asn	Phe	His 1125	Asp	Pro	gtg Val	Phe	Val 1130	Phe	Pro	Gln	Pro	3411		
	Met			Arg					cga Arg					Ğĺy		3459		
			Val					Leu	gag Glu 1160				Āla			3507		
		Gly					Val		acc Thr			Ile				3555		
	Glu					Phe			ttt Phe		Asp					3603		
ggt	gcg	ctg	acc	atc	acg	cag	ctc	ttc	cct	gaa	gac	ttc	cga	gag	ttt	3651		

Gly Ala Leu Thr Ile Thr Glr 1200 1205	n Leu Phe Pro Glu Asp Phe Arg Glu Phe 5 1210	
	g gat ggt ggt acg gag cct ggt cca agg r Asp Gly Gly Thr Glu Pro Gly Pro Arg 1225 1230	3699
	c gta gtg ttt gtg cct acg cag gga gag r Val Val Phe Val Pro Thr Gln Gly Glu 1240 1245	3747
	c tac acg gtc gct ttt atc gag aaa gat r Tyr Thr Val Ala Phe Ile Glu Lys Asp 1255 1260	3795
	c acg ctg cct ctc gcc aag gac ccg cgt a Thr Leu Pro Leu Ala Lys Asp Pro Arg 1270 1275	3843
	Cys His Asp Thr Tyr Tyr Ser Ile Val	3891
	c ttt gcg gtg gac cct cag tcc aac gag s Phe Ala Val Asp Pro Gln Ser Asn Glu 1305 1310	3939
	g gag cgc gcg gag cag gag acg cac acc 1 Glu Arg Ala Glu Gln Glu Thr His Thr 1320 1325	3987
	c tcg ccc agc cca gcc gcc gtg ctg cag o Ser Pro Ser Pro Ala Ala Val Leu Gln 1335 1340	4035
	gtc aat gtt cga gaa gca aac ccg cgg r Val Asn Val Arg Glu Ala Asn Pro Arg 1350 1355	4083
	Tyr Thr Ala Gly Ile Ser Thr Leu Asp	4131
	a acg cta cac gcg act cat tca gaa ggc 1 Thr Leu His Ala Thr His Ser Glu Gly 1385 1390	4179
	g gta caa gac too atg gaa got gac too 1 Val Gln Asp Ser Met Glu Ala Asp Ser 1400 1405	4227
	g aca gcc ttc aac ttg aac cct cag act 1 Thr Ala Phe Asn Leu Asn Pro Gln Thr 1415 1420	4275
	c cag ccc aca gca tct atg cac ggc atg e Gln Pro Thr Ala Ser Met His Gly Met 1430 1435	4323
	a Thr Asp Thr Val Gly Glu Thr Ala Arg	4371
	g ata tcc gac cgc aac aga gtg ttc ttc 1 Ile Ser Asp Arg Asn Arg Val Phe Phe 1465 1470	4419
, , ,	a gaa gtc gaa ccg aat gaa gat ttc ata 1 Glu Val Glu Pro Asn Glu Asp Phe Ile 1480 1485	4467
	c ttc ggc atg cgg tgc aac atc gac cag e Phe Gly Met Arg Cys Asn Ile Asp Gln 1495 1500	4515
	c gcc acc ggc gcc gcc agg gac gac cag o Ala Thr Gly Ala Ala Arg Asp Asp Gln 1510 1515	4563

-continued	
acc gaa gtc agg gca cac ttc ata cgc gac gac ctg cct gta cct gct Thr Glu Val Arg Ala His Phe Ile Arg Asp Asp Leu Pro Val Pro Ala 1520 1525 1530	4611
gag gag atc gaa caa tta cgc ggc aac ccg acc cta gtg gcg acc atc Glu Glu Ile Glu Gln Leu Arg Gly Asn Pro Thr Leu Val Ala Thr Ile 1535 1540 1545 1550	4659
cag aac gcc ctg cag gag gag aac ctg aac ctg gcc gac ctg ttc acg Gln Asn Ala Leu Gln Glu Glu Asn Leu Asn Leu Ala Asp Leu Phe Thr 1555 1560 1565	4707
ggc gag act ccc atc ctg ggc ggc gag gcg cag gcg cgg gcc tat Gly Glu Thr Pro Ile Leu Gly Gly Glu Ala Gln Ala Arg Ala Val Tyr 1570 1575 1580	4755
gct ctc gcg gcg gtg gcg gct gcg ctc gcg ctg ct	4803
ctt ata ctc ttc ttc atc agg act agg gcc ctc aac cgt cgc ctg gaa Leu Ile Leu Phe Phe Ile Arg Thr Arg Ala Leu Asn Arg Arg Leu Glu 1600 1605 1610	4851
gcc cta tcc atg acc aag tac agt tcc caa gac tca gga ctc aac cgc Ala Leu Ser Met Thr Lys Tyr Ser Ser Gln Asp Ser Gly Leu Asn Arg 1615 1620 1625 1630	4899
gtg ggt ctg gcg gcg ccg ggc acc aac aag cac gcg gtg gag ggc tcc Val Gly Leu Ala Ala Pro Gly Thr Asn Lys His Ala Val Glu Gly Ser 1635 1640 1645	4947
aac ccc atc tgg aac gaa act ctt aag gca ccg gac ttt gat gct ctt Asn Pro Ile Trp Asn Glu Thr Leu Lys Ala Pro Asp Phe Asp Ala Leu 1650 1655 1660	4995
agc gag cag tcg tac gac tcg ggt ctg atc ggc atc gaa gac ttg ccg Ser Glu Gln Ser Tyr Asp Ser Gly Leu Ile Gly Ile Glu Asp Leu Pro 1665 1670 1675	5043
cag ttc agg aac gac tac ttc ccg cct gac gag gag agc tcc atg cgg Gln Phe Arg Asn Asp Tyr Phe Pro Pro Asp Glu Glu Ser Ser Met Arg 1680 1685 1690	5091
gga gtc gtc aat gaa cac atg cct gga gct aat tca gta gca aac cat Gly Val Val Asn Glu His Met Pro Gly Ala Asn Ser Val Ala Asn His 1695 1700 1705 1710	5139
aac aat aac ttc ggg ttc aac gct acc ccc ttc agc cca gag ttc gcg Asn Asn Asn Phe Gly Phe Asn Ala Thr Pro Phe Ser Pro Glu Phe Ala 1715 1720 1725	5187
aac tcg cag ctc agg aga taaaacatta tagtattttt tatataatat Asn Ser Gln Leu Arg Arg 1730	5235
tataaagaag tgatataacg cactaaaatt tacctataag tatatattga agtgtaagat	5295
actcgtatta tgtaagagca tctattttt taccaccaga caataaaaac tttataaaag	5355
<210> SEQ ID NO 2 <211> LENGTH: 1732 <212> TYPE: PRT <213> ORGANISM: Heliothis virescens	
<400> SEQUENCE: 2	
Met Ala Val Asp Val Arg Ile Leu Thr Ala Ala Val Leu Ile Leu Ala 1 5 10 15	
Ala His Leu Thr Val Ala Gln Asp Cys Ser Tyr Met Val Ala Ile Pro 20 25 30	
Arg Pro Glu Arg Pro Asp Phe Pro Asn Gln Asn Phe Glu Gly Val Pro 35 40 45	
Trp Ser Gln Asn Pro Leu Leu Pro Ala Glu Asp Arg Glu Asp Val Cys 50 55 60	

Met 65	Asn	Ala	Phe	Asp	Pro 70	Ser	Ala	Leu	Asn	Pro 75	Val	Thr	Val	Ile	Phe 80
Met	Glu	Glu	Glu	Ile 85	Glu	Gly	Asp	Val	Ala 90	Ile	Ala	Arg	Leu	Asn 95	Tyr
Arg	Gly	Thr	Asn 100	Thr	Pro	Thr	Val	Val 105	Thr	Pro	Phe	Asn	Phe 110	Gly	Thr
Phe	His	Leu 115	Leu	Gly	Pro	Val	Ile 120	Arg	Arg	Ile	Pro	Glu 125	Gln	Gly	Gly
Asp	Trp 130	His	Leu	Val	Ile	Thr 135	Gln	Arg	Gln	Asp	Ty r 140	Glu	Thr	Pro	Asn
Met 145	Gln	Gln	Tyr	Ile	Phe 150	Asn	Val	Arg	Val	Glu 155	Asp	Glu	Pro	Gln	Glu 160
Ala	Thr	Val	Met	Leu 165	Ile	Ile	Val	Asn	Ile 170	Asp	Asp	Asn	Ala	Pro 175	Ile
Ile	Gln	Met	Phe 180	Glu	Pro	Cys	Asp	Ile 185	Pro	Glu	His	Gly	Glu 190	Thr	Gly
Thr	Thr	Glu 195	Cys	Lys	Tyr	Val	Val 200	Ser	Asp	Ala	Asp	Gly 205	Glu	Ile	Ser
Thr	Arg 210	Phe	Met	Thr	Phe	Gln 215	Ile	Glu	Ser	Asp	Arg 220	Asn	Asp	Glu	Glu
Ty r 225	Phe	Glu	Leu	Val	Arg 230	Glu	Asn	Ile	Gln	Gly 235	Gln	Trp	Met	Tyr	Val 240
His	Met	Arg	Leu	Ile 245	Leu	Asn	Lys	Pro	Leu 250	Asp	Tyr	Glu	Glu	Asn 255	Pro
Leu	His	Leu	Phe 260	Arg	Val	Thr	Ala	Leu 265	Asp	Ser	Leu	Pro	Asn 270	Val	His
Thr	Val	Thr 275	Met	Met	Val	Gln	Val 280	Glu	Asn	Ile	Glu	Ser 285	Arg	Pro	Pro
Arg	Trp 290	Met	Glu	Ile	Phe	Ala 295	Val	Gln	Gln	Phe	Asp 300	Glu	Lys	Thr	Ala
Gln 305	Ala	Phe	Arg	Val	Arg 310	Ala	Ile	Asp	Gly	Asp 315	Thr	Gly	Ile	Asp	L y s 320
Pro	Ile	Phe	Tyr	Arg 325	Ile	Glu	Thr	Glu	Glu 330	Ser	Glu	Lys	Asp	Leu 335	Phe
Ser	Val	Glu	Thr 340	Ile	Gly	Ala	Gly	Arg 345	Glu	Gly	Ala	Trp	Phe 350	Lys	Val
Ala	Pro	Ile 355	Asp	Arg	Asp	Thr	Leu 360	Glu	Lys	Glu	Val	Phe 365	His	Val	Ser
Leu	Ile 370	Ala	Tyr	Lys	Tyr	Gl y 375	Asp	Asn	Asp	Val	Glu 380	Gly	Ser	Pro	Ser
Phe 385	Glu	Ser	Lys	Thr	Asp 390	Ile	Val	Ile	Ile	Val 395	Asn	Asp	Val	Asn	Asp 400
Gln	Ala	Pro	Val	Pro 405	Phe	Arg	Pro	Ser	Ty r 410	Tyr	Ile	Glu	Ile	Met 415	Glu
Glu	Ala	Ala	Met 420	Thr	Leu	Asn	Leu	Glu 425	Asp	Phe	Gly	Phe	His 430	Asp	Arg
Gly	Leu	Gly 435	Pro	His	Ala	Gln	Tyr 440	Thr	Val	His	Leu	Glu 445	Ser	Ile	Ser
Pro	Ala 450	Gly	Ala	His	Glu	Ala 455	Phe	Tyr	Ile	Ala	Pro 460	Glu	Val	Gly	Tyr
Gln 465	Arg	Gln	Ser	Phe	Ile 470	Val	Gly	Thr	Gln	Asn 475	His	His	Met	Leu	Asp 480

