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Leaf Litter Decomposition and Nutrient Dynamics in Four Southern Forested
Floodplain Communities

Terre11 T. Baker III,* B. Graeme Lockaby, William H. Conner, Calvin E. Meier, John A. Stanturf,
and Marianne K. Burke

ABSTRACT
Decomposition of site-specific litter mixtures was monitored for

100 wk in four Roodplaht  communities: (i) a mixed oak community
along the Cache River in central Arkansas, (ii) s sweetgum  (Liquid-
ambar styracijlua L.)-cherrybark  oak (Quercwfalcata vwpagodae-
folia ELI.) community along Iatt  Creek in central Louisiana, (iii) a
sweetgum-swamp tupelo [Nyssu  sylvaticu  var. bifroru  (Walt.) Sarg.]
community, and (iv) a laurel oak (Quercus  luurifolia  Michx.) commn-
nity  along the Coosawhatchie River in southeastern South Carolina.
Soil temperature, hydroperiod, and litter quality (C:N,  C:P,  N:P,  fig-
nin:N) were used to interpret differences in the rates of mass loss and
nutrient dynamics. After 100 wk, litter mixtures retained 33, 18, 8,
and 5% of original mass on the Cache, Coosawhatchie (laurel oak
community), Coosawhatchie (sweetgum-swamp tupelo community),
and Iatt floodplains, respectively, and these differences appeared re-
lated to hydroperiod. Decay rates were comparable to rates reported
in similar floodplain environments. Net mineralization of both N and
P was observed after 100 wk, but both elements accumulated in litter
mixtures periodically. Differences in hydroperiod were observed
among the four floodplain communities and decomposition of and
nutrient mineralization from litter among them appeared to be in-
versely related to the number and duration of flood events. Litterbags
containing leaf litter of a single-species (i.e., cherrybark oak) were
also monitored on three of the four sites to compare decay rates
and nutrient dynamics with the litter mixtures. On the Cache River
floodplain, slower decay of poorer quality cherrybark oak litter sug-
gested that titter quality drove decomposition under similar edaphic
conditions.

ABOVEGROUND NETPRIMARYPRODUCTION (AGNPP)~~
southeastern floodplain and wetland forests

ranges from 2000 to 20 000 kg ha-’ yr-’  (Conner, 1994;
Megonigal et al., 1997). Leaf material comprises approx-
imately 43% of this production (Conner, 1994) which
annually returns to the forest floor in the form of lit-
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terfall. Given these quantities, decomposition of leaf
litter is an integral and significant part of biochemical
(i.e., intrasystem) nutrient cycling and food webs of
floodplain forests. As used here, decomposition refers
to both the physical and chemical breakdown of litter
and the mineralization of nutrients (Boulton and Boon,
1991). The micro and macro invertebrate, bacterial, and
fungal  communities depend on these organic resources
for food. Through decomposition the nutrients within
leaf litter are converted into a form available for uptake
by vegetation, thereby exercising a critical control on
vegetation productivity (Mitsch and Gosselink, 1993;
Groffman et al., 1996).

Decomposition processes in wetland and floodplain
environments have also received considerable attention
with regard to biogeochemical (i.e., intersystem) nutri-
ent cycling (Brinson, 1977; Brinson, 1981; Elder, 1985;
Brinson, 1993; Lockaby and Walbridge, 1998). Particu-
larly in floodplain systems, significant quantities of nu-
trients may be imported from upslope and/or upstream
ecosystems through riparian transport or in floodwaters.
Also, aquatic systems rely on the decomposition of foliar
litter and coarse woody debris (CWD) as a source of
dissolved organic carbon (DOC), the foundation of
aquatic food webs (Brinson, 1981; Schlesinger, 1991).
Although the degree to which organisms in aquatic sys-
tems are dependent upon allochthonous inputs of DOC
has been the source of much debate (Vannote et al.,
1980; Junk et al., 1989, as cited in Thorp and Delong,
1994) it is clear that the riparian system (i.e., floodplain)
plays a vital role in contributing those inputs (Meyer,
1990). A great deal of effort also has been devoted to
determining the extent to which individual floodplain
systems or communities within those systems serve as
nutrient sinks, sources, or transformers (Mitsch and
Gosselink, 1993). In most cases, wetlands, floodplains
included, act as storage reservoirs for nitrogen (N) and
phosphorus (P) through microbial immobilization and
plant uptake, thereby accomplishing a biochemical fil-
tering function and improving water quality (Walbridge,
1993). By converting or transforming inorganic forms
of these elements to organic forms, wetlands and flood-
plains effectively reduce the risk of eutrophication of
downstream environments (Lockaby and Walbridge,
1998).

Because of the highly dynamic nature of floodplain

Abbreviations: AR, Cache River; SCdry,  Coosawhatchie River-
laurel oak; SCwet,  Coosawhatchie River-sweetgum/swamp tupelo;
LA, Iatt Creek.
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systems, estimating the absolute quantity of nutrients
that are retained, exported, or transformed within even
a single floodplain is difficult. However, decomposition
studies that monitor the nature and extent of nutrient
mineralization or immobilization during leaf litter decay
provide an understanding of whether certain nutrients
are being biologically immobilized within a community,
released to downstream systems, or mineralized. Simi-
larly, the extent of nutrient immobilization or mineral-
ization within a forested floodplain community can sug-
gest the degree to which community productivity may
be limited by certain nutrients. Immobilization of P by

\ soil organisms during decomposition, for instance, may
suggest that this element is in short supply, leading to
competition for P between soil flora and fauna and vege-
tation.

On a global or broad regional scale, temperature and
precipitation are largely responsible for determining the
rate and extent of decomposition (Swift et al., 1979;
Meentemeyer, 1978). Generally, warmer temperatures
and higher precipitation result in higher rates of decom-
position, faster litter turnover, and less organic matter
accumulation. However, these climatic factors interact
with forest type, substrate quality, and nutrient avail-
ability, obscuring patterns within similar climatic and
regional zones (Vogt et al., 1986).

At a local scale, the rate of decomposition and quan-
tity of nutrients cycled through the decomposition
mechanism are influenced primarily by (i) the quality
of the resource being decomposed (McClaugherty et
al., 1985; Meentemeyer and Berg, 1986; Blair, 1988;
Lockaby et al., 1995; Belyea, 1996; Cornelissen, 1996;
Hobbie, 1996; Heal et al., 1997) (ii) physicochemical
properties (i.e., temperature and moisture regime, pH,
oxygen) that affect decomposer organisms in situ (Swift
et al., 1979; Moore, 1986; Donnelly et al., 1990; Berg et
al., 1993),  and (iii) the length of time the resource is in
contact with the soil microenvironment (Lockaby and
Walbridge, 1998). However, the relative importance of
these factors appears to shift in response to spatial,
temporal, and site-specific variations. Among four dis-
tinct communities subject to variable hydrologic regimes
in the Great Dismal Swamp of Virginia and North Caro-
lina, Day (1982) reported that litter quality was more
important than site factors in determining the rate of
decomposition, although litter mixtures decayed more
rapidly on sites that experienced more flooding.

