Clemson University **TigerPrints**

Focus on Creative Inquiry

Research and Innovation Month

2014

CU and the CDC

C. Howard

K. Remillard

K. Toth

R. Hardy

J. Painter

See next page for additional authors

Follow this and additional works at: https://tigerprints.clemson.edu/foci

Recommended Citation

Howard, C.; Remillard, K.; Toth, K.; Hardy, R.; Painter, J.; Limbaugh, D.; McNealy, T.; and Wells, C., "CU and the CDC" (2014). Focus on Creative Inquiry. 32.

https://tigerprints.clemson.edu/foci/32

This Article is brought to you for free and open access by the Research and Innovation Month at TigerPrints. It has been accepted for inclusion in Focus on Creative Inquiry by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Authors C. Howard, K. Remillard, K. Toth, R. Hardy, J. Painter, D. Limbaugh, T. McNealy, and C. Wells							

microbesadapt.com

CU and the CDC

Rayphael Hardy, Scott Howard, David Limbaugh, Joseph Painter, Kasey Remillard, Kyle Toth
Christina Wells, Claressa Lucas, Tamara McNealy
Department of Biological Sciences, Clemson University, Clemson, SC

Abstract

Legionella is a gram-negative genus of bacteria that is the causative agent of Legionnaires' disease. Currently, 50 species and 70 serogroups of Legionella have been identified from both environmental and clinical samples. The Center for Disease Control (CDC) in Atlanta, Georgia maintains a bank of both previously identified and unidentified Legionella samples. The availability of sequencing technologies has greatly increased in the time since many of the samples were collected, allowing us to identify many of the previously unidentifiable isolates. We received 68 isolated, unidentified samples from the CDC with the goal to sequence and characterize them in the search for identification of novel species. A sequence based typing scheme designed for Legionella was used for initial characterization. Genomic DNA was extracted from each sample and then PCR was performed on the 16S and the *mip* genes. These samples were then sequenced at CUGI. Currently, we have identified several samples which were previously undescribed. Once a sample is identified as novel, further characterization through sequencing of additional genes along with morphological and biochemical assays will be conducted. As a collaborative project, regular meetings occur with scientists from the Legionella Lab at the CDC. Characterization of novel strains expands the ability of this lab in conducting outbreak analysis and risk assessment along with expanding our knowledge of the pathogen.

Hypothesis

Unidentified samples of *Legionella* can be identified based on sequencing of the *mip* and 16S genes. Novel samples can be further characterized using sequencing by synthesis guidelines