Phe	Glu	Val	Pro	Glu 485	Phe	Gln	Lys	Ile	Gln 490	Leu	Arg	Ala	Val	Ala 495	Ile
Asp	Met	Asp	Asp 500	Pro	Arg	Trp	Val	Gly 505	Ile	Ala	Ile	Ile	Asn 510	Ile	Asn
Leu	Ile	Asn 515	Trp	Asn	Ąsp	Glu	Leu 520	Pro	Ile	Phe	Glu	His 525	Asp	Val	Gln
Thr	Val 530	Thr	Phe	Lys	Glu	Thr 535	Glu	Gly	Ala	Gly	Phe 540	Arg	Val	Ala	Thr
Val 545	Leu	Ala	Lys	qaA	Arg 550	Asp	Ile	Asp	Asp	Arg 555	Val	Glu	His	Ser	Leu 560
Met	Gly	Asn	Ala	Val 565	Asn	Tyr	Leu	Ser	Ile 570	Asp	Lys	Asp	Thr	Gly 575	qaA
Ile	Leu	Val	Thr 580	Ile	Asp	Asp	Ala	Phe 585	Asn	Tyr	His	Arg	Gln 590	Asn	Glu
Leu	Phe	Val 595	Gln	Ile	Arg	Ala	Asp 600	Asp	Thr	Leu	Gly	Glu 605	Pro	Tyr	Asn
Thr	Asn 610	Thr	Ala	Gln	Leu	Val 615	Ile	Gln	Leu	Gln	Asp 620	Ile	Asn	Asn	Thr
Pro 625	Pro	Thr	Leu	Arg	Leu 630	Pro	Arg	Thr	Thr	Pro 635	Ser	Val	Glu	Glu	Asn 640
Val	Pro	Asp	Gly	Phe 645	Val	Ile	Pro	Thr	Glu 650	Leu	His	Ala	Thr	Asp 655	Pro
Asp	Thr	Thr	Ala 660	Glu	Leu	Arg	Phe	Ser 665	Ile	Asp	Trp	Asp	Thr 670	Ser	Tyr
Ala	Thr	Lys 675	Gln	Gly	Arg	Asp	Ala 680	Asp	Ala	Glu	Glu	Phe 685	Val	Asn	Cys
Ile	Glu 690	Ile	Glu	Thr	Val	Ty r 695	Pro	Asn	Leu	Asn	Asp 700	Arg	Gly	Thr	Ala
Ile 705	Gly	Arg	Val	Val	Val 710	Arg	Glu	Ile	Arg	Glu 715	His	Val	Thr	Ile	Asp 720
Tyr	Glu	Met	Phe	Glu 725	Val	Leu	Tyr	Leu	Thr 730	Val	Arg	Val	Thr	Asp 735	Leu
Asn	Thr	Val	Ile 740	Gly	Asp	Asp	Tyr	Asp 745	Ile	Ser	Thr	Phe	Thr 750	Ile	Ile
Ile	Ile	A sp 755	Met	Asn	Asp	Asn	Pro 760	Pro	Leu	Trp	Val	Glu 765	Gly	Thr	Leu
Thr	Gln 770	Glu	Phe	Arg	Val	Arg 775	Glu	Val	Ala	Ala	Ser 780	Gly	Val	Val	Ile
Gl y 785	Ser	Val	Leu	Ala	Thr 790	Asp	Ile	Asp	Gly	Pro 795	Leu	Tyr	Asn	Gln	Val 800
Arg	Tyr	Thr	Ile	Thr 805	Pro	Arg	Leu	Asp	Thr 810	Pro	Glu	Asp	Leu	Val 815	Glu
Ile	Asp	Phe	Asn 820	Ser	Gly	Gln	Ile	Ser 825	Val	Lys	Lys	His	Gln 830	Ala	Ile
Asp	Ala	Asp 835	Glu	Pro	Pro	Arg	Gln 840	His	Leu	Tyr	Tyr	Thr 845	Val	Val	Ala
Ser	Asp 850	Lys	Cys	Asp	Leu	Leu 855	Ser	Val	Asp	Val	C y s 860	Pro	Pro	Asp	Pro
Asn 865	Tyr	Phe	Asn	Thr	Pro 870	Gly	Asp	Ile	Thr	Ile 875	His	Ile	Thr	Asp	Thr 880
Asn	Asn	Arg	Val	Pro 885	Arg	Val	Glu	Glu	Asp 890	Lys	Phe	Glu	Glu	Ile 895	Val
Tyr	Ile	Tyr	Glu	Gly	Ala	Glu	Asp	Gly	Glu	His	Val	Val	Gln	Leu	Phe

			900					905					910		
Ala	Ser	Asp 915	Leu	Asp	Arg	Asp	Glu 920	Ile	Tyr	His	Lys	Val 925	Ser	Tyr	Gln
Ile	Asn 930	Tyr	Ala	Ile	Asn	Pro 935	Arg	Leu	Arg	Asp	Phe 940	Phe	Glu	Val	Asp
Leu 945	Glu	Thr	Gly	Leu	Val 950	Tyr	Val	Asn	Asn	Thr 955	Ala	Gly	Glu	Lys	Leu 960
Asp	Arg	Asp	Gly	Asp 965	Glu	Pro	Thr	His	Arg 970	Ile	Phe	Phe	Asn	Val 975	Ile
Asp	Asn	Phe	Ty r 980	Gly	Glu	Gly	Asp	Gl y 985	Asn	Arg	Asn	Gln	Asp 990	Glu	Thr
Gln	Val	Leu 995	Val	Val	Leu		Asp 000	Ile	Asn	Asp		Ty r .005	Pro	Glu	Leu
	Glu .010	Gly	Leu	Ser		Asp 1015	Ile	Ser	Glu		Leu .020	Leu	Gln	Gly	Val
Arg 1025		Thr	Pro	Asp 1	Ile 1030	Phe	Ala	Pro		Arg .035	Asp	Glu	Pro		Thr .040
Asp	Asn	Ser		Val 1045	Ala	Tyr	Asp		Val .050	Ser	Leu	Ser		Thr .055	Asp
Arg	Asp		Thr .060	Leu	Pro	Gln		Phe .065	Thr	Met	Ile		Ile .070	Glu	Lys
Asp		Gly .075	Ile	Asp	Gln		Gly .080	Glu	Leu	Glu		Ala .085	Met	Asp	Leu
	Gly .090	Tyr	Trp	Gly		Ty r 1095	Glu	Ile	His		Lys .100	Ala	Tyr	Asp	His
Gl y 1105		Pro	Gln	Arg	Ile 1110	Ser	Tyr	Glu		Ty r 115	Pro	Leu	Val		Arg .120
Pro	Tyr	Asn		His 1125	Asp	Pro	Val		Val 130	Phe	Pro	Gln		Gly .135	Met
Thr	Ile		Leu .140	Ala	Lys	Glu		Ala .145	Val	Val	Asn		Val .150	Leu	Ala
Thr		Asp .155	Gly	Glu	Phe		Glu .160	Arg	Ile	Val		Thr .165	Asp	Glu	Asp
	Leu .170	His	Ala	Gly		Val 175	Thr	Phe	Ser		Ser .180	Gly	Asp	Asp	Glu
Ala 1185		Gln	Tyr	Phe	Asp 1190	Val	Phe	Asn		Gl y .195	Val	Asn	Leu		Ala .200
Leu	Thr	Ile		Gln 1205	Leu	Phe	Pro		Asp 210	Phe	Arg	Glu		Gln .215	Val
Thr	Ile		Ala .220	Thr	Asp	Gly		Thr .225	Glu	Pro	Gly		Arg .230	Ser	Thr
Asp		Thr 235	Ile	Thr	Val		Phe .240	Val	Pro	Thr		Gly .245	Glu	Pro	Val
	Glu .250	Thr	Ser	Thr	-	Thr 1255	Val	Ala	Phe		Glu 260	Lys	Asp	Ala	Gly
Met 1265		Glu	Arg	Ala 1	Thr 1270	Leu	Pro	Leu		Lys .275	Asp	Pro	Arg		Ile .280
Met	Cys	Glu		A sp 1285	Cys	His	Asp		Ty r 290	Tyr	Ser	Ile		Gl y .295	Gly
Asn	Ser		Gly .300	His	Phe	Ala		Asp .305	Pro	Gln	Ser		Glu 310	Leu	Phe
Leu		Thr .315	Pro	Leu	Glu		Ala .320	Glu	Gln	Glu		His .325	Thr	Leu	Ile

-continued

Ile Gly		Ser	Asp		Pro 1335	Ser	Pro	Ala		Val 1340	Leu	Gln	Ala	Ser
Thr Let 1345	Thr	Val		Val 1350	Asn	Val	Arg		Ala 1355	Asn	Pro	Arg		Val .360
Phe Glr	Ser		Leu 1365	Tyr	Thr	Ala		Ile 1370	Ser	Thr	Leu		Thr .375	Ile
Asn Ar		Leu 1380	Leu	Thr	Leu		Ala 1385	Thr	His	Ser		Gl y 1390	Leu	Pro
Val Thi	Ty r 1395	Thr	Leu	Val		Asp L400	Ser	Met	Glu		Asp 1405	Ser	Thr	Leu
Gln Ala		Gln	Glu		Ala L415	Phe	Asn	Leu		Pro 1420	Gln	Thr	Gly	Val
Leu Thi 1425	Leu	Asn		Gln 1430	Pro	Thr	Ala		Met L435	His	Gly	Met		Glu .440
Phe Asp	Val		Ala 1445	Thr	Asp	Thr		Gl y L450	Glu	Thr	Ala		Thr .455	Glu
Val Lys		Ty r 1460	Leu	Ile	Ser		Arg L465	Asn	Arg	Val		Phe 1470	Thr	Phe
Met Asr	Thr 1475	Leu	Glu	Glu		Glu 1480	Pro	Asn	Glu	-	Phe 1485	Ile	Ala	Glu
Thr Phe		Leu	Phe		Gly L495	Met	Arg	Суѕ		Ile 1500	Asp	Gln	Ala	Leu
Pro Ala 1505	. Ser	Asp		Ala 1510	Thr	Gly	Ala		Arg L515	Asp	Asp	Gln		Glu 520
Val Ar	Ala		Phe 1525	Ile	Arg	Asp		Leu 1530	Pro	Val	Pro		Glu .535	Glu
Ile Glu		Leu 1540	Arg	Gly	Asn		Thr 1545	Leu	Val	Ala		Ile 1550	Gln	Asn
Ala Leu	Gln 1555	Glu	Glu	Asn		Asn 1560	Leu	Ala	Asp		Phe 1565	Thr	Gly	Glu
Thr Pro		Leu	Gly		Glu 1575	Ala	Gln	Ala		Ala 1580	Val	Tyr	Ala	Leu
Ala Ala 1585	val	Ala		Ala 1590	Leu	Ala	Leu		C y s 1595	Val	Val	Leu		Ile .600
Leu Phe	Phe		Arg 1605	Thr	Arg	Ala		Asn 1610	Arg	Arg	Leu		Ala .615	Leu
Ser Met		L y s 1620	Tyr	Ser	Ser		Asp 1625	Ser	Gly	Leu		Arg 1630	Val	Gly
Leu Ala	Ala 1635	Pro	Gly	Thr		L y s 1640	His	Ala	Val		Gl y 1645	Ser	Asn	Pro
Ile Trp 1650		Glu	Thr		L y s 1655	Ala	Pro	Asp		Asp 1660	Ala	Leu	Ser	Glu
Gln Sei 1665	Tyr	Asp		Gl y 1670	Leu	Ile	Gly		Glu 1675	Asp	Leu	Pro		Phe .680
Arg Asr	Asp		Phe 1685	Pro	Pro	Asp		Glu 1690	Ser	Ser	Met		Gly .695	Val
Val Asr		His 1700	Met	Pro	Gly		Asn L705	Ser	Val	Ala		His 1710	Asn	Asn
Asn Phe	Gl y 1715	Phe	Asn	Ala		Pro 1720	Phe	Ser	Pro		Phe 1725	Ala	Asn	Ser