In forested floodplain ecosystems, the factors govern-
ing decomposition are particularly complex as a result of
hydrologic processes that create a mosaic of vegetation
communities (leading to differences in litter quality)
and physicochemical environments. Hydroperiod (i.e.,
inundation frequency and duration) is the single most
important factor governing ecological processes in wet-
land and floodplain environments (Mitsch  and Gosse-
link, 1993) and its significance with respect to decompo-
sition processes should not be overlooked. Not only
does hydrologic regime determine vegetation commu-
nity type (Wharton, 1978; Hardin  and Wistendahl, 1983;
Dollar et al., 1992) but the frequency and duration of

floodwater inundation determines the suitability of the
soil environment for decomposer organisms to process
organic materials (Tate, 1980; Paul and Clark, 1989;
Groffman et al., 1996). While adequate moisture is re-
quired for decomposer organisms to operate efficiently,
excessive moisture or anaerobic conditions resulting
from prolonged inundation may impede the activity of
soil flora and fauna and the decomposition process
(Tate, 1980; Paul and Clark, 1989; Groffman et al.,
1996). Brinson (1981) has suggested that decomposition
is optimized at a point along the soil moisture continuum
where cycles of wetting and drying prevail. Rates are
lower where permanently flooded, permanently dry, or
even alternating aerobic and anaerobic conditions pre-
vail. Lockaby et al. (1996) suggested that brief flooding
regimes, followed by moist but well aerated conditions,
maximized mass and carbon (C) loss.

Brinson (1981) also has suggested that, where decom-
position is not limited by either oxygen availability or
moisture, temperature is the “single most important
variable” governing mass loss. However, decomposition
is not strongly limited by low temperatures in bot-
tomlands of the southern United States (Megonigal et
al., 1996) yet flooding is common in these systems and
may create periods of anaerobic or oxygen limited con-
ditions.

Even within a single forested floodplain, differences
in litter quality, soil properties, and other microenviron-
ment factors may result in marked differences in decom-
position rates, extents, and nutrient mineralization/im-
mobilization patterns. The question remains as to which
of these is the most important driving variable. Also,
as Lockaby and Walbridge (1998) suggest, the timing
of litter input to the soil microenvironment may have
a substantial influence on decomposition processes. For
example, two different vegetative assemblages on the
Flint River, Georgia produced different quantities of
litter at different times (Lockaby and Walbridge, 1998)
resulting in distinctly different decomposition environ-
ments. Most decomposition studies do not account for
these differences.

The objectives of this study were (i) to quantify and
compare mass loss of leaf litter mixtures representative
of the species composition of litterfall in four bot-
tomland hardwood forests, (ii) to quantify and compare
mass loss of a single species’ litter among forests, and
(iii) to compare nutrient mineralization and immobiliza-
tion patterns for mixed-species litter combinations and
a single species litter in each forest as a function of time
of contact with the forest floor, litter quality, hydrope-
riod, and soil temperature.

It was hypothesized that (i) higher quality leaf litter
(i.e., litter with narrow litter quality ratios such as C:N,
C:P, N:P,  lignin, and 1ignin:N)  would decompose faster
than low quality litter (i.e., litter with wider ratios); (ii)
decomposition of the common substrate (i.e., single-
species litter) would occur more rapidly in communities
that experienced frequent, pulsing flood events as op-
posed to no flooding or long periods of inundation; (iii)
litter would exhibit net N and P mineralization; and (iv)
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patterns of N and P accumulation would be inversely
related to litter quality.

MATERIALS AND METHODS

Study Sites

Three floodplain sites within the southeastern USA were
chosen: the Cache River in Arkansas, the Coosawhatchie
River in South Carolina, and Iatt Creek in Louisiana (Fig. 1).
These f loodplains forests  are located within the Southern For-
est zone as described by Brinson (1990) and are considered
bottomland hardwood forests (Sharitz and Mitsch,  1993).
However, each floodplain differs in terms of local climate,
river origin (i.e., Piedmont versus Coastal Plain), and vege-
ta t ion .

The Cache River study si te  is  located in the Rex Hancock/
Black Swamp State Wildlife Management Area, Woodruff
County,  in east  central  Arkansas (approximately 35“N,  91*W).
The Cache is a redwater  (or alluvial) river according to the
classification used by Wharton et  al .  (1982) (also see Stanturf
and Schoenholtz, 1998). Stage may fluctuate as much as 3 m
vertically,  f lows range between 0 and 280 m3 s-l (King, 1996)
and flooding occurs seasonally with long periods of inundation.
The Cache River watershed is  subjected to a variety of agricul-
tural uses but approximately 20%, including the study site,
remains as bottomland hardwood forests (King, 1996). The
Cache River typical ly t ransports  large quanti t ies  of  sediment
(Kleiss, 1996). Soils on the study site were classified in the
Mhoon Series as fine-silty, mixed, thermic Fluventic Hapla-
quepts (Richard Day, personal communication,  1998).  These
soils  have been described as al luvial  soils  with dark gray,  f ine
sandy loam surface layers typically grading to si l ty clay loam
in subsurface strata.  While bottomland hardwood forests  on
the Cache River floodplain are composed of a variety of vege-

tat ive communit ies ,  this  s tudy was conducted in a  mixed oak
community with overcup  oak Walter) and
nuttall  oak (Quercus nuttalli  Palmer) as the dominant com-
ponents .

The Coosawhatchie River study si te,  owned by Westvaco
Timberlands,  Inc. ,  is  located in Jasper County,  southeastern
South Carolina (approximately 31”N,  Slow). The Coosawhat-
chic  originates in the Coastal  Plain.  Annual  mean f low on the
Coosawhatchie River is 360 m3 s-l and flooding can occur
several t imes per year and last  between 0 to 48% of the year
(Eisenbies and Hughes, 2000). The Coosawhatchie appears
unusual  among streams originat ing in  the Coastal  Plain in  that
AGNPP is among the highest  reported for  f loodplain forests
in the southeastern USA (Burke et al., 1999). It has been
suggested that  underlying marl  s t rat igraphy deposi ted during
interglacial periods contributes to relatively high P and Ca
economy on the site (Murray et al., 2000) resulting in a Coastal
Plain  system that  is  apparent ly  not  P def ic ient .

The Coosawhatchie River  s tudy si te  supported two dist inct
study areas for  this  invest igat ion:  a  frequently inundated,  low
lying sweetgum-swamp tupelo community and a higher eleva-
t ion,  less frequently inundated,  laurel  oak (Quercus Iaurifolia
Michx.)  community.  Soi ls  in  both communit ies  were classif ied
in the Brookman series, and have been described as fine,
mixed, thermic Typic Umbraqualfs (Murray et al., 2000).
These soils have thick, black loamy surface layers and dark
gray clayey subsoils .  More detai led descript ions of  soi ls  and
vegetation on this site are reported in Murray et al. (2000)
and Burke et al .  (2000),  respectively.  These two adjacent com-
munit ies  were within the same f loodplain and on s imilar  soi ls .
Thus, decomposition could be compared between distinct
communit ies  while  holding constant  those variables  that  other-
wise differed among floodplains ( i .e . ,  cl imate,  nutrient  status
of f loodwaters,  soil  types).

The Iatt Creek study site is located on the Kisatchie Na-

SOUTH CAROLINA

Coosawhatchie River
Westvaco Tiherlands,  Inc.

LOUISIANA
Kisatchie National Forest ARKANSAS

Black Swamp WMA

Fig. 1. Locations of the three rivers and four floodplain communities in the southern USA used for litter decomposition study.
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tional  Forest  in  Winn Parish,  LA (approximately 31”N,  92”W).
Iatt  Creek originates in the Hil ly Coastal  Plain.  The watershed
is subjected to various types of land use but is mostly forested.
Iatt Creek and its tributaries are deeply incised (commonly
5 m and 2 m, respectively). Streamflow in Iatt  Creek ranges
from virtually zero in the dry summer months to flashy over-
bank f looding during the winter  and spr ing months  that  typi-
cally recedes within two or three days (C.E. Meier, personal
communication, 1998). Soils are classified in the Guyton  series
and have been described as f ine-si l ty,  si l iceous,  thermic Typic
Glossaqualfs (C.E. Meier, personal communication, 1998).
The Iatt  Creek floodplain supports a variety of vegetative
communities ranging from cypress (Taxodium 
communities in the low lying sloughs to mixed bottomland
hardwood and pine communities (Pinus  tuedu  L.) on higher
areas within the floodplain. This study was conducted in a
community composed of primarily sweetgum  and cherrybark
oak (Quercus falcatrr var. pagodaefolia  El].).