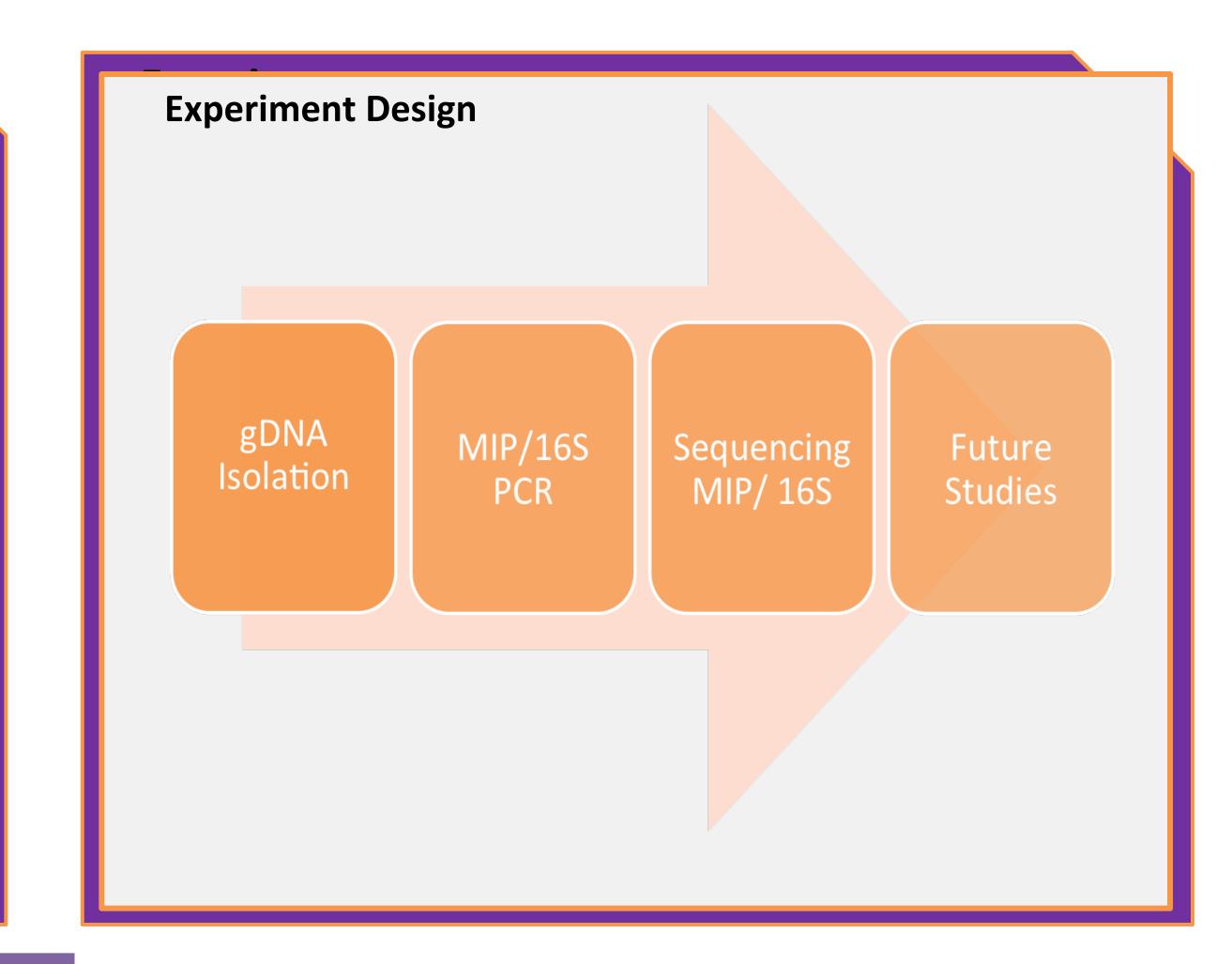
Objectives

- 1. Identify unknown isolates collected by the CDC
- 2. Use bioinformatic tools to analyze sequence data and identify *Legionella* species
- 3. Conduct further biochemical assays and genetic sequencing to characterize novel species

Materials

Buffered Charcoal Yeast Extract agar (BCYE)

PCR protocol (CDC)


DNeasy Blood and Tissue Kit for DNA extraction

PCR mini extract agarose kit

MEGA

BioEdit

NCBI BLAST Database

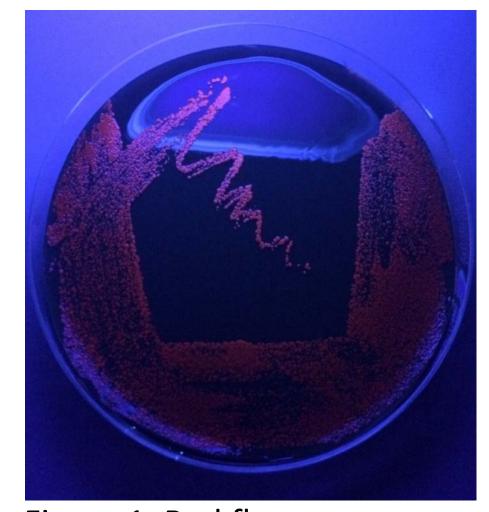


Figure 1. Red fluorescence of *L.erythra*

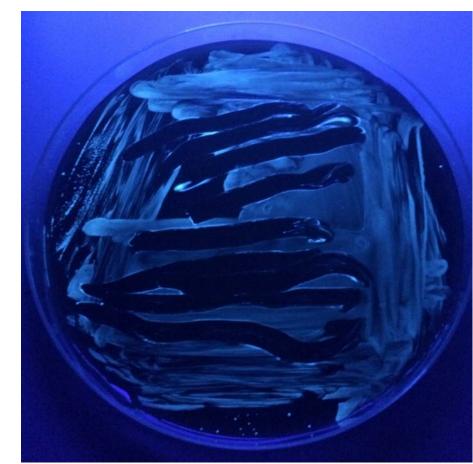


Figure 2. Green fluorescence of CU 21

CU#	Origin	Source	Identification
1	Arizona	Environmental	L. erythra based on mip gene
2	Wisconsin	BAL	L. erythra based on mip gene
3	lowa	Environmental	L. pneumophila based on mip gene
4	Kentucky	Bronchial	L. pneumophila based on 16S and mip genes
5	New York	Environmental	L. pneumophila based on 16S and mip genes
6	Ohio	Bronch Wash	Novel species based on 16S and mip genes
7	Georgia	Bronch Wash	L. wadsworthii based on 16S gene
8	Japan	Unknown	L. busanensis based on mip gene
9	Japan	Unknown	L. erythra based on mip gene

CU#	Origin	Source	Identification
10	California	Environmental	<i>L. steelei</i> based on <i>mip</i> gene
11	Ohio	Lung Lobe	Needs Further Identification
12	Ohio	Environmental	L. erythra based on mip gene
13	Sweden	Unknown	Needs Further Identification
14	Canada	Unknown	Needs Further Identification
15	Canada	Unknown	Needs Further Identification
16	Ohio	Environmental	L. bozemanii based on mip gene
17	Missouri	Environmental	Needs Further Identification
18	New York	Environmental	Needs Further Identification

Conclusion

- CU samples 1, 2 and 9 identified as *L. erythra*
- CU sample 3, 4 and 5 identified as L. pneumophila
- CU sample 8 and identified as L. busanensis
- CU sample 10 identified as L. steelei

Future Directions

Future directions will include continued identification of unknown samples by genetic sequencing. of the *mip* and 16s genes. Sequenced based typing of several other *Legionella* genes will be performed on unique or novel strains as outlined by the Center for disease control. These strains will be further characterized based on their biochemical properties.

Acknowledgements

The authors would like to thank the Creative Inquiry program for funding and Brennen Jenkins and Katie Jwanowski for assistance and mentoring in the lab.