Gln Leu Arg Arg 1730

-continued

<211> LENGTH: 7799 <212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 3 qatcqactaq tqaattqttq tttcaaaaaa qcaaqaaatt acqtaqttct aaaaataaaa 60 gtgtttttgt gtaaagtgta gtgctaaaga acttggcatt gtttgaagag gattaaaagg 120 agtccaaatt gatcacacgc aggtggatct accaggctag agacacgaga tacgacagag 180 tgagaactat gagatggcag tcgacgtgag aatactgacg gcagcggtat tgattctcgc 240 tgctaattta actttcgcgc aagattgttc ctatatggta gcaattccca gaccagagcg 300 accagacttt cctaatcaaa atttcgaagg agtaccatgg agtcagaacc ctctattacc 360 agcggaggat agggaagatg tgtgcatgaa cgcgtttgat ccaagtgcct tgaaccccgt 420 caccgtcatc ttcatggagg aggagatcga aggggacgtg gccattgcca ggcttaacta 480 ccgaggtacc aatactccga ccgtggtaac tccatttaac tttggtacct tccacttgtt 540 600 ggggccggtc atacgtagga tccccgagca agggggggac tggcatcttg ttattacgca gaggcaggac tatgagaccc cgaacatgca gcagtatatc ttcaacgtga gggtagaaga 660 tgagccccag gaagccactg tgatgctcat cattgtcaac atcgacgaca acgctcctat 720 gatacagatg ttcgagcctt gtgacattcc tgaacacggc gaaacgggca ccacagaatg 780 caagtccgtg gtgagcgatg ctgacggcga gatcagcaca cgtttcatga cgttcgaaat 840 cgagagcgat cgaaacgacg aagaatattt cgaacttgtc agagagaata ttcagggaca 900 960 qtqqatqtac qtccatatqa qqctcatcct caacaaacct ctqqactatq aqqaaaaccc 1020 gctgcatttg tttagagtta cagctttgga ttccctaccg aacgttcata cagtgactat gatggtgcaa gtcgagaaca tagagagcag accgccgcgg tggatggaga tcttcgccgt 1080 gcagcagttc gatgagaaga cagcacaatc cttcagggtt cgagccatcg atggagacac 1140 1200 gggaatcgat aaacctattt tctataggat cgaaactgaa gaaagcgaga aagatctgtt cagtgttgaa acaatagggg ctggtcggga aggtgcttgg tttaaaagtcg ctccaataga 1260 cagagacacc cttgaaaagg aagttttcca cgtgtctcta attgcgtaca aatatggcga 1320 1380 taatgacgtg gaaggaagtc cgtcatttga gtcgaaaacc gatatcgtca tcattgtgaa 1440 cgacgtgaat gatcaggcgc cggtgccttt ccgtccgtca tacttcattg aaatcatgga ggaaactgcg atgacactta atttggaaga ctttggtttc cacgatagag atcttggtcc 1500 gcacgcgcag tacacagtgc acctggagag catccacccg gcgggagcgc acgaggcgtt 1560 ctacatcgcg ccggaggtgg gctaccagcg acagtccttc atcgtcggca cgcagaacca 1620 tcacatgctc gacttcgaag tgccagagtt ccagaagata caacttaggg tggtagccat 1680 agacatggac gatccgaggt gggttggtat cgcgattata aacattaacc tgatcaactg 1740 gaacgatgag ctgccgatct tcgagcacga tgtgcagact gtcaccttca aggagacgga 1800 gggcgctggc ttccgtgtcg ccactgtact ggctaaggac cgggatattg atgatagagt 1860 cgaacactct ctaatgggca acgcagtcaa ctacctgagt atcgacaaag acaccggcga 1920 catcctcgtg acaatcgacg atgcattcaa ctatcacaga caaaacgagc tctttgtgca 1980 gatacgagct gacgacacgc tgggagagcc gtacaacacc aacactgcct gttccggact 2040 gtcacatcgc gccggcctat gaggtcgcgc cagcacacgt catcgtgcgc cccacctaag 2100 ctgggccctc accatacgcc ggacccccgg acactcgctc agcgaccccg gtcgcgcata 2160

<210> SEQ ID NO 3

cacgaccgca	cgggcaacgc	gcgattttct	cttgtacata	cttcaataca	gtcttctttg	2220
caaatcgaag	tttcattgaa	ccgccgagac	catcatccta	catctggacc	tcggcgctca	2280
agcattggtc	cctcgcaaga	actgaaccga	acaggagaag	tcgtcttgca	agctgcgcaa	2340
ccgcccgtgg	actttggact	ggtcacccgc	ctctgcgact	tacgcgtcgt	catcgcatcg	2400
tggaggacta	gtggggacgt	gtctacccgg	aaggaaggaa	catactgagt	gagtccgttc	2460
cgatatccct	ttgaattcct	gtcgttattc	ccttgtatcc	aggaatccag	gaatttaaag	2520
ggcttcttac	attgatcagg	catattgatc	tcttcataca	tcttatttct	tacgcttacg	2580
tactaaattc	ataaatctat	aaacttttgc	acataagttc	gttatctttt	aaacagtaga	2640
ttctttgttc	atttgcatta	cgtaaacaag	ctcattagcg	agcggcttag	cgaaccggtt	2700
tctaaacccg	gtcgttcgct	tcgaatcagc	tgattcattg	tcacttgcct	atttaaacat	2760
tttatttcat	atttaacgtt	tttttctttg	tttgtttatt	ttattttatt	ttcattcttc	2820
cacgtttgct	ttcttgctta	aagtatggct	gatgcaacgt	tggaggaact	tcttagaggg	2880
cgtggtaatt	tcgaagccga	gcttggacgt	ttcgataact	ttttaaattc	gttaacaagt	2940
ccatatttag	acagtgctca	tatggctaca	ttgcagtctc	gaattagttt	tatattggca	3000
ctttatgatg	acttcgacat	gtttcagacg	gagttggagg	tgttgtcgga	gaacgtcgac	3060
gacatgttgg	tcgagcggga	gcgtatcgag	tcgcggtact	tcgcactggt	ggcgcgtgcg	3120
aagttcaccc	ttaaacacgg	gcgtgcgtca	tcacctgcgg	tcttgcctgc	acttcctgtt	3180
gaagacgtcc	ggcagcacgg	ctctgactgc	gggcacggcc	tggttcagct	gccagagatg	3240
gacttgagct	gcataccttc	tgagaccagt	accgggattc	ttgcatctcg	gggggtgaag	3300
gctgattcca	tcagctcgtc	cactctttgg	cggtcaggtt	gtacacagta	cacaaccacg	3360
tcatcaaatt	cagtacatac	aacatctatt	acgtatatta	ataatgaatt	ggcacacaac	3420
aacaacaatt	ccatttcatt	aataaaccaa	aaaacatctg	aaccacatgc	agaatcatca	3480
cataacctca	tattacagac	cttctcatca	cacataatat	atcactcaaa	tacatacttt	3540
acgatgccat	gcatcaaaga	tataccattg	cctttgatac	attggctgca	ttacacgagc	3600
aaactacgtt	acacattgtc	aagcgttttg	tgctctgcag	ccggagccgt	gcttctggag	3660
ctggtacccg	tgtttcttgc	gccttcagcc	agttatccgg	actgacgcgc	gtactccgac	3720
aacagctgct	tctttttct	ttgcattttc	ctttttcac	ccttttcatg	atgagatcac	3780
tttgctatgg	tcaggttaga	ggcttgctta	aattccatac	cttctccctc	tacccatctg	3840
acctctctca	tcttttccca	gacacatcca	tatcggacgg	ccactcatgt	gtacctttca	3900
ccggcagatc	actaacccac	ctcttctgtg	gctgtcacca	gtgactactg	cctccatcaa	3960
cgcagaccag	agaggcgtca	ccacaccatc	atcatcatca	tcttgaagcc	ttgacaggct	4020
tcaacccggg	gaatatgttc	cggactgtca	catcgcgccg	gcctatgagg	tcgcgccagc	4080
acacgtcatc	gtgcgcccca	cctaagctgg	gccctcacca	tacgccggac	ccccggacac	4140
tegeteateg	accccggtcg	cgcatacacg	accgcacgcg	caacgcgcga	tctactcttg	4200
tcacctatct	ataatacagt	cttctacttt	gaacatcgaa	gttttattga	aacgccgaga	4260
ccagcaacct	acacctgcac	ctcggcgctc	aaacactgcc	caactggtga	tacagctgca	4320
agacatcaac	aacacacctc	ctacgctcag	actgccccgc	acgaccccgt	cagtggaaga	4380
gaacgtgccg	gacgggttcg	tgatccccac	cgagctgcac	gcctccgacc	ccgacaccac	4440
cgccgagctg	cgcttcagca	tcgactggga	cacttcctac	gccaccaagc	agggcaggga	4500