Temperature and Flooding
Soil  temperature was monitored with two portable tempera-

ture recorders (Onset Computer Corporation, Pocasset ,  MA)
placed in the l i t ter layer at  each site.  Because launch failures,
water contamination,  and long flooding events prevented con-
sistent temperature recording at  the Cache River site,  surface
soil temperature data from a nearby meteorological station
(MET Station, Data Loggers, Ogden, UT) was used. Depth
and duration of f looding above the soil  surface was determined
with capacitance based water level recorders (WL-80, Remote
Data Systems,  Wilmington,  NC) instal led adjacent  to  decom-
position sites. Using data from WL-80 wells and their elevation
relative to that of litterbag sites, the depth and duration of
flooding at  the l i t terbags were est imated.

Leaf Litter Collection and Preparation
Leaf l i t ter  collection began on the three f loodplains in Octo-

ber,  1995 when substantial  annual  l i t terfal l  was f irst  observed.
On si tes where f loodwaters threatened to disturb l i t ter  collec-
t ion traps,  heavy plastic tarpaulins were suspended from poles
approximately 2 m above the ground to intercept falling leaf
litter. On drier sites, similar tarpaulins were placed on the
ground and anchored with stakes to collect leaf litter. It is
important to collect litter from the same community in which
decomposition processes will be monitored, particularly on
floodplain si tes where microtopographical  variat ion contrib-
utes to community and litter quality variability over short
distances (Hardin and Wistendahl, 1983; Dollar et al., 1992;
Brinson, 1993; Johnston, 1993). Otherwise, litter quality and

microsite variat ion can lead to erroneous conclusions about
nutr ient  cycl ing dynamics within a part icular  community.  Ev-
ery effort  was made to collect  mixed-species l i t ter  specifically
from the plant community in which litterbags were to be placed.

Litter from each of the five major species of each site was
composited by community to form weighted average mixtures
for inclusion in litterbags (Table 1). Litterbags (30.5 by 45.7
cm with 6- and 2-mm openings on the upper and lower sides,
respectively) were sealed at  the open end with stainless steel
staples.  A second set  of  l i t terbags containing only cherrybark
oak leaf litter, collected from the Iatt Creek site, were placed
adjacent to mixed-species l i t terbags to test  for  edaphic influ-
ences on decomposit ion processes ( i .e. ,  l i t ter  quali ty remained
constant). All litterbags were placed on the soil surface and
anchored with pin f lags to prevent them from being washed
away during f looding.  Because of  a  l imited quanti ty of  avail-
able litter, single-species litterbags were not used in the
sweetgum-swamp tupelo community on the Coosawhatchie
River site. All litterbags contained approximately 20 g of air
dried leaf litter. Three replicates of each litterbag type were
oven dried to a constant weight at 70°C and compared with
their air dried weight to obtain a correction factor for the
difference between air and oven dried weight. Three replicates
of each litterbag type were taken to all sites at the time of
placement and immediately returned to the lab and weighed
to obtain correction factors for handling loss during placement.
For each floodplain community, three replicates of 14 bags
each were installed for both the single-species l i t ter  and the
mixed-species l i t ter .

Popsicle Sticks
Wooden (Be&a  papyrifera Marsh.)  popsicle  s t icks (Solon

Manufacturing,  Solon,  ME) were placed on al l  s tudy si tes to
assess  the  effects  of  decomposi t ion microenvironment  on a
relat ively homogenous substrate.  Three popsicle st icks (with
a hole dri l led in one end) were at tached with plast ic r ings to
each mixed-species litterbag and collected at the same time
litterbags were removed. Popsicle sticks were used to track
mass loss  pat terns among f loodplain s i tes  but  were not  used
to assess nutrient mineralization/immobilization dynamics.
Popsicle st icks were returned to the laboratory with each lit-
terbag collection, washed free of sediment, oven dried to a
constant ,  weight  at  7O”C, and weighed.

Litterbag Collection and Nutrient Analyses
Litterbags were placed in the f ield in April ,  1996 and sam-

ples were collected after o-2-4-6-8-12-16-22-28-38-48-64-80
and lOO-wk.  On several occasions, litterbags could not be

Table 1. Representative mixtures of leaf fitter (20 g total) used in litterbags. The quantity of litter from each species was determined
as a relative proportion of all litter collected from each floodplain community thereby reflecting the importance of each species’ litter
present on the forest floor. Numbers indicate percentage of each species contained in litterbags in each community.

Coosawhatchie River (South Carolina) Iatt Creek (Louisiana)
Cache River (Arkansas) Coosawhstchie River (South Carolina) SweetgumEiwamp  Tupelo SweetgumKberrybark
Mixed oak Community (AR) Laurel Oak Community (SCdry) Community (SCwet) Oak Community (LA)

Nyssa spp. 39% Quercus sup. small, entire-leaved 31% Liquidambar styraciflua  48% Quercns  spp. large, lobed-leaved 60%
Quercus sup. small, entire-

leaved 34% Liquidambar styracijlua  29% Quercas  spp. large, lobed-leaved 21% Liquidambar styraciflua  19%
Quercus spp. large, lobe-

leaved 11% Quercus spp. large, lobed-leaved 26% Nyssa aquatica  16% Carya aquatica  8%
Acer  spp. 9% Acer  rabram 8% Quercus spp. small, entire-leaved 12% Fagus  grandifolia  7%
Ulmus  spp. 7% not applicable? Acer  spp. 3% Quercus spp. small, entire-leaved 6%
89%5 not available not available 9 2 %

t A fifth species was excluded from these litterbags because the remaining litter collected from this community was composed of many species, none of
which occupied a dominant proportion.

8 The proportion that the five species represents with respect to total litterfall collected.
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collected at the precise time interval due to extreme flood
events and deep water.  Samples were returned to the labora-
tory within two days (or  placed under refr igerat ion unti l  ship-
ment). All material was removed from litterbags and foreign
materials (e.g. ,  sediment,  woody materials,  reproductive parts)
were sorted out and removed. Litter was oven dried to con-
stant  weight  a t  70°C weighed, ground to pass a 20-mesh sieve,
and analyzed for N, P, and C. Leaf l i t ter N and C concentration
were determined by thermal combustion using a Perkin-Elmer
2400 CHN Analyzer (Perkin Elmer Corp., Norwalk, CT) on
subsamples taken from leaf mixed-species litter from each
sample period. Leaf litter total P concentration was deter-
mined calorimetrically using an ammonium vanadate  solut ion
on an HCl extract  following dry ashing at  400°C for 4 h (Jack-
son, 19.58). Leaf litter N, C, and P concentrations were
multiplied by the oven dried weight of leaf litter remaining
at each sample period to determine N, C, and P content of
lit ter.  Mass loss and decay coefficients were expressed on an
ash free basis.  Lignin and cellulose were determined using the
acid detergent fiber method (Van Soest and Wine, 1968)  and
lignocellulose indices (LCI) (Mellilo et al., 1989; Aber et al.,
1990) were calculated as % lignin/(% lignin + % cellulose).

Statistical Analyses
Sites were selected on the basis of the plant communities

from which l i t ter  was col lected and their  proximity to exist ing
vegetation productivity plots.  There were three replicates of
each litter type on the four sites and all litterbags were ran-
domly selected for collection. All  data were analyzed by SAS
(SAS Institute, 1991). The Non-Linear (NLIN) procedure was
used to calculate rates of mass loss (k) [(XIX,) = emk’]  (Olson,
1963) for each litterbag type and popsicle sticks. Analyses

1 6 0

140

120

T-

\

were conducted separately for mixed- and single-species l i t ter
(e.g.,  k,  % mass remaining, N, and P) and popsicle sticks (e.g.,
k, % mass remaining) by the General Linear Model (GLM)
procedure. ANOVA  was conducted in a randomized complete
block design with si te as the primary treatment variable.  The
single-species l i t ter  was also compared with the mixed-species
litter combinations within each floodplain, and these ANO-
VAs  utilized litter type as the primary treatment variable.
Duncan’s mult iple range procedure was used to test  for  signifi-
cant differences among means at the 0.05 probability level.
Comparisons of  N and P remaining in  l i t ter  within each com-
munity at every sampling date were conducted at the 0.05
probabi l i ty  level .

RESULTS

Temperature and Flooding
Although average daily temperature was not identical

among the four communities, differences were of short
duration and were not dramatic. We make the assump-
tion here that temperature differences did not drive
differences in decomposition. Depth and duration of
flooding among the communities were markedly vari-
able (Fig. 2 and Table 2). Flooding at AR occurred five
separate times, and litterbags were inundated for nearly
6 mo during winter 1996 and 1997-the  longest continu-
ous period of flooding among the four floodplain com-
munities. LA experienced three very short duration
flooding events (2-3 d each) suggesting that litterbags
at this site were inundated for only the short period
during which floodwaters rose and receded. Litterbags

- - - Cache River (AR) -1att Creek (LA) - Coosawhatchie River (SCwet) _  . - - - - Coosawhatchie River (SCdry)
Fig. 2. Comparison of flooding events among four floodplain communities in the southern USA during the lOO-week  decomposition study.

x-Axis depicts continuous time flooded over 100 wk, not discrete periods of’ time. Months that are repeated do not represent additional flood
events or longer flooding periods.
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at SCdry experienced eight separate periods of inunda-
tion, most of which were brief (1-21 d) except for one
event that lasted for several months. Litterbags at SCwet
were inundated more frequently (approximately 17
events) than litterbags at other sites. Table 2 provides
a ranking of the floodplain sites in terms of the pro-
portion of total time inundated and number of wetting/
drying cycles.

Mass Dynamics
Decomposition rates for the mixed-species litter com-

binations varied significantly among floodplain sites
(Tables 2 and 3). A similar statistically significant pat-
tern was observed for single-species litter (Tables 2 and
3). Comparisons made between each litterbag type (i.e.,
mixed- versus single-species) within each floodplain site
revealed that the single-species litter decayed signifi-
cantly slower at AR (Table 3).

Comparisons of the percentage of original mass re-
maining of mixed- and single-species litter at the final
collection (approximately 100 wk) revealed similar
rankings to decay rates (Table 2) among the four flood-
plain communities, although there was no statistical dif-
ference between LA and SCwet (Table 3). Mixed-
species litter at LA and SCwet contained significantly
lower percentages of original mass than AR and SCdry,
and SCdry contained significantly less than AR. The
same pattern was observed for single-species litter (ex-
cluding SCwet where no single-species litterbags were
installed) (Tables 2 and 3). The percent of original mass
remaining for single-species litter differed dramatically
among the three sites, and all of these values differed
statistically. Within each floodplain community, litter
types (mixed- versus single-species litter) were not sta-
tistically different in the percentage of original mass
remaining (Table 3).

Popsicle Sticks
Because of incomplete collection of popsicle sticks

during the final sample on three of the floodplain sites,
analyses were conducted on the previous (approxi-
mately 80 wk) sample. Although no statistical separation
was observed between SCwet and LA, the average de-
cay rate for popsicle sticks on SCwet was significantly
greater than the average decay rates on SCdry or AR

Table 2. Simple rauking  among floodplain sites for variables ex-
amined. Table is desigued as a quick reference for discussion in
text. Refer to Tables 3 and 4 for detailed statistical comparisons.

Variable Rankina  Amone  Sites+

Days Inundated
Wetting/Drying Cycles

Decomposition Rate (k)
Mass Lost after 100 wkt
C Lost after 100 wk
N Lost after 1OtJ  wk
P Lost after 100 wk

Decomposition Rate (k)
Mass Lost after 100  wk
C Lost after 100 wk
N Lest after 100  wk
P Lost after 100 wk

Decomposition Rate (k)
Mass Lost after SO  wk

SCwet>AR>SCdry>LA
SCwet>SCdry>AR>LA

M i x e d - S p e c i e s  L i t t e r

LA>SCwet>SCdry>AR
LA=SCwet>SCdry>AR
LA=SCwet>SCdry>AR
LA=SCwet>SCdry>AR
LA=SCwet=SCdry>AR

Sing le -Spec i e s  L i t t e r

LA>SCdry>AR
LA>SCdry>AR
LA=SCdry>AR
LA>SCdry>AR
LA=SCdry>AR

P o p s i c l e  S t i c k s

SCwet=LA=SCdry=AR
SCwet=LA=SCdry=AR

t The  variable mass lost is used here, rather than mass remnining,  to allow
ranking to be consistent.

$ An equal  sign indicates no statisticalty  siguiticnnt  difference was ob-
served between the two adjacently ranked sites.

(Table 3). Comparisons of the percentage of original
popsicle stick mass remaining after 80 wk among flood-
plain sites exhibited a pattern similar to decay rates
(Table 2) but no statistical separation was detected.

Carbon, Phosphorus, and Nitrogen Dynamics
Net changes in C remaining after 100 wk (Table 4)

exhibited a pattern nearly identical to percent mass re-
maining among floodplain sites. Temporal patterns in
C remaining through the loo-week period also closely
resembled those of mass loss. Because a steady trend
of C mineralization was observed for both mixed- and
single-species litter within each floodplain community,
and because the patterns so closely resembled those of
mass loss, the temporal C data are not presented.

The net percentage of P remaining in mixed-species
litter after 100 wk among the four floodplain communi-
ties exhibited a ranking similar to C (Tables 2 and 4).
Once again, no significant differences were observed
between LA and SCwet nor between SCwet and SCdry
mixed-species litter, but mixtures at AR showed sig-
nificantly lower net P loss than mixtures in the other
communities. The percentage of P remaining in single-

Table 3. Decomposition rates and percentage of mass remaining in leaf litterbags  (after 100 WIGS)  aud popsicle sticks (after  80  wks) in
four floodolain communities of the southern USA. Standard errors of the means are in parentheses.

Decay Coefficient (k) (yr-‘) Mass Remaining (%)

Mixed  Spec ie s Sing le  Spec ies Popsicle Sticks Mixed Species Single Species P o p s i c l e  S t i c k s

Cache River, AR (AR) 0.686Ai. (0.05)al 0.416A (0.02)b 0.445A (0.10) 32.9A (6.65)a 535A  (1.90)s 44.9A  (18.36)
Coosawhatchie River, SC

Laurel Dak (Scary) 0.841 B (0.04)a 0.788B  (0.04)a 0.564A (0.08) 17.8B  (1.87)a 15.8B  (2.72)a 38.7A (4.65)

Coosawhatchie River, SC
SweetgumEwamp
Tupelo (SCwet) 0.995c  (0.03) not applicable 0.906B  (0.02) 8.1C (0.88) not applicable 9.4A (1.50)

Iatt Creek, LA (LA) 1.2681) (0.05)a 1.33OC  (0.08)s 0.646AB (0.07) 5.2C (1.36)a 6.9C (1.65)a 32.7A (8.68)

i calculated as (X/X,) = e ‘I.
?:  Means within each littertype with the same uppercase letter are not significantly different at the alpha = 0.05 level.
p Lowercase letters compare decay coefficient or mass between littertypes within a single community: means with same lowercase letter are not significantly

different at the alpha = 0.05 level.
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Table 4. Percentage of C, N, and P remaining in leaf litter in four  floodplain communities of the southern region of the USA after 100
wks. Standard errors of the means are in parentheses.