tgctgatgct	aaggagtttg	ttaattgtat	agaaatcgag	acggtatacc	cgaacttgaa	4560
cgaccgaggc	accgccatcg	gccgcgtggt	ggttcgcgag	atccgggaac	acgtcactat	4620
agactacgag	atgttcgggg	tgctgtacct	cacagtcagg	gtcacggatc	tcaacacggt	4680
cattggagac	gactatgata	tatcaacatt	cacaatcata	ataatagaca	tgaacgacaa	4740
ccctccgctg	tgggtggaag	gcactctgac	gcaggagttc	cgcgtgcgag	aggtcgccgc	4800
ctcaggagtt	attataggat	ccgtactcgc	taccgatatc	gacggacctc	cttataatca	4860
agtgcggtat	accatcactc	ctagactgga	cactccagaa	gacctagtgg	agatcgactt	4920
caattcgggt	cagatctcag	tgaagaagca	ccaggctatc	gacgcggacg	agccgccgcg	4980
ccagcacctc	tactacaccg	tggtcgccag	cgacaagtgc	gacctgctct	ctgtcgacgt	5040
gtgtccgcct	gatcctaact	acttcaacac	gcccggagag	ataacgatcc	acataacaga	5100
cacgaacaat	aaggtgcctc	gagtggaaga	ggacaagttc	gaggaaactg	tctatatcta	5160
cgagggcgcg	gaggacggag	aacacgtcgt	gcaactcttc	gccagcgatc	tggatagaga	5220
tgaaatctac	cacaaagtga	gctaccagat	caactacgcg	atcaaccctc	gtctccgcga	5280
cttcttcgag	gtagacttgg	agaccggcct	ggtgtacgtc	aacaacactg	ccggggagaa	5340
actcgacaga	gacggcgatg	aacccacgca	teggatette	ttcaacgtca	tcgataactt	5400
ctatggagaa	ggagatggca	accggaatca	ggacgagaca	caagtgttgg	tggtgctgtt	5460
ggacatcaac	gacaactacc	cggaactgcc	tgagggtctc	tcatgggata	tctctgaggg	5520
cttgctacag	ggtgtccgtg	taaccccaga	tatcttcgcc	ccggaccgcg	acgagcccgg	5580
caccgacaac	tcccgcgtgg	cgtacgacat	cgtcagcctc	acgcccaccg	acagggacat	5640
cacacttcct	caactcttca	ccatgatcac	catagagaag	gacaggggca	tcgaccagac	5700
tggagagctg	gagaccgcta	tggatttaag	aggctattgg	ggcacttatg	aagtacatgt	5760
caaggcatac	gaccatggag	ttcctcaaag	gatatcctac	gagaagtacc	cgctagttat	5820
aagaccttac	aacctccacg	accctgtgtt	cgtgttccct	caacctggaa	tgactatcag	5880
actcgcggag	gagcgagcag	tagtgaacgg	cgtgctggcg	acagtggacg	gcgagttcct	5940
cgagcgaatc	gtcgccaccg	acgaggatgg	cttacacgct	ggagttgtta	ccttctctat	6000
ctctggagat	gaggaggcgt	tgcagtactt	cgacgtgttt	aacgacggag	tgaacttagg	6060
tgcgctgacc	atcacgcagc	tcttccctga	agacttccga	gagtttcagg	tgacgattcg	6120
tgctacggat	ggtggtacgg	agccaggtcc	aagaagtacg	gactgcacgg	tcaccgtagt	6180
gtttgttcct	acgcagggag	agcctgtgtt	cgagactagc	acctacacgg	tcgcttttat	6240
tgagaaagac	gctggtatgg	aagagcgggc	cacgctgcct	ctcgccaagg	acccgcgtaa	6300
cataatgtgt	gaagatgatt	gtcacgacac	ttattacagc	attgttggag	gcaactcgat	6360
gggccacttc	gcagtagacc	cccagtccaa	cgagctgttc	ctgctgacgc	cgctggagcg	6420
cgcggagcag	gagacgcaca	ccctcatcat	cggcgccagc	gactcgccca	gcccggccgc	6480
cgtgctgcag	gcttccaccc	tcactgttac	tgtcaatgtt	cgagaagcaa	acccgcggcc	6540
agtgttccag	agegetetgt	acacageegg	catctccacc	ctcgacacca	tcaacagagc	6600
tctgctgacc	ttacacgcga	cccattcaga	aggcctgccc	gtgacctaca	cgctgataca	6660
agactctatg	gaagctgact	ccacactgca	agctgtgcag	gagacagcct	tcaacctgaa	6720
ccctcagact	ggagtgctga	ccctcaactt	ccagcccaca	gcatctatgc	acggcatgtt	6780
tgagttcgat	gtgatggcta	ctgatacagt	gggagagacc	gcgcgcactg	aagtgaaggt	6840
gtacctgata	tccgaccgca	acagagtgtt	cttcacgttc	atgaacacgc	tcgaagaagt	6900

cgaaccgaat gaggatttca	tagcggaaac	atttaccctg	tttttcggca	tgcggtgcaa	6960
catcgaccag acgctgcccg	ccagcgaccc	cgccaccggc	gccgccaggg	acgaccagac	7020
cgaagtcagg gcacacttca	tacgcgacga	cctgcctgta	ccggctgagg	agattgaaca	7080
gttgcgcggt aatccaacac	tagtggcgac	aatccagaac	gccctgcagg	aggagaacct	7140
gaacctagcc gacctgttca	cgggcgagac	tcccatcctg	ggcggcgagg	cgcaggcgcg	7200
ggcggtgtac gcgctggcgg	cggtggcggc	cgcgctcgcg	ctgctctgtg	tcgtactgct	7260
tatactcttc ttcatcagga	ctagggccct	caaccgtcgt	ctggaagctc	tctccatgac	7320
caagtacagt tcccaagact	cgggtctgaa	ccgcgtgggt	ctggcggcgc	cgggcaccaa	7380
caagcacgcg gtggagggct	ccaacccaat	ctggaacgaa	accctcaagg	caccggactt	7440
tgatgctctt agcgagcagt	cgtacgactc	ggatctgatc	ggcatcgaag	acttgccgca	7500
gttcaggaac gactacttcc	cgcctgacga	ggagagctcc	atgcggggag	tcgtcaatga	7560
acacatgcct ggagctaatt	cagtagcaaa	ccataacaat	aacttcgggt	tcaacgctac	7620
ccccttcagc ccagagttcg	cgaactcgca	gctcagaaga	taaaatatta	tagtatttt	7680
ttatataata ttatgtaaaa	gtgatataac	gcacactaaa	atttacctat	aagtatatat	7740
tgaagtgtaa gatactcgta	ttatgtaaga	gcatttattt	ttttactacc	agacagtaa	7799
<210> SEQ ID NO 4 <211> LENGTH: 2263 <212> TYPE: DNA <213> ORGANISM: Heliot	chis viresce	ens			
<400> SEQUENCE: 4					
tgttccggac tgtcacatcg	cgccggccta	tgaggtcgcg	ccagcacacg	tcatcgtgcg	60
ccccacctaa gctgggccct	caccatacgc	cggacccccg	gacactcgct	cagcgacccc	120
ggtcgcgcat acacgaccgc	acgggcaacg	cgcgattttc	tcttgtacat	acttcaatac	180
agtcttcttt gcaaatcgaa	gtttcattga	accgccgaga	ccatcatcct	acatctggac	240
ctcggcgctc aagcattggt	ccctcgcaag	aactgaaccg	aacaggagaa	gtcgtcttgc	300
aagctgcgca accgcccgtg	gactttggac	tggtcacccg	cctctgcgac	ttacgcgtcg	360
tcatcgcatc gtggaggact	agtggggacg	tgtctacccg	gaaggaagga	acatactgag	420
tgagtccgtt ccgatatccc	tttgaattcc	tgtcgttatt	cccttgtatc	caggaatcca	480
ggaatttaaa gggcttctta	cattgatcag	gcatattgat	ctcttcatac	atcttatttc	540
ttacgcttac gtactaaatt	cataaatcta	taaacttttg	cacataagtt	cgttatcttt	600
taaacagtag attctttgtt	catttgcatt	acgtaaacaa	gctcattagc	gagcggctta	660
gcgaaccggt ttctaaaccc	ggtcgttcgc	ttcgaatcag	ctgattcatt	gtcacttgcc	720
tatttaaaca ttttatttca	tatttaacgt	ttttttcttt	gtttgtttat	tttattttat	780
tttcattctt ccacgtttgc	tttcttgctt	aaagtatggc	tgatgcaacg	ttggaggaac	840
ttcttagagg gcgtggtaat	ttcgaagccg	agcttggacg	tttcgataac	tttttaaatt	900
cgttaacaag tccatattta	gacagtgctc	atatggctac	attgcagtct	cgaattagtt	960
ttatattggc actttatgat	gacttcgaca	tgtttcagac	ggagttggag	gtgttgtcgg	1020
agaacgtcga cgacatgttg	gtcgagcggg	agcgtatcga	gtcgcggtac	ttcgcactgg	1080
tggcgcgtgc gaagttcacc	cttaaacacg	ggcgtgcgtc	atcacctgcg	gtcttgcctg	1140
cacttcctgt tgaagacgtc	cggcagcacg	gctctgactg	cgggcacggc	ctggttcagc	1200

-continued

tgccagagat ggacttgagc tgcatacctt ctgagaccag taccgggatt cttgcatctc	1260
ggggggtgaa ggctgattcc atcagctcgt ccactctttg gcggtcaggt tgtacacagt	1320
acacaaccac gtcatcaaat tcagtacata caacatctat tacgtatatt aataatgaat	1380
tggcacacaa caacaacaat tccatttcat taataaacca aaaaacatct gaaccacatg	1440
cagaatcatc acataacctc atattacaga ccttctcatc acacataata tatcactcaa	1500
atacatactt tacgatgcca tgcatcaaag atataccatt gcctttgata cattggctgc	1560
attacacgag caaactacgt tacacattgt caagcgtttt gtgctctgca gccggagccg	1620
tgcttctgga gctggtaccc gtgtttcttg cgccttcagc cagttatccg gactgacgcg	1680
cgtactccga caacagctgc ttctttttc tttgcatttt cctttttca cccttttcat	1740
gatgagatca ctttgctatg gtcaggttag aggcttgctt aaattccata ccttctccct	1800
ctacccatct gacctctctc atcttttccc agacacatcc atatcggacg gccactcatg	1860
tgtacctttc accggcagat cactaaccca cctcttctgt ggctgtcacc agtgactact	1920
gcctccatca acgcagacca gagaggcgtc accacaccat catcatcatc atcttgaagc	1980
cttgacaggc ttcaacccgg ggaatatgtt ccggactgtc acatcgcgcc ggcctatgag	2040
gtcgcgccag cacacgtcat cgtgcgcccc acctaagctg ggccctcacc atacgccgga	2100
cccccggaca ctcgctcatc gaccccggtc gcgcatacac gaccgcacgc gcaacgcgcg	2160
atctactctt gtcacctatc tataatacag tcttctactt tgaacatcga agttttattg	2220
aaacgccgag accagcaacc tacacctgca cctcggcgct caa	2263
<210> SEQ ID NO 5 <211> LENGTH: 252	
<212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 5	
<212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 5	60
<212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 5 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg	60 120
<212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 5	
<212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 5 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg ccccacctaa gctgggccct caccatacgc cggaccccc gacactcgct cagcgacccc	120
<212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 5 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg ccccacctaa gctgggccct caccatacgc cggaccccc gacactcgct cagcgacccc ggtcgcgcat acacgaccgc acgggcaacg cgcgatttc tcttgtacat acttcaatac	120 180
<212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 5 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg ccccacctaa gctgggccct caccatacgc cggacccccg gacactcgct cagcgacccc ggtcgcgcat acacgaccgc acgggcaacg cgcgatttc tcttgtacat acttcaatac agtcttcttt gcaaatcgaa gtttcattga accgccgaga ccatcatcct acatctggac	120 180 240
<pre><212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 5 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg ccccacctaa gctgggccct caccatacgc cggacccccg gacactcgct cagcgacccc ggtcgcgcat acacgaccgc acgggcaacg cgcgatttc tcttgtacat acttcaatac agtcttcttt gcaaatcgaa gttcattga accgccgaga ccatcatcct acatctggac ctcggcgctc aa <210> SEQ ID NO 6 <211> LENGTH: 257 <212> TYPE: DNA</pre>	120 180 240
<pre><212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 5 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg ccccacctaa gctgggccct caccatacgc cggaccccc gacactcgct cagcgacccc ggtcgcgcat acacgaccgc acgggcaacg cgcgatttc tcttgtacat acttcaatac agtcttcttt gcaaatcgaa gtttcattga accgccgaga ccatcatcct acatctggac ctcggcgctc aa <210> SEQ ID NO 6 <211> LENGTH: 257 <212> TYPE: DNA <213> ORGANISM: Heliothis virescens</pre>	120 180 240
<pre><212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 5 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg ccccacctaa gctgggccct caccatacgc cggacccccg gacactcgct cagcgacccc ggtcgcgcat acacgaccgc acgggcaacg cgcgatttc tcttgtacat acttcaatac agtcttcttt gcaaatcgaa gttcattga accgccgaga ccatcatcct acatctggac ctcggcgctc aa <210> SEQ ID NO 6 <211> LENGTH: 257 <212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 6</pre>	120 180 240 252
<pre><212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 5 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg ccccacctaa gctgggccct caccatacgc cggacccccg gacactcgct cagcgacccc ggtcgcgcat acacgaccgc acgggcaacg cgcgatttc tcttgtacat acttcaatac agtcttcttt gcaaatcgaa gtttcattga accgccgaga ccatcatcct acatctggac ctcggcgctc aa <210> SEQ ID NO 6 <211> LENGTH: 257 <212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 6 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg</pre>	120 180 240 252
<pre><212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 5 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg ccccacctaa gctgggccct caccatacgc cggacccccg gacactcgct cagcgacccc ggtcgcgcat acacgaccgc acgggcaacg cgcgatttc tcttgtacat acttcaatac agtcttcttt gcaaatcgaa gttcattga accgccgaga ccatcatcct acatctggac ctcggcgctc aa <210> SEQ ID NO 6 <211> LENGTH: 257 <212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 6 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg ccccacctaa gctgggccct caccatacgc cggacccccg gacactcgct catcgaccc</pre>	120 180 240 252 60 120
<pre><212> TYPE: DNA <213> ORGANISM: Heliothis virescens </pre> <pre><400> SEQUENCE: 5 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg ccccacctaa gctgggccct caccatacgc cggacccccg gacactcgct cagcgacccc ggtcgcgcat acacgaccgc acgggcaacg cgcgattttc tcttgtacat acttcaatac agtcttcttt gcaaatcgaa gtttcattga accgccgaga ccatcatcct acatctggac ctcggcgctc aa </pre> <pre><210> SEQ ID NO 6 <211> LENGTH: 257 <212> TYPE: DNA <213> ORGANISM: Heliothis virescens </pre> <pre><400> SEQUENCE: 6</pre> tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg ccccacctaa gctgggccct caccatacgc cggacccccg gacactcgct catcgacccc ggtcgcgcat acacgaccgc acgcgcaacg cgcgatctac tcttgtcacc tatctataat	120 180 240 252 60 120
<pre><212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 5 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg ccccacctaa gctgggccct caccatacgc cggacccccg gacactcgct cagcgacccc ggtcgcgcat acacgaccgc acgggcaacg cgcgatttc tcttgtacat acttcaatac agtcttcttt gcaaatcgaa gttcattga accgccgaga ccatcatcct acatctggac ctcggcgctc aa <210> SEQ ID NO 6 <211> LENGTH: 257 <212> TYPE: DNA <213> ORGANISM: Heliothis virescens <400> SEQUENCE: 6 tgttccggac tgtcacatcg cgccggccta tgaggtcgcg ccagcacacg tcatcgtgcg ccccacctaa gctgggccct caccatacgc cggacccccg gacactcgct catcgaccc ggtcgcgcat acacgaccgc acgcgcaacg cgcgatctac tcttgtcacc tatctataat acagtcttct acttgaaca tcgaagtttt attgaaacgc cgagaccagc aacctacacc</pre>	120 180 240 252 60 120 180 240