Carbon Remaining % Nitrogen Remaining % Phosphorus Remaining %

Mixed  Spec ie s Sing le  Spec ies Mixed  Spec ie s Sing le  Spec ies Mixed  Spec ie s Sing le  Spec ies

Cache  River, AR (AR) 29.6A$  (9.2)aSS 50.8A (3.9)b 68.8A  (5.5)a 94.6A (3S)a 53.6A (7.4)a 107.IA (13&b
Coosawhatchie River, SC

Laurel Oak (SCdry) 15.7II  (4.2)a 14.7B  (4.7)a 35.8B  (l.l)a 31.OB  (2.4)a 24.4B  (1.4)a 27.3B  (5.0)a
Coosawhatchie River, SC

Sweetgum/Swamp
Tupelo (SCwet) 7.OBC  (1.9) n / a 16.6C  (0.6) n/a 16.7BC  (2.2) n / a

Iatt Creek, LA (LA) 4.4C  (1.2)a 6.OB  (3.4)a 8.2C  (0.8)a lO.lC  (1.7)a 8.2C  (1.6)a ll.lB  (3.O)a

$ Means within each  littertype with the same uppercase letter are not significantly different at the alpha = 0.05 level.
$$ Lowercase letters compare C, N, or P between littertypes; means with same lowercase letter within a single community are not significantly different

at the alpha = 0.05 level.

species litter was not significantly different between
LA and SCdry,  but AR retained nine and four times
the amount of original P as was retained in the same lit-
ter at LA and SCdry,  respectively. As we observed with
C, single-species litter retained a significantly higher per-
centage of P than mixed-species litter at AR after 100 wk.

Temporal analyses of percent P remaining in mixed-
species litter combinations over the lOO-wk period sug-
gested variable patterns of mineralization and accumu-
lation among the four floodplain sites (Fig. 3). Significant
P mineralization occurred between sampling dates on
all sites several times throughout the study, particularly
in the later sample dates. Although there was evidence
of accumulation or immobilization between several in-
tervals, only AR (Week 64, Fig. 3) and SCwet (Week
4 and 6, Fig. 3) exhibited statistically significant net P

accumulation for mixed-species litter, and this occurred
over relatively short periods. For the single-species lit-
ter, mineralization was also significant between a num-
ber of sampling intervals on all sites, except at AR,
where P immobilization occurred (week 64, Fig. 4).
There was no significant difference in P content of sin-
gle-species litter at the time of final collection (100 wk)
compared to fresh single-species litter. This would sug-
gest that P accumulated in the litter that remained at
AR even after it had lost approximately 50% of its
original mass (Tables 3 and 4).

The net percentage of N remaining in mixed-species
litter after 100 wk exhibited a ranking similar to C and
P (Tables 2 and 4). Although significant differences
were not detected between LA and SCwet, these two
communities retained significantly less original N than

Cumulative Weeks in Field Cumulative Weeks in Field
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Cumulative Weeks in Field Cumulative Weeks in Field
Fig. 3. Percent P remaining for mixed-species leaf litter combinations in four forested floodplain communities in the southern USA. Means with

the same lowercase letter are not significantly different (alpha = 0.05). Scale on x-axis is not linear.
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Cache River (AR)
Coosawhatchie River

Iatt Creek (LA) @Cdry)
I IS0 1 I50 I

-Cumulative Weeks in Field Cumulative Weeks in Field Cumulative Weeks in Field
Fig. 4. Percent N and P remaining in cherrybark oak leaf litter in three forested floodplain communities in the southern USA. Means with the

same lowercase letter are not significantly different (alpha = 0.05). Scale on x-axis is not linear.

SCdry and AR (Table 4). The net percentage of N
remaining in single-species litter was significantly differ-
ent among each floodplain community in which this
litter was installed (Table 4). The single-species litter
at AR retained approximately nine times more N than
the single-species litter at LA and three times the
amount that was retained at SCdry. There were no sig-
nificant differences between single- and mixed-species
litter N remaining after 100 wk at any of the sites.

Temporal analyses of percent N remaining in mixed-
species litter combinations suggested net mineralization
after 100 wk but patterns of mineralization and accumu-
lation varied among the four floodplain sites (Fig. 5).
Accumulation of N was observed in mixed-species litter
between sampling intervals at least once in each flood-
plain community except SCwet. As in the case of P, N
accumulation could occur over fairly short intervals and
roughly at the same time in all communities (between
Weeks 6 and 8 at AR and Weeks 8 and 12 at LA and
SCdry). Unique among the floodplain sites, N accumula-
tion was observed in mixed-species litter within 2 wk
of placement at LA and at Week 64 at AR. Although
significant N accumulation occurred in single-species
litter on all floodplain sites, only LA and SCdry exhib-
ited net N mineralization (Fig. 4). Similar to P, single-
species litter at AR had accumulated N such that there
was no significant difference in N content between the
time it was installed and at the final collection.

Litter Quality

Initial C:N ratios ranged from 46 to 68 for mixed-
species litter combinations in the four floodplain com-
munities (Table 5). The C:N ratio for the SCdry mixture

was significantly wider than any of the other floodplain
species mixtures, and the C:N ratio for the SCwet mix-
ture was significantly wider than the LA mixture. After
100 wk in contact with the forest floor, these ratios
narrowed, but the SCdry mixture narrowed significantly
less. No significant differences were detected in C:N
ratios of the single-species litter after 100 wk among the
three floodplain communities.

Initial C:P ratios ranged between 242 and 358 for
mixed-species litter on the four floodplain sites (Table 5).
Although no significant differences in C:P ratios were
detected among SCdry, SCwet, and LA mixed-species
litter combinations, the ratio for mixed litter from AR
was significantly narrower than any of these other three
mixtures. After approximately 100 wk in contact with
forest floor, these indices had narrowed on all sites to
between 123 and 194. At this time, both AR and SCwet
exhibited significantly narrower C:P ratios than either
SCdry or LA. After 100 wk, C:P ratios for the single-
species litter had also narrowed, but remained wider on
SCdry as compared to the other communities (Table 5).

Initial N:P ratios for the mixed-species litter, ranging
from 5 to 8 among the four communities, were signifi-
cantly wider on LA than any of the other floodplain
communities (Table 5). SCwet also exhibited signifi-
cantly wider N:P ratios than AR. After 100 wk in the
field, the LA mixture retained the widest N:P ratios and
these were significant in comparison to both AR and
SCwet. No significant differences were detected among
N:P ratios in the single-species litter after 100 wk.

No statistically significant differences were detected
among lignin, cellulose, and LCI estimates for mixed-
species litter from the four floodplain communities (Ta-
ble 6). However, lignin:N ratios for mixed-species litter
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I
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Cache River Ian Creek

Cumulative Weeks in Field Cumulative Weeks in Field

Coosawhatchie River Coosawhatchie River

Fig. 5. Percent N remaining for mixed-species leaf litter combinations in four forested floodplain communities in the southern USA. Means
with the same lowercase letter are not significantly different (alpha = 0.05). Scale on x-axis is not linear.

at SCdry were significantly wider than mixtures from
the other three floodplain communities.

Mixed-species litter at AR exhibited significantly nar-
rower N:P and C:P ratios than single-species litter at this
site at the time of installation but no significant differ-

ences were observed after 100 wk (Table 5). Mixed-
species litter at SCdry and LA both exhibited signifi-
cantly  narrower N:P ratios than single-species litter at
these sites at the time of installation but no significant
differences were detected after 100 wk. At the time

Table 5. Elemental ratios describing substrate quality differences among leaf litter combinations at installation and after 100 weeks
among four floodplain communities of the southern region of the United States. Standard errors of the means are in parentheses.

At time of installation

Cache  River, AR (AR)
Coosawhatchie River, SC

Laurel Oak (SCdry)

N / P C/N C/P

Mixed S i n g l e Mixed S i n g l e Mixed S i n g l e
Species Species Species Species Species Species

4.7At  (0.38)s$ 7.86  (0.31)b 52.4AB  (2.71)a 47.2 (3.13)a 241.9A  (8.64)a 366.7 (20.52)b

4.8AB  (0.17)a 7.3 (0.27)b 68.1C  (3.44)a 54.0 (4.91)a 325.1B  (25.03)a 390.9 (20.47)a
Coosawhatchie River, SC

Sweetgum/Swamp
Tupelo (SCwet)

Iatt Creek, LA (LA)
6.1B  (0.60)
7.8C  (0.33)a

n/a
9.2 (0.35)b

57.3A  (3.31) Ills
46.OB  (2.99)a 37.6 (1.65)a

After 108  weeks

329.9B  (16.51)
358.0B  (11.67)a

a l a
346.0 (3.65)a

Cache River, AR (AR) 5.6A (0.27)a 6.6A (0.57)a 22.1A  (1.6O)a 25.6A  (1.24)a 123.3A  (8.02)a 164.4A  (8.93)h
Coosawhatchie River, SC

Laure l  Oak  (SCdry) 6SAB  (0.45)a 7.9A  (0.38)a 29.9B  (1.38)a 25.2A  (0.58)b 193.78 (9.33)s 203.7B  (5.94)a
Coosawhatcbie River, SC

Sweetgmn/Swaatp
Tupelo (SCwet) 5.6A (0.07) n/a 23.3A  (0.68) o/a 13O.OA  (5.15) n/a

Iatt Creek, LA (LA) 7.6B  (0.53)a 7.5A (1.02)a 24.5A  (1.36)a 23.8A  (2.89)a 186.4B  (18.70)a 172.6A  (3.72)a

t Means for each floodplain community within each littertype with the same uppercase letter are not significantly different at the alpha = 0.05 level.
$ Means for each littertype within each floodplain community with the same lowercase letter are not signillcantly  different at the alpha =  0.05 level.
I NO statistical separation was conducted for the single-species litter as this material was assumed to be homogenous.
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Table 6. Indices describing quality of leaf liter combinations at installation among four floodplain communities of the  southern region
of the United States. Standard errors of the means are in parentheses.

Lignin (%) Cellulose (“Lb) Lignocellulose  Index (LCI) LigninIN

Mixed S i n g l e Mixed S i n g l e Mixed S i n g l e Mixed S i n g l e
Species Species Species Species Species Species Species species

Cache River, AR (AR) 22.OA  (0.48)aS  22.71 (0.42)a  27.2A (0.48)a  27.3 (0.42)a  0.447A (O.Ol)a  0.455 (O.Ol)a  23.7A (O.OS)a  21.6 (O.OQa
Coosawhatchie River, SC

Laurel Oak (SCdry) 243A  (0.54)a 24.9 (05S)a 25.3A (0.45)s 25.2 (052)a  0.49OA  (0.01)s 0.500 (O.Ol)a  33.6B  (0.04)a  27.6 (O.O@a
Coosawhatchie River, SC

Sweetgmn/Swamp
Tupelo (S&et) 21SA (2.77) n/a 27.9A (2.73) n/a 0.43SA  (0.06) n/a 24.2A  (0.05) ala

latt  Creek, LA (LA) 21.4A  (0.84)a 20.6 (0.33)a 28.3A (1.04)a  29.4 (1.33)a  0.431A (0.02)a  0.411 (O.Ol)a  20.2A (O.lO)a  15.3 (0.19)b

7 Means for each floodplain community within each littertype with the same uppercase letter are not significantly different at the alpha =  0.05 level.
3 Means for each littertype within each floodplain community with the same lowercase letter are not significantly different at the alpha = 0.05 level.
$ No statistical separation was conducted for the single-species litter as this material was assumed to be homogenous.

of installation, mixed-species litter at LA did exhibit
significantly wider 1ignin:N  ratios than single-species
litter at this site (Table 6).

No statistical separation was conducted for fresh sin-
gle-species litter quality as this material was assumed
to be homogenous. However, numerical differences in
litter quality indices for single-species litter were ob-
served, particularly in C:N,  C:P,  and 1ignin:N  ratios, as
well as LCI indices (Tables 5 and 6). Variation in litter
quality even within the single-species litter may have
been a result of site-specific variation in litter quality
from collection sites and/or differences in storage time
and conditions before litter was collected and processed.
After 100 wk, there were no significant differences
among litter quality indices for the single-species litter
with the exception of C:P ratios. Single-species litter at
SCdry exhibited significantly higher C:P ratios after 100
wk than the same litter at other sites.

DISCUSSION
Mass Dynamics

Brinson (1981,199O)  has conducted thorough reviews
of decomposition rates from other studies. As calculated
by Lockaby and Walbridge (1998) the average decay
rate (k) for temperate riverine forests from the range
of studies compiled by Brinson (1990) was 1.01. That
average is only slightly higher than the average decay
rate for the four floodplain communities (k = 0.95) in
this study. While decay coefficients at AR were lower
than those reported by Conner and Day (1991) for a
natural, an impounded, and a crayfish pond site, decay
coefficients from the other three communities in our
study were higher than Conner and Day’s (1991) natural
(0.832) and impounded (0.769) sites, but less than those
reported for the crayfish pond (2.081). Annual decay
rates for litter mixtures were greater in each community
than those observed by Day (1982) (0.341-0.667) for
litter mixtures in the Great Dismal Swamp. Also, in all
of the floodplain communities in this study, the percent-
age of original mass remaining in litter mixtures after
100 wk was less than the fraction remaining in Day’s
(1982) litter mixtures after two years in the Great Dis-
mal Swamp. Probably, differences in litter quality, hy-
droperiod, and soil microenvironment contributed to
differences between our study and Day’s (1982).

Other investigations have implicated litter quality as

the primary factor governing decomposition (Day, 1982;
Elliot et al., 1993; Hobbie, 1996). Our results suggest
that the importance of litter quality can be diminished
when compared across a wide range of flooding regimes.
Depending on its duration, flooding may either stimu-
late (i.e., LA and SCwet) or inhibit (i.e., AR) decompo-
sition as it affects the decomposition microenvironment.

Results from the single-species litterbags support this
contention. Although the single-species litter quality
varied somewhat among the three floodplain communi-
ties at the start of the study, other influences (i.e., flood-
ing, decomposer communities) may be partly responsi-
ble for the dramatically divergent rates and extents of
decay. Decay was more rapid on sites experiencing brief,
pulsed flood events as opposed to prolonged flooding.

Results from our study agree with those of Lockaby
et al. (1996) who concluded that brief flooding events
stimulate mass loss to the greatest extent. Among the
four floodplain communities, LA (where there were
only three, very brief flood events, Fig. 2) retained the
lowest percentage of original mass. However, the first
flooding event at LA occurred 11 mo after installation
of litterbags-well after LA had exhibited the fastest
rate of decay among the four floodplain communities.
This suggests that other factors, such as soil microenvi-
ronment and the microbial community, were also impor-
tant in determining the rapid decay observed at LA.