<400> SEQUENCE: 7

																	_
atad	gago	ctg a	acgad	cacgo	ct g	ggaga	a									26	i
<211		NGT	NO 1: 30														
<213	3> OF	(GAN	SM:	Heli	Lothi	is vi	resc	ens									
<400)> SE	QUE	ICE:	8													
tate	gagc	gta q	ggag	gtgt	gt to	gttga	atgto	2								30	1
<211		NGT	NO 1: 24														
				Heli	lothi	is vi	resc	ens									
<400)> SE	QUEN	ICE:	9													
gcgo	gate	gtg a	acagt	taag	ga ao	cag										24	:
<211		NGT	NO 1: 62														
				Heli	Lothi	is vi	resc	ens									
<400)> SE	QUEN	ICE:	10													
Met 1	Ala	Val	Asp	Val 5	Arg	Met	Leu	Thr	Ala 10	Ala	Val	Leu	Ile	Leu 15	Ala		
Ala	Asn	Leu	Thr 20	Phe	Ala	Gln	Asp	Cys 25	Ser	Tyr	Met	Val	Ala 30	Ile	Pro		
Arg	Pro	Glu 35	Arg	Pro	Asp	Phe	Pro 40	Asn	Gln	Asn	Phe	Glu 45	Gly	Val	Pro		
Frp	Ser 50	Gln	Asn	Pro	Leu	Leu 55	Pro	Ala	Glu	Asp	Arg 60	Glu	Asp	Val	Cys		
Met 65	Asn	Ala	Phe	Asp	Pro 70	Ser	Ala	Leu	Asn	Pro 75	Val	Thr	Val	Ile	Phe 80		
Met	Glu	Glu	Glu	Ile 85	Glu	Gly	Asp	Val	Ala 90	Ile	Ala	Arg	Leu	Asn 95	Tyr		
Arg	Gly	Thr	Asn 100	Thr	Pro	Thr	Val	Val 105	Thr	Pro	Phe	Asn	Phe 110	Gly	Thr		
Phe	His	Leu 115	Leu	Gly	Pro	Val	Ile 120	Arg	Arg	Ile	Pro	Glu 125	Gln	Gly	Gly		
Asp	Trp 130	His	Leu	Val	Ile	Thr 135	Gln	Arg	Gln	Asp	Ty r	Glu	Thr	Pro	Asn		
Met 145	Gln	Gln	Tyr	Ile	Phe 150	Asn	Val	Arg	Val	Glu 155	Asp	Glu	Pro	Gln	Glu 160		
Ala	Thr	Val	Met	Leu 165	Ile	Ile	Val	Asn	Ile 170	Asp	Asp	Asn	Ala	Pro 175	Ile		
Ile	Gln	Met	Phe 180	Glu	Pro	Cys	Asp	Ile 185	Pro	Glu	His	Gly	Glu 190	Thr	Gly		
Fhr	Thr	Glu 195	Сув	Lys	Tyr	Val	Val 200	Ser	Asp	Ala	Asp	Gly 205	Glu	Ile	Ser		
Fhr	Arg 210	Phe	Met	Thr	Phe	Glu 215	Ile	Glu	Ser	Asp	Arg 220	Asn	Asp	Glu	Glu		
Fy r 225	Phe	Glu	Leu	Val	Arg 230	Glu	Asn	Ile	Gln	Gly 235	Gln	Trp	Met	Tyr	Val 240		
His	Met	Arg	Leu	Ile 245	Leu	Asn	Lys	Pro	Leu 250	Asp	Tyr	Glu	Glu	Asn 255	Pro		

												con	tin	ued		
Leu	His	Leu	Phe 260	Arg	Val	Thr	Ala	Leu 265	Asp	Ser	Leu	Pro	Asn 270	Ile	His	
Thr	Val	Thr 275	Met	Met	Val	Gln	Val 280	Glu	Asn	Ile	Glu	Ser 285	Arg	Pro	Pro	
Arg	Trp 290	Met	Glu	Ile	Phe	Ala 295	Val	Gln	Gln	Phe	Asp 300	Glu	Lys	Thr	Ala	
Gln 305	Ser	Phe	Arg	Val	Arg 310	Ala	Ile	Asp	Gly	Asp 315	Thr	Gly	Ile	Asp	L y s 320	
Pro	Ile	Phe	Tyr	Arg 325	Ile	Glu	Thr	Glu	Glu 330	Ser	Glu	Lys	Asp	Leu 335	Phe	
Ser	Val	Glu	Thr 340	Ile	Gly	Ala	Gly	Arg 345	Glu	Gly	Ala	Trp	Phe 350	Lys	Val	
Ala	Pro	Ile 355	Asp	Arg	Asp	Thr	Leu 360	Glu	Lys	Glu	Val	Phe 365	His	Val	Ser	
Leu	Ile 370	Ala	Tyr	Lys	Tyr	Gly 375	Asp	Asn	Asp	Val	Glu 380	Gly	Ser	Pro	Ser	
Phe 385	Glu	Ser	Lys	Thr	Asp 390	Ile	Val	Ile	Ile	Val 395	Asn	Asp	Val	Asn	Asp 400	
Gln	Ala	Pro	Val	Pro 405	Phe	Arg	Pro	Ser	Ty r 410	Phe	Ile	Glu	Ile	Met 415	Glu	
Glu	Thr	Ala	Met 420	Thr	Leu	Asn	Leu	Glu 425	Asp	Phe	Gly	Phe	His 430	Asp	Arg	
Asp	Leu	Gly 435	Pro	His	Ala	Gln	Ty r 440	Thr	Val	His	Leu	Glu 445	Ser	Ile	His	
Pro	Ala 450	Gly	Ala	His	Glu	Ala 455	Phe	Tyr	Ile	Ala	Pro 460	Glu	Val	Gly	Tyr	
Gln 465	Arg	Gln	Ser	Phe	Ile 470	Val	Gly	Thr	Gln	Asn 475	His	His	Met	Leu	Asp 480	
Phe	Glu	Val	Pro	Glu 485	Phe	Gln	Lys	Ile	Gln 490	Leu	Arg	Val	Val	Ala 495	Ile	
Asp	Met	Asp	Asp 500	Pro	Arg	Trp	Val	Gly 505	Ile	Ala	Ile	Ile	Asn 510	Ile	Asn	
Leu	Ile	Asn 515	Trp	Asn	Asp	Glu	Leu 520	Pro	Ile	Phe	Glu	His 525	Asp	Val	Gln	
Thr	Ala 530	Thr	Phe	Lys	Glu	Thr 535	Glu	Gly	Ala	Gly	Phe 540	Arg	Val	Ala	Thr	
Val 545	Leu	Ala	Lys	Asp	Arg 550	Asp	Ile	Asp	Glu	A rg 555	Val	Glu	His	Ser	Leu 560	
Met	Gly	Asn	Ala	Val 565	Asn	Tyr	Leu	Ser	Ile 570	Asp	Lys	Asp	Thr	Gl y 575	Asp	
Ile	Leu	Val	Thr 580	Ile	Asp	Asp	Ala	Phe 585	Asn	Tyr	His	Arg	Gln 590	Asn	Glu	
Leu	Phe	Val 595	Gln	Ile	Arg	Ala	Asp 600	Asp	Thr	Leu	Glu	Glu 605	Pro	Tyr	Asn	
Ala	Asn 610	Thr	Ala	Суѕ	Ser	Gly 615	Leu	Ser	His	Arg	Ala 620	Gly	Leu			
<212 <212	l> LI 2> TY	EQ II ENGTH PE:	FRT		ух п	nori										
<400)> SI	QUEN	ICE:	11												
				Val 5	Arg	Ile	Leu	Ala	Thr 10	Leu	Leu	Leu	Ile	Ty r	Ala	