LA was characterized by flashy, short duration flood
events that typically fluctuated more than floodwaters
on the other floodplain sites (Fig. 2). Such conditions
were probably responsible for greater physical fragmen-
tation of leaf litter and export of coarse and fine particu-
late organic matter from litterbags (Peterson and Rolfe,
1982; Yates and Day, 1983), which would elevate esti-
mates of mass loss from litterbags. Also, the brief wet-
ting and drying cycles observed at LA versus the longer
periods of inundation observed at other sites may have
accelerated decomposition (Brinson, 1981; Mitsch  and
Gosselink, 1993).

The proportion of time each community was flooded
over the 100-wk  period was LA (cl%) < SCdry
(21%) < AR (28%) < SCwet (52%). With the excep-
tion of SCwet, this is identical to the ranking for decay
rate and extent. Although SCwet remained inundated
for a much greater proportion of total time, litterbags
in this community experienced many cycles of wetting
and drying, which probably stimulated decomposition.
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The dramatically greater percentage of original mass
remaining in mixed-species litter at AR was probably
a result of a single, long period during which this com-
munity remained flooded (Fig. 2), creating an unfavor-
able (i.e., anaerobic) decomposition environment. In
addition, heavy loads of sediment (carried in the flood-
waters on this site) were observed coating litterbags at
AR. Despite efforts to remove sediment and correct
using an ash free basis, these sediment loads could have
complicated mass loss estimations or it is possible that
this coating of sediment might have created an unfavor-
able environment for decomposing organisms.

In this study, all litterbags were exposed to the decom-
position microenvironment for approximately the same
time period. Therefore, time can be eliminated as a
variable in explaining differences in rate and extent
of decomposition. Microbial activity was not measured
directly but wider litter quality indices (i.e., C:P and
N:P,  Table 5) at LA suggested that leaf litter there might
be less decomposable (a deficit of P relative to C). In
fact, C:P ratios of 358 for mixed-species litter at LA
were well above the threshold value of 200 required
for complete decay of organic matter by decomposer
organisms (Brinson, 1977),  although N:P ratios for the
same litter were below the threshold values of 15 re-
ported in other studies (Vogt et al., 1986; Lockaby and
Walbridge, 1998). The very narrow N:P ratios observed
for litter mixtures in this study may indicate a shortage
of N relative to P.

Slower decomposition rates for the mixed-species lit-
ter at AR, as compared to the other communities, was
unexpected (Table 3). High sedimentation at the Cache
River site (Kleiss, 1996) may have masked actual mass
loss despite efforts to remove sediment and express
values on an ash free basis. Personal observation of high
sediment loads on litter supports this notion. Brinson
(1977) reported similar difficulties in an environment
prone to flooding. C:P indices at the time of installation
for this litter mixture were significantly narrower than
the mixtures at other sites (Table 5), suggesting that
decay might not be as P limited and may proceed more
rapidly or completely. Although not all litter quality
indices agreed (Tables 5 and 6), two of the more widely
used indices (e.g., N:P, C:P) indicated that LA exhibited
the widest and AR exhibited the most narrow litter
quality indices. However, comparisons of decay rate
and extent among these two communities exhibited the
exact opposite pattern of the litter quality indices, with
the poorest quality litter showing the highest decay rate.
Thus, either decay rates were controlled by factors other
than litter quality alone or our indices did not fully
encompass differences in litter quality.

Both decay rate and decay extent differed signifi-
cantly between the two communities on the Coosawhat-
chic  River. Although SCdry  exhibited significantly
wider C:N and 1ignin:N  ratios, other indices for mixed-
species litter did not differ (Tables 5 and 6). Therefore,
we might speculate that SCdry  was more N limited than
SCwet. Although not statistically significant, wider C:P
and N:P ratios at SCwet suggest that this community
might be more P limited. Soil temperature differences

were probably insufficient to measurably affect decom-
position rates but hydrologic regime also differed be-
tween the two communities (Fig. 2) and may explain
the faster rate and greater extent of decay at SCwet.
However, the inundated conditions at SCwet were prob-
ably not prolonged enough to impede decomposition as
was the case at AR. It appears, therefore, that both
litter quality and edaphic considerations interacted to
promote differences in decomposition between the two
Coosawhatchie River communities.

Comparisons of decay rates and final percent mass
remaining between mixed-species litter combinations
and single-species litter within each site revealed inter-
esting patterns. Both mixed- and single-species litter-
bags were exposed to similar microenvironmental and
edaphic conditions on each site. However, the single-
species litter decayed significantly more slowly and re-
tained a greater percent of original mass on the Cache
River floodplain as compared to the other sites (Table 3).
The differences in decay rate between mixed- and sin-
gle-species litter on the same site would obviously be a
result of differences in litter quality. C:P and N:P ratios
suggested that the single-species litter exhibited signifi-
cantly wider ratios than the litter mixture, implying that
decomposition of the single-species litter may be P lim-
ited (Table 5).

Other studies also have observed different decay pat-
terns and nutrient dynamics for mixed-species litter as
compared to a single-species litter under similar envi-
ronmental conditions. Blair et al. (1990) observed lower
N mineralization from single-species litterbags as com-
pared to mixed-species litterbags and concluded this
resulted from different microbial and microarthropod
densities within the two littertypes. It is also probable
that mixed-species litters can support a more diverse
decomposer community than single-species litter, thereby
resulting in more complete decay. Comparing four com-
munities subject to different hydrologic regimes, Day
(1982) observed that mixed-species litter decomposed
more rapidly than a single-species litter in two wetter
communities whereas this pattern was reversed in two
drier communities. In the same study, Day (1982) ob-
served that mixed-species litter decayed more rapidly
than single-species litter comprised of the dominant spe-
cies from that community (with one exception). Al-
though results from our study suggested that hydrope-
riod may have superseded litter quality in governing
decomposition among the four floodplain communities,
litter quality differences between the mixed- and single-
species litter appeared to be a more significant regulator
of decomposition within a single community.

Popsicle Sticks

Contrary to the results of leaf Iitter decomposition,
popsicle stick decay rates and extent after 80 wk were
greatest at SCwet, although not significantly greater
than those at LA (Table 2). The resilient nature of pop-
sicle  sticks prevented rapid fragmentation and loss of
popsicle sticks until late in the study and only after
extensive decay. Therefore, differences in popsicle stick
decay can be attributed to edaphic factors which con-
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trolled decomposition, as substrate quality remained con-
stant among the popsicle sticks. Particularly in the case
of the two Coosawhatchie River communities where tem-
perature and nutrient status may have been more similar
than among the four floodplain communities, hydrope-
riod (wetting and drying cycles) appears to be the pri-
mary difference explaining divergent rates of decay.

Phosphorus and Nitrogen Dynamics
Differences in the percentage of original P remaining

after 100 wk for both mixed- and single-species litter
among the floodplain communities resembled differ-
ences in mass (Table 4). C:P indices for mixed- and single-
species litter at the time of installation (Table 5) sug-
gested that P may limit complete decomposition of leaf
litter (i.e., C:P > 200). However, N:P ratios of mixed-
and single-species litter were below the threshold values
considered necessary for P limitation (i.e., 10-E)  (Vogt
et al., 1986; Lockaby and Walbridge, 1998). It was unex-
pected that the litter mixture that exhibited the most
narrow C:P and N:P ratios (Table 4, AR-C:P = 242,
N:P = 4.7) decomposed most slowly and to the least
extent as compared to the litter mixture that exhibited
the widest C:P and N:P ratios and decomposed most
rapidly (Table 4, LA-C:P = 358, N:P = 7.8). We would
expect that the greater abundance of P relative to C
and N at AR as compared to the other floodplains would
have encouraged more rapid and greater decomposi-
tion. The relative abundance of P at AR was not surpris-
ing given the high sedimentation on this floodplain and
the probable P influx (from agricultural sources) associ-
ated with this sediment (Kleiss, 1996).