Glu	Thr	Val	Leu 20	Ala	Gln	Glu	Arg	Cys 25	Gly	Phe	Met	Val	Ala 30	Ile	Pro
Arg	Pro	Pro 35	Arg	Pro	Asp	Leu	Pro 40	Glu	Leu	Asp	Phe	Glu 45	Gly	Gln	Thr
Trp	Ser 50	Gln	Arg	Pro	Leu	Ile 55	Pro	Ala	Ala	Asp	Arg 60	Glu	Asp	Val	Cys
Met 65	Asp	Gly	Tyr	His	Ala 70	Met	Thr	Pro	Thr	Ty r 75	Gly	Thr	Gln	Ile	Ile 80
Tyr	Met	Glu	Glu	Glu 85	Ile	Glu	Gly	Glu	Val 90	Pro	Ile	Ala	Lys	Leu 95	Asn
Tyr	Arg	Gly	Pro 100	Asn	Val	Pro	Tyr	Ile 105	Glu	Pro	Ala	Phe	Leu 110	Ser	Gly
Ser	Phe	Asn 115	Leu	Leu	Val	Pro	Val 120	Ile	Arg	Arg	Ile	Pro 125	Asp	Ser	Asn
Gly	Glu 130	Trp	His	Leu	Ile	Ile 135	Thr	Gln	Arg	Gln	Asp 140	Tyr	Glu	Thr	Pro
Gly 145	Met	Gln	Gln	Tyr	Val 150	Phe	Asn	Ile	Arg	Ile 155	Asp	Gly	Glu	Thr	Leu 160
Val	Ala	Gly	Val	Ser 165	Leu	Leu	Ile	Val	Asn 170	Ile	Asp	Asp	Asn	Ala 175	Pro
Ile	Ile	Gln	Ala 180	Leu	Glu	Pro	Cys	Gln 185	Val	Asp	Glu	Leu	Gly 190	Glu	Ala
Arg	Leu	Thr 195	Glu	Cys	Val	Tyr	Val 200	Val	Thr	Asp	Ala	Asp 205	Gly	Arg	Ile
Ser	Thr 210	Gln	Phe	Met	Gln	Phe 215	Arg	Ile	Asp	Ser	Asp 220	Arg	Gly	Asp	Asp
L y s 225	Ile	Phe	Tyr	Ile	Gln 230	Gly	Ala	Asn	Ile	Pro 235	Gly	Glu	Trp	Ile	Arg 240
Met	Thr	Met	Thr	Val 245	Gly	Ile	Asn	Glu	Pro 250	Leu	Asn	Phe	Glu	Thr 255	Asn
Pro	Leu	His	Ile 260	Phe	Ser	Val	Thr	Ala 265	Leu	Asp	Ser	Leu	Pro 270	Asn	Thr
His	Thr	Val 275	Thr	Leu	Met	Val	Gln 280	Val	Glu	Asn	Val	Glu 285	His	Arg	Pro
Pro	Arg 290	Trp	Val	Glu	Ile	Phe 295	Ala	Val	Gln	Gln	Phe 300	Asp	Glu	Lys	Thr
Ala 305	Gln	Ser	Phe	Pro	Val 310	Arg	Ala	Ile	Asp	Gly 315	Asp	Thr	Gly	Ile	Asn 320
Lys	Pro	Ile	His	Ty r 325	Arg	Leu	Glu	Thr	Ala 330	Glu	Glu	Asp	Thr	Phe 335	Phe
His	Ile	Arg	Thr 340	Ile	Glu	Gly	Gly	Arg 345	Ser	Gly	Ala	Ile	Leu 350	Tyr	Val
Asp	Pro	Ile 355	Asp	Arg	Asp	Thr	Leu 360	Gln	Arg	Glu	Val	Phe 365	Gln	Leu	Ser
Ile	Ile 370	Ala	Tyr	Lys	Tyr	Asp 375	Asn	Glu	Ser	Ser	Ala 380	Thr	Ala	Ala	Asn
Val 385	Val	Ile	Ile	Val	Asn 390	Asp	Ile	Asn	Asp	Gln 395	Arg	Pro	Glu	Pro	Leu 400
Phe	Lys	Glu	Tyr	Arg 405	Leu	Asn	Ile	Met	Glu 410	Glu	Thr	Ala	Leu	Thr 415	Leu
Asn	Phe	Asp	Gln 420	Glu	Phe	Gly	Phe	His 425	Asp	Arg	Asp	Leu	Gly 430	Gln	Asn

Ala	Gln	Ty r 435	Thr	Val	Arg	Leu	Glu 440	Ser	Asp	Tyr	Pro	Ala 445	Asp	Ala	Ala
Lys	Ala 450	Phe	Tyr	Ile	Ala	Pro 455	Glu	Val	Gly	Tyr	Gln 460	Arg	Gln	Thr	Phe
Ile 465	Met	Gly	Thr	Ala	Asn 470	His	Lys	Met	Leu	Asp 475	Tyr	Glu	Val	Pro	Glu 480
Phe	Gln	Arg	Ile	Arg 485	Leu	Arg	Val	Ile	Ala 490	Thr	Asp	Met	Asp	Asn 495	Glu
Glu	His	Val	Gly 500	Val	Ala	Tyr	Val	Ty r 505	Ile	Asn	Leu	Ile	Asn 510	Trp	Asn
Asp	Glu	Glu 515	Pro	Ile	Phe	Glu	His 520	Ser	Val	Gln	Asn	Val 525	Ser	Phe	Lys
Glu	Thr 530	Glu	Gly	Lys	Gly	Phe 535	Phe	Val	Ala	Asn	Val 540	Arg	Ala	His	Asp
Arg 545	Asp	Ile	Asp	Asp	Arg 550	Val	Glu	His	Thr	Leu 555	Met	Gly	Asn	Ala	Asn 560
Asn	Tyr	Leu	Ser	Ile 565	Asp	Lys	Asp	Thr	Gl y 570	Asp	Ile	His	Val	Thr 575	Gln
Asp	Asp	Phe	Phe 580	Asp	Tyr	His	Arg	Gln 585	Ser	Glu	Leu	Phe	Val 590	Gln	Val
Arg	Ala	Asp 595	Asp	Thr	Leu	Gly	Glu 600	Pro	Phe	His	Thr	Ala 605	Thr	Ser	Gln
Leu	Leu 610	Ile	His	Leu	Glu	Asp 615	Ile	Asn	Asn	Thr	Pro 620	Pro	Thr	Leu	Arg
Leu 625	Pro	Arg	Gly	Ser	Pro 630	Asn	Val	Glu	Glu	Asn 635	Val	Pro	Glu	Gly	Tyr 640
Ile	Ile	Thr	Ser	Glu 645	Ile	Arg	Ala	Thr	Asp 650	Pro	Asp	Thr	Thr	Ala 655	Glu
Leu	Arg	Phe	Glu 660	Ile	Asp	Trp	Thr	Thr 665	Ser	Tyr	Ala	Thr	L y s 670	Gln	Gly
Arg	Glu	Ala 675	Asn	Pro	Ile	Glu	Phe 680	His	Asn	Сув	Val	Glu 685	Ile	Glu	Thr
Ile	Ty r 690	Pro	Ala	Ile	Asn	Asn 695	Arg	Gly	Ser	Ala	Ile 700	Gly	Arg	Leu	Val
Val 705	Lys	Lys	Ile	Arg	Glu 710	Asn	Val	Thr	Ile	Asp 715	Tyr	Glu	Glu	Phe	Glu 720
Met	Leu		Leu			Arg			Asp 730			Thr		Ile 735	_
Asp	Asp	Tyr	Asp 740	Glu	Ser	Thr	Phe	Thr 745	Ile	Thr	Ile	Ile	Asp 750	Met	Asn
Asp	Asn	Pro 755	Pro	Ile	Trp	Val	Pro 760	Gly	Thr	Leu	Glu	Gln 765	Ser	Leu	Arg
Val	Arg 770	Glu	Met	Ser	Asp	Ala 775	Gly	Val	Val	Ile	Gl y 780	Thr	Leu	Thr	Ala
Thr 785	Asp	Ile	Asp	Gly	Pro 790	Leu	Tyr	Asn	Gln	Val 795	Arg	Tyr	Thr	Met	L y s 800
Ala	Asn	Glu	Gly	Thr 805	Pro	Glu	Asn	Leu	Leu 810	Met	Ile	Asp	Phe	Tyr 815	Thr
Gly	Gln	Ile	Thr 820	Val	Lys	Thr	Ser	Gly 825	Ala	Ile	Asp	Ala	Asp 830	Val	Pro
Arg	Arg	Ty r 835	Asn	Leu	Tyr	Tyr	Thr 840	Val	Val	Ala	Thr	Asp 845	Arg	Cys	Tyr
Ala	Glu	Asp	Pro	Asp	Asp	Cys	Pro	Asp	Asp	Pro	Thr	Tyr	Trp	Glu	Thr

	850					855					860				
Pro 865	Gly	Gln	Val	Val	Ile 870	Gln	Ile	Ile	Asp	Thr 875	Asn	Asn	Lys	Ile	Pro 880
Gln	Pro	Glu	Thr	Asp 885	Gln	Phe	Lys	Ala	Val 890	Val	Tyr	Ile	Tyr	Glu 895	Asp
Ala	Val	Ser	Gl y 900	Asp	Glu	Val	Val	Lys 905	Val	Ile	Gly	Ser	Asp 910	Leu	Asp
Arg	Asp	Asp 915	Ile	Tyr	His	Thr	Ile 920	Arg	Tyr	Gln	Ile	Asn 925	Tyr	Ala	Val
Asn	Pro 930	Arg	Leu	Arg	Asp	Phe 935	Phe	Ala	Val	Asp	Pro 940	Asp	Thr	Gly	Arg
Val 945	Tyr	Val	Tyr	Tyr	Thr 950	Thr	Asp	Glu	Val	Leu 955	Asp	Arg	Asp	Gly	Asp 960
Glu	Pro	Gln	His	Arg 965	Ile	Phe	Phe	Asn	Leu 970	Ile	Asp	Asn	Phe	Phe 975	Gln
Gln	Gly	Asp	Gly 980	Asn	Arg	Asn	Gln	Asn 985	Asp	Ala	Glu	Val	Leu 990	Val	Val
Leu	Leu	Asp 995	Val	Asn	Asp		Ala 1000	Pro	Glu	Leu		Glu 1005	Pro	Asp	Glu
	Ser 1010	Trp	Ser	Val		Glu 1015	Ser	Leu	Thr		Gl y 1020	Thr	Arg	Leu	Gln
Pro 1025		Ile	Tyr		Pro 1030	Asp	Arg	Asp		Pro 1035	Asp	Thr	Asp		Ser 1040
Arg	Val	Gly	_	Ala 1045	Ile	Ile	Ser		Thr 1050	Ile	Ala	Asn	_	Glu 1055	Ile
Glu	Val		Glu 1060	Leu	Phe	Thr	Met 1	Ile 1065	Gln	Ile	Gln		Val 1070	Thr	Gly
Glu		Glu 1075	Thr	Ala	Met		Leu 1080	Arg	Gly	Tyr		Gl y 1085	Thr	Tyr	Ala
	His 1090	Ile	Lys	Ala		Asp 1095	His	Gly	Ile		Gln 1100	Gln	Met	Ser	Asn
Glu 1105		Tyr	Glu		Val 1110	Ile	Arg	Pro		Asn 1115	Phe	His	Ala		Val 1120
			:	1125			Ala	:	1130				-	1135	_
			1140	-				145	-	Ī		:	1150		-
	1	1155				:	1160				;	1165			Phe
1	170		_	_	:	1175	Ala		_	- :	1180				
1185	5			:	1190		Leu		:	1195				:	1200
			:	1205			Thr	3	1210				:	1215	
		:	1220					1225				:	1230		
	1	1235				:	Phe 1240				:	1245			
1	250				:	1255	Leu			-	1260				
Ala 1265		Asp	Arg		Asn 1270	His	Leu	Cys		Asp 1275	Asp	Cys	His		Ile 1280