Accumulation of nutrients in decomposing leaf litter
has been shown in several wetland systems (Brinson,
1977; Day, 1982; Conner and Day, 1991; Lockaby et al.,
1996) and may come from several exogenous sources
or through immobilization by soil flora and fauna inhab-
iting the leaf litter. Mixed-species litter at LA and SCwet
exhibited the widest C:P and N:P ratios and also retained
a higher P content for a longer period throughout the
study than litter mixtures at other floodplains (Fig. 3).
In fact, litter mixtures in both communities contained
greater than 100% of original P on several occasions
and at SCwet for the majority of the study (Fig. 3).
Peaks in immobilization occurred in mixed-species litter
(AR at Week 64 and SCwet at wk 4 and 6) during the
warm summer months (Fig. 3). Although Megonigal et
al. (1996) concluded that microbial activity in southeast-
ern hydric soils is never temperature limited, microbial
activity does increase as temperature increases (Paul
and Clark, 1989). Although it cannot be conclusively
stated that the observed accumulation resulted from
increased microbial activity and demand, it is likely that
the population of decomposers  may have been ex-
panding rapidly at this time, accounting for at least some
of the immobilization observed. P associated with de-
posited sediment may also have been partly responsible
because the immobilization peak during week 64 at AR
was preceded by a long period of inundation. Field ob-
servations also indicated that the SCwet site was fre-
quented by numerous wading birds, perhaps in search of

insects and other invertebrates (Don Stoeckel, personal
communication, 1998). High inputs of animal excreta
may have been responsible, to some degree, for the
accumulation of P observed at this time.

Significant P immobilization at SCwet might be ex-
pected because this river originates in the Coastal Plain
and such systems are often P limited (Lockaby and
Walbridge, 1998). However, recent evidence suggests
that the Coosawhatchie River represents a departure
from typical Coastal Plain systems as a result of underly-
ing marl deposits and higher soil P (Murray et al., 2000).
Nonetheless, P immobilization in mixed-species litter
from this community suggests that the element may be
limited relative to demand at certain times of the year.
The only significant P immobilization that occurred in
the single-species litter was at AR. Comparisons of N:P
and C:P ratios at the time of installation revealed that
these indices were significantly wider for the single-
species litter than for the litter mixture obtained from
AR (Table 5). The lower resource quality suggested by
the N:P and C:P ratios in the single-species litter may
have been responsible for the observed immobilization
as well as the significantly lower rate and extent of
decomposition (Table 3). The immobilization peak at
AR in single-species litter occurred at the same time it
was observed in mixed-species litter. This suggests the
same factors (i.e., sediment deposition, increased micro-
bial activity) contributed to P accumulation in both lit-
ter types.

Differences in the percentage of original N remaining
after 100 wk for both mixed- and single-species litter
among the floodplain communities resembled differ-
ences in C remaining (Table 4). Paul and Clark (1989)
reported that detritus with C:N ratios above a threshold
value of 50 (for forested systems) would exhibit immobi-
lization during decomposition; below this value, miner-
alization could be expected. On the basis of this thresh-
old value, all litter mixtures, except the LA mixture,
were N limited, but not by a wide margin. Litter mixtures
at LA also exhibited the most narrow 1ignin:N  ratio
among the four floodplain communities, although this
was not statistically significant. Therefore, Nitrogen was
less limiting to decomposition at LA than at the other
floodplain communities. It is interesting to note that the
AR litter mixture exhibited C:N and 1ignin:N  ratios most
similar to the LA mixture, yet decay rates and extents
and N mineralized at AR were significantly less than
those at LA. This provides further evidence that decom-
position and nutrient mineralization were largely af-
fected by environmental variables (e.g., frequency and
duration of flooding, edaphic factors). Once again, this
is supported by the divergent results in terms of N re-
maining in the single-species litter after 100 wk at both
of these sites.

With the exception of N and P in single-species litter
on the Cache River floodplain, both mixed- and single-
species litter exhibited net N mineralization over the
100-week  study (Fig. 4 and 5). However, there were
several instances when significant N accumulation was
observed. Only mixed-species litter at SCwet lacked
significant N accumulation between sampling intervals,
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although they retained greater than 100% N for some
time. As with P accumulation, N accumulation occurred
over short intervals and to the largest extent during the
growing season. At least some of the accumulation may
be attributable to immobilization by decomposers, al-
though exogenous sources such as sediment must also
be considered. It is interesting that SCwet exhibited
the least tendency to accumulate N but the strongest
tendency to accumulate P. However, SCdry  showed one
of the strongest tendencies to accumulate N, but mini-
mal accumulation of P. If such accumulations are indica-
tive of nutrient limitations (MacLean and Wein, 1978)
then these two communities exhibited completely differ-
ent nutrient limitations within a short distance of one
another on a single floodplain. The significantly wider
C:N ratios for mixed-species litter at SCdry  (e.g., 68) as
compared to SCwet (e.g., 57) may explain the tendency
for N to accumulate in the former. However, no such
relationship existed to explain the tendency for mixed-
species litter at SCwet to accumulate P. It is possible
that accumulation of P at SCwet is a result of that ele-
ment being deposited from exogenous sources (perhaps
in association with sediment in floodwaters or through
the reduction of iron and aluminum phosphates) and
may represent luxury consumption by decomposing or-
ganisms.

CONCLUSIONS
The rate and extent of decay for both mixed- and

single-species litter among the four floodplain commu-
nities appeared to be most strongly affected by hydrope-
riod. Flood events at Iatt Creek were infrequent and
brief, which stimulated mass loss and nutrient release
from both mixed- and single-species litter. Long periods
of inundation appeared to inhibit decomposition of and
nutrient release from mixed- and single-species litter on
the Cache River site, although burial by sediment might
also be a factor. Although litter quality may determine
the rate and extent of decomposition under similar
edaphic conditions, its significance appears to be dimin-
ished when making comparisons among sites that expe-
rience dramatically different flooding regimes. Litter
quality was a more significant factor when comparing
decomposition dynamics between the two communities
on the Coosawhatchie River floodplain. Decomposition
of mixed-species litter in the drier laurel oak community
was probably N limited whereas decomposition was P
limited in the more hydric sweetgum/swamp tupelo
community. Litter quality differences also explained dif-
ferences in decay rates between mixed- and single-spe-
cies litter subjected to the same flooding regime on the
Cache River floodplain.

Both mixed- and single-species litter exhibited net
mineralization over the 1 OO-week study. However, brief
periods of N and P accumulation were observed and
suggested that these nutrients accumulate in decompos-
ing leaf litter at least briefly during the early to mid
growing season. The accumulation of P also coincided
with floodwater recession and some fraction of the accu-
mulation may be the result of P association with sedi-
ment being deposited on decomposing litter. However,

the bulk of the accumulation of both N and P is probably
attributable to immobilization by decomposers, particu-
larly as this coincided with periods of peak biological
activity and floodwater recession. As other studies have
indicated, the tendency for N and P to accumulate in
decomposing leaf litter was greater in leaf litter with
relatively wide litter quality indices. This may suggest
that decomposer organisms exhibit a greater tendency
to immobilize nutrients from exogenous sources during
decomposition of less palatable substrates.
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