Tyr Tyr	Arg I		Ile 285	Asp	Gly	Asn		Asp 290	Gly	His	Phe		Leu 295	Asp
Glu Thr		Asn 300	Val	Leu	Phe		Val 305	Lys	Glu	Leu		Arg 310	Ser	Val
Ser Glu 1	Thr T	lyr	Thr	Leu		Ile 320	Ala	Ala	Ser		Ser .325	Pro	Thr	Gly
Gly Ile 1330	Ala I	Leu	Thr		Thr 335	Ile	Thr	Ile		Val .340	Asn	Val	Arg	Glu
Ala Asp 1345	Pro G	3ln		Ty r 350	Phe	Val	Arg		Leu 355	Tyr	Thr	Ala		Ile 360
Ser Thr	Ser A		Ser 365	Ile	Asn	Arg		Leu 370	Leu	Ile	Leu		Ala 375	Thr
His Ser		Asn 880	Ala	Pro	Ile		Ty r 385	Thr	Ile	Asp		Ser 390	Thr	Met
Val Thr 1	Asp F	Pro	Thr	Leu		Ser 400	Val	Arg	Glu		Ala 405	Phe	Ile	Leu
Asn Pro 1410	His T	hr	Gly		Leu 415	Thr	Leu	Asn		Gln 420	Pro	Thr	Ala	Ser
Met His 1425	Gly M	let :		Glu 430	Phe	Gln	Val		Ala 435	Thr	Asp	Pro		Gl y 440
Tyr Ser	Asp A		Ala 445	Asn	Val	Lys		Ty r 450	Leu	Ile	Ser		Arg 455	Asn
Arg Val		he 160	Leu	Phe	Val		Thr 465	Leu	Glu	Gln		Glu 470	Gln	Asn
Thr Asp	Phe I .475	le.	Ala	Gln		Phe 480	Ser	Ala	Gly		Glu .485	Met	Thr	Cys
Asn Ile 1490	Asp G	ln	Val		Pro 495	Ala	Thr	Asp		Ser .500	Gly	Val	Ile	Met
Asn Gly 1505	Ile T	hr		Val 510	Arg	Gly	His		Ile 515	Arg	Asp	Asn		Pro 520
Val Pro	Ala A		Glu 525	Ile	Glu	Thr		Arg 530	Gly	Asp	Met		Leu 535	Leu
Thr Ala		31n 340	Ser	Thr	Leu		Thr 545	Arg	Leu	Leu		Leu 550	Arg	Asp
Leu Phe 1	Thr A	4sp	Thr	Ser		Ala 560	Pro	Asp	Ala	_	Ser .565	Ala	Ala	Val
Leu Ty r 1570	Ala I	Leu .	Ala		Leu 575	Ser	Ala	Leu		Ala .580	Ala	Leu	Суѕ	Leu
Leu Leu 1585	Leu V	7al		Phe 590	Ile	Ile	Arg		Lys 595	Lys	Leu	Asn	_	Arg 600
Leu Glu	Ala I		Thr 605	Val	Lys	Lys		Gl y 610	Ser	Val	Asp		Gl y 615	Leu
Asn Arg		31 y 320	Ile	Ala	Ala		Gl y 625	Thr	Asn	Lys		Ala 630	Val	Glu
Gly Ser 1	Asn F	Pro	Ile	Trp		Glu 640	Thr	Ile	Lys		Pro .645	Asp	Phe	Asp
Ser Met 1650	Ser A	. qa	Ala		Asn 655	Asp	Ser	Asp		Ile .660	Gly	Ile	Glu	Asp
Leu Pro 1665	His F	Phe		Glu 670	Asn	Asn	Tyr		Pro 675	Arg	Asp	Val		Glu 680
Phe Lys	Thr A	_	L y s 685	Pro	Glu	Asp		Val 690	Ala	Thr	His		Asn 695	Asn

											-	con	tin	ued	
Phe	Gly		Lys 1700	Ser	Thr	Pro		Ser 1705	Pro	Glu	Phe		Asn 1710	Gln	Phe
Gln	Lys														
<212 <212	l> LE 2> TY	NGTI	NO H: 15 PRT	527	duca	sext	a								
<400)> SE	QUE	ICE:	12											
Met 1	Ala	Val	Asp	Val 5	Arg	Ile	Ala	Ala	Phe 10	Leu	Leu	Val	Phe	Ile 15	Ala
Pro	Ala	Val	Leu 20	Ala	Gln	Glu	Arg	C y s 25	Gly	Tyr	Met	Thr	Ala 30	Ile	Pro
Arg	Leu	Pro 35	Arg	Pro	Asp	Asn	Leu 40	Pro	Val	Leu	Asn	Phe 45	Glu	Gly	Gln
Thr	Trp 50	Ser	Gln	Arg	Pro	Leu 55	Leu	Pro	Ala	Pro	Glu 60	Arg	Asp	Asp	Leu
Cys 65	Met	Asp	Ala	Tyr	His 70	Val	Ile	Thr	Ala	Asn 75	Leu	Gly	Thr	Gln	Val 80
Ile	Tyr	Met	Asp	Glu 85	Glu	Ile	Glu	Asp	Glu 90	Ile	Thr	Ile	Ala	Ile 95	Leu
Asn	Tyr	Asn	Gly 100	Pro	Ser	Thr	Pro	Phe 105	Ile	Glu	Leu	Pro	Phe 110	Leu	Ser
Gly	Ser	Ty r 115	Asn	Leu	Leu	Met	Pro 120	Val	Ile	Arg	Arg	Val 125	Asp	Asn	Gly
Ser	Ala 130	Ser	His	His	His	Ala 135	Arg	Gln	His	Tyr	Glu 140	Leu	Pro	Gly	Met
Gln 145	Gln	Tyr	Met	Phe	Asn 150	Val	Arg	Val	Asp	Gly 155	Gln	Ser	Leu	Val	Ala 160
Gly	Val	Ser	Leu	Ala 165	Ile	Val	Asn	Ile	Asp 170	Asp	Asn	Ala	Pro	Ile 175	Ile
Gln	Asn	Phe	Glu 180	Pro	Cys	Arg	Val	Pro 185	Glu	Leu	Gly	Glu	Pro 190	Gly	Leu
Thr	Glu	C y s 195	Thr	Tyr	Gln	Val	Ser 200	Asp	Ala	Asp	Gly	Arg 205	Ile	Ser	Thr
Glu	Phe 210	Met	Thr	Phe	Arg	Ile 215	Asp	Ser	Val	Arg	Gly 220	Asp	Glu	Glu	Thr
Phe 225	Tyr	Ile	Glu	Arg	Thr 230	Asn	Ile	Pro	Asn	Gln 235	Trp	Met	Trp	Leu	Asn 240
Met	Thr	Ile	Gly	Val 245	Asn	Thr	Ser	Leu	Asn 250	Phe	Val	Thr	Ser	Pro 255	Leu
His	Ile	Phe	Ser 260	Val	Thr	Ala	Leu	Asp 265	Ser	Leu	Pro	Asn	Thr 270	His	Thr
Val	Thr	Met 275	Met	Val	Gln	Val	Ala 280	Asn	Val	Asn	Ser	Arg 285	Pro	Pro	Arg
Trp	Leu 290	Glu	Ile	Phe	Ala	Val 295	Gln	Gln	Phe	Glu	Glu 300	Lys	Ser	Tyr	Gln
Asn 305	Phe	Thr	Val	Arg	Ala 310	Ile	Asp	Gly	Asp	Thr 315	Glu	Ile	Asn	Met	Pro 320
Ile	Asn	Tyr	Arg	Leu 325	Ile	Thr	Asn	Glu	Glu 330	Asp	Thr	Phe	Ser	Ile 335	Glu
Ala	Leu	Pro	Gly 340	Gly	Lys	Ser	Gly	Ala 345	Val	Phe	Leu	Val	Ser 350	Pro	Ile

Asp	Arg	Asp 355	Thr	Leu	Gln	Arg	Glu 360	Val	Phe	Pro	Leu	Thr 365	Ile	Val	Ala
Tyr	Lys 370	Tyr	Asp	Glu	Glu	Ala 375	Phe	Ser	Thr	Ser	Thr 380	Asn	Val	Val	Ile
Ile 385	Val	Thr	Asp	Ile	Asn 390	Asp	Gln	Arg	Pro	Glu 395	Pro	Ile	His	Lys	Glu 400
Tyr	Arg	Leu	Ala	Ile 405	Met	Glu	Glu	Thr	Pro 410	Leu	Thr	Leu	Asn	Phe 415	Asp
Lys	Glu	Phe	Gly 420	Phe	His	Asp	Lys	Asp 425	Leu	Gly	Gln	Asn	Ala 430	Gln	Tyr
Thr	Val	Arg 435	Leu	Glu	Ser	Val	Asp 440	Pro	Pro	Gly	Ala	Ala 445	Glu	Ala	Phe
Tyr	Ile 450	Ala	Pro	Glu	Val	Gl y 455	Tyr	Gln	Arg	Gln	Thr 460	Phe	Ile	Met	Gly
Thr 465	Leu	Asn	His	Ser	Met 470	Leu	Asp	Tyr	Glu	Val 475	Pro	Glu	Phe	Gln	Ser 480
Ile	Thr	Ile	Arg	Val 485	Val	Ala	Thr	Asp	Asn 490	Asn	Asp	Thr	Arg	His 495	Val
Gly	Val	Ala	Leu 500	Val	His	Ile	Asp	Leu 505	Ile	Asn	Trp	Asn	Asp 510	Glu	Gln
Pro	Ile	Phe 515	Glu	His	Ala	Val	Gln 520	Thr	Val	Thr	Phe	Asp 525	Glu	Thr	Glu
Gly	Glu 530	Gly	Phe	Phe	Val	Ala 535	Lys	Ala	Val	Ala	His 540	Asp	Arg	Asp	Ile
Gly 545	Asp	Val	Val	Glu	His 550	Thr	Leu	Leu	Gly	Asn 555	Ala	Val	Asn	Phe	Leu 560
Thr	Ile	Asp	Lys	Leu 565	Thr	Gly	Asp	Ile	Arg 570	Val	Ser	Ala	Asn	A sp 575	Ser
Phe	Asn	Tyr	His 580	Arg	Glu	Ser	Glu	Leu 585	Phe	Val	Gln	Val	Arg 590	Ala	Thr
Asp	Thr	Leu 595	Gly	Gln	Pro	Phe	His 600	Thr	Ala	Thr	Ser	Gln 605	Leu	Val	Ile
Arg	Leu 610	Asn	Asp	Ile	Asn	Asn 615	Thr	Pro	Pro	Thr	Leu 620	Arg	Leu	Pro	Arg
Gl y 625	Ser	Pro	Gln	Val	Glu 630	Glu	Asn	Val	Pro	Asp 635	Ala	His	Val	Ile	Thr 640
Gln	Glu	Leu	Arg	Ala 645	Thr	Asp	Pro	Asp	Thr 650	Thr	Ala	Asp	Leu	Arg 655	Phe
Glu	Ile	Asn	Trp 660	Asp	Thr	Ser	Phe	Ala 665	Thr	Lys	Gln	Gly	Arg 670	Gln	Ala
Asn	Pro	Asp 675	Glu	Phe	Arg	Asn	Cys 680	Val	Glu	Ile	Glu	Thr 685	Ile	Phe	Pro
Glu	Ile 690	Asn	Asn	Arg	Gly	Leu 695	Ala	Ile	Gly	Arg	Val 700	Val	Ala	Arg	Glu
Ile 705	Arg	His	Asn	Val	Thr 710	Ile	Asp	Tyr	Glu	Glu 715	Phe	Glu	Val	Leu	Ser 720
Leu	Thr	Val	Arg	Val 725	Arg	Asp	Leu	Asn	Thr 730	Val	Tyr	Gly	Asp	Asp 735	Tyr
Asp	Glu	Ser	Met 740	Leu	Thr	Ile	Thr	Ile 745	Ile	Asp	Met	Asn	Asp 750	Asn	Ala
Pro	Val	Trp 755	Val	Glu	Gly	Thr	Leu 760	Glu	Gln	Asn	Phe	Arg 765	Val	Arg	Glu
Met	Ser	Ala	Gly	Gly	Leu	Val	Val	Gly	Ser	Val	Arg	Ala	Asp	Asp	Ile

	770					775					780				
A sp 785	Gly	Pro	Leu	Tyr	Asn 790	Gln	Val	Arg	Tyr	Thr 795	Ile	Phe	Pro	Arg	Glu 800
Asp	Thr	Asp	Lys	Asp 805	Leu	Ile	Met	Ile	Glu 810	Leu	Pro	His	Gly	Ser 815	Asn
Phe	Arg	Glu	His 820	Lys	Arg	Arg	Ile	Asp 825	Ala	Asn	Thr	Pro	Pro 830	Arg	Phe
His	Leu	Ty r 835	Tyr	Thr	Val	Val	Ala 840	Ser	Asp	Arg	Cys	Ser 845	Thr	Glu	Asp
Pro	Ala 850	Asp	Cys	Pro	Pro	A sp 855	Pro	Thr	Tyr	Trp	Glu 860	Thr	Glu	Gly	Asn
Ile 865	Thr	Ile	His	Ile	Thr 870	Asp	Thr	Asn	Asn	L y s 875	Val	Pro	Gln	Ala	Glu 880
Thr	Thr	Lys	Phe	A sp 885	Thr	Val	Val	Tyr	Ile 890	Tyr	Glu	Asn	Ala	Thr 895	His
Leu	Asp	Glu	Val 900	Val	Thr	Leu	Ile	Ala 905	Ser	Asp	Leu	Asp	Arg 910	Asp	Glu
Ile	Tyr	His 915	Met	Val	Ser	Tyr	Val 920	Ile	Asn	Tyr	Ala	Val 925	Asn	Pro	Arg
Leu	Met 930	Asn	Phe	Phe	Ser	Val 935	Asn	Arg	Glu	Thr	Gly 940	Leu	Val	Tyr	Val
Asp 945	Tyr	Glu	Thr	Gln	Gly 950	Ser	Gly	Glu	Val	Leu 955	Asp	Arg	Asp	Gly	Asp 960
Glu	Pro	Thr	His	Arg 965	Ile	Phe	Phe	Asn	Leu 970	Ile	Asp	Asn	Phe	Met 975	Gly
Glu	Gly	Glu	Gl y 980	Asn	Arg	Asn	Gln	Asn 985	Asp	Thr	Glu	Val	Leu 990	Val	Ile
Leu	Leu	Asp 995	Val	Asn	Asp	Asn 1	Ala 1000	Pro	Glu	Leu		Pro 1005	Pro	Ser	Glu
	Ser 1010	Trp	Thr	Ile		Glu L015	Asn	Leu	Lys		Gl y 1020	Val	Arg	Leu	Glu
Pro 1025		Ile	Phe		Pro L030	Asp	Arg	Asp		Pro L035	Asp	Thr	Asp		Ser 1040
Arg	Val	Gly		Glu 1045	Ile	Leu	Asn		Ser 1050	Thr	Glu	Arg		Ile 1055	Glu
Val	Pro		Leu 1060	Phe	Val	Met		Gln 1065	Ile	Ala	Asn		Thr .070	Gly	Glu
Leu		Thr 1075	Ala	Met	Asp	Leu 1	Ly s 1080	Gly	Tyr	Trp	_	Thr 1085	Tyr	Ala	Ile
	Ile 1090	Leu	Ala	Phe		His L095	Gly	Ile	Pro		Met 1100	Ser	Met	Asn	Glu
Thr 1105		Glu	Leu		Ile 1110	His	Pro	Phe		Ty r 1115	Tyr	Ala	Pro		Phe 1120
Val	Phe	Pro		Asn 1125	Asp	Ala	Val		Arg 1130	Leu	Ala	Arg		Arg 1135	Ala
Val	Ile		Gly 1140	Val	Leu	Ala		Val 1145	Asn	Gly	Glu		Leu .150	Glu	Arg
Ile		Ala 1155	Thr	Asp	Pro	Asp 1	Gly 1160	Leu	His	Ala		Val 1165	Val	Thr	Phe
	Val 170	Val	Gly	Asp		Glu L175	Ser	Gln	Arg		Phe 1180	Gln	Val	Val	Asn
Asp 1185		Glu	Asn		Gly 1190	Ser	Leu	Arg		Leu 1195	Gln	Ala	Val		Glu 1200

-continued

Glu Ile Arg Glu Phe Arg Ile Thr Ile Arg Ala Thr Asp Gln Gly Thr 1210 Asp Pro Gly Pro Leu Ser Thr Asp Met Thr Phe Arg Val Val Phe Val 1225 1220 Pro Thr Gln Gly Glu Pro Arg Phe Ala Ser Ser Glu His Ala Val Ala 1240 Phe Ile Glu Lys Ser Ala Gly Met Glu Glu Ser His Gln Leu Pro Leu 1255 Ala Gln Asp Ile Lys Asn His Leu Cys Glu Asp Asp Cys His Ser Ile 1270 1275 Tyr Tyr Arg Ile Ile Asp Gly Asn Ser Glu Gly His Phe Gly Leu Asp 1285 1290 Pro Val Arg Asn Arg Leu Phe Leu Lys Lys Glu Leu Ile Arg Glu Gln 1305 Ser Ala Ser His Thr Leu Gln Val Ala Ala Ser Asn Ser Pro Asp Gly Gly Ile Pro Leu Pro Ala Ser Ile Leu Thr Val Thr Val Thr Val Arg 1335 Glu Ala Asp Pro Arg Pro Val Phe Val Arg Glu Leu Tyr Thr Ala Gly Ile Ser Thr Ala Asp Ser Ile Gly Arg Glu Leu Leu Arg Leu His Ala Thr Gln Ser Glu Gly Ser Ala Ile Thr Tyr Ala Ile Asp Tyr Asp Thr 1385 Met Val Val Asp Pro Ser Leu Glu Ala Val Arg Gln Ser Ala Phe Val 1400 Leu Asn Ala Gln Thr Gly Val Leu Thr Leu Asn Ile Gln Pro Thr Ala 1415 1420 Thr Met His Gly Leu Phe Lys Phe Glu Val Thr Ala Thr Asp Thr Ala 1430 1435 Gly Ala Gln Asp Arg Thr Asp Val Thr Val Tyr Val Val Ser Ser Gln 1450 Asn Arg Val Tyr Phe Val Phe Val Asn Thr Leu Gln Gln Val Glu Asp 1465 Asn Arg Asp Phe Ile Ala Asp Thr Phe Ser Ala Gly Phe Asn Met Thr 1480 Cys Asn Ile Asp Gln Val Val Pro Ala Asn Asp Pro Val Thr Gly Val 1495 Ala Leu Glu His Ser Thr Gln Met Ala Ala Thr Ser Tyr Gly Thr Thr 1515 1510 Tyr Pro Tyr Ser Leu Met Arg 1525 <210> SEQ ID NO 13 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Heliothis virescens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)..(27) <400> SEQUENCE: 13 tac aac acc aac act gcc caa ctg gtg Tyr Asn Thr Asn Thr Ala Gln Leu Val

27

-continued

```
<210> SEO ID NO 14
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Heliothis virescens
<400> SEOUENCE: 14
Tyr Asn Thr Asn Thr Ala Gln Leu Val
<210> SEQ ID NO 15
<211> LENGTH: 287
<212> TYPE: DNA
<213> ORGANISM: Heliothis virescens
<400> SEQUENCE: 15
tacaacacca acactgootg ttooggactg toacatogog coggootatg aggtogogoc 60
agcacacgtc atcgtgcgcc ccacctaagc tgggccctca ccatacgccg gacccccgga 120
cactcgctca gcgaccccgg tcgcgcatac acgaccgcac gggcaacgcg cgattttctc 180
ttqtacatac ttcaatacaq tcttctttqc aaatcqaaqt ttcattqaac cqccqaqacc 240
                                                                   287
atcatcctac atctggacct cggcgctcaa gcattggtcc ctcgcaa
<210> SEQ ID NO 16
<211> LENGTH: 291
<212> TYPE: DNA
<213> ORGANISM: Heliothis virescens
<400> SEOUENCE: 16
gcttcaaccc ggggaatatg ttcggactgt cacatcgcgc cggcctatga ggtcgcgcca
qcacacqtca tcqtqcqccc cacctaaqct qqqccctcac catacqccqq acccccqqac
                                                                      120
actcgctcat cgaccccggt cgcgcataca cgaccgcacg cgcaacgcgc gatctactct
                                                                       180
tgtcacctat ctataataca gtcttctact ttgaacatcg aagttttatt gaaacgccga
                                                                      240
gaccagcaac ctacacctgc acctcggcgc tcaaacactg cccaactggt g
                                                                      291
```

That which is claimed is:

- 1. A method of detecting resistance to *Bacillus thuringiensis* endotoxin in *Heliothis virescens* populations by screening for the presence of mutations having a sequence selected from the group consisting of SEQ ID NO: 3 or SEQ $_{50}$ ID NO: 4.
- 2. A method of detecting resistance to *Bacillus thuringiensis* endotoxin in insect populations by screening for mutations that alter the structure or function of any protein encoded by the nucleotide sequence set forth in SEQ ID NO: 55 1.
- **3**. A method of detecting resistance to *Bacillus thuringiensis* endotoxin in insect populations by screening for mutations that alter the structure or function of SEQ ID NO: 2 or homologues of SEQ ID NO: 2, wherein SEQ ID NO: 2 and said homologues of SEQ ID NO: 2 bind *Bacillus thuringiensis* endotoxin.
- **4.** A method for detecting mutations in genes from insect populations by screening for the presence of insertions of a $_{65}$ DNA sequence that hybridizes to SEQ ID NO: 4 or the complement of SEQ ID NO: 4 at 60° C. in 1×SSC.

- **5**. A process for monitoring Bt resistance associated with the presence of an r1 allele in an insect population associated with transgenic crops comprising the steps of:
 - obtaining DNA from an individual insect;
 - amplifying said DNA using primers having nucleotide sequences of SEQ ID NO: 7, SEQ ID NO: 8, and SEQ ID NO: 9.
 - measuring the molecular size of said amplified DNA, thereby determining whether said individual has zero, one, or two copies of said r1 allele.
- **6**. A method of detecting mutations in purified nucleic acid sequences obtained from an insect population by screening for a sequence of at least 24 contiguous nucleotides, wherein the at least 24 contiguous nucleotides are on a sequence selected from the group consisting of SEQ ID NO: 4, SEQ ID NO: 5, and SEQ ID NO: 6.
- 7. A method of detecting resistance to *Bacillus thuringiensis* endotoxin in insect populations by:
 - providing purified genomic DNA from an individual insect;
 - performing PCR using oligonucleotide primers of 24 nucleotides or greater, identical in at least 16 positions

of 24 to any sequence of 24 contiguous nucleotides of SEQ ID NO: 1 or the complement of SEQ ID NO: 1; determining the DNA sequences of the PCR products; computing the conceptual translations of the DNA sequences of the PCR products in all six reading 5 frames;

comparing each of the predicted polypeptide sequences to SEQ ID NO: 2 or homologues thereof, wherein SEQ ID NO: 2 and said homologues of SEQ ID NO: 2 bind *Bacillus thuringiensis* endotoxin;

66

whereupon the comparison, if indicating any change that would lead to the premature termination of the protein such that the last 12 amino acids or more of the carboxy-terminus of SEQ ID NO: 2 or homologues thereof would be predicted to be lacking in the mature protein, the insect will be at least heterozygous for resistance to *Bacillus thuringiensis* endotoxin.

* * * * *