Simulation of Turbulent Flocculation and Sedimentation in Flocculant-Aided Sediment Retention Basins

Byung Joon Lee, Fred J. Molz, Mark A. Schlautman, Abdul A. Khan

2008 South Carolina Water Resources Conference

Clemson University Environmental Engineering & Earth Sciences Civil Engineering

Colloidal Contamination !!!

Urban Development

As a Result

Flocculant-Aided Sediment Retention Pond

Polymer-Induced Flocculation

- **1. Bridging Flocculation**
- **2. Electrostatic Patch Mechanisms**

http://rpitt.eng.ua.edu/Class/Erosioncontrol/Module6/Module6.htm http://hceglobal.com/faqs.asp

Outline

1. Conceptual Model

- Flocculation/Sedimentation Model
- **2. Mathematical Models**
 - CFD-DPBE Combined Model

3. Simulation

- Model Sediment Pond Systems
- Numerical Strategy

4. Results and Conclusion

- Steady State Flow Field Simulation
- Particle/Floc Size and Mass Distribution

5. Future Studies

- Experiments Flume Test
- Other Applications

Conceptual Model : Flocculation and Sedimentation

Mathematical Models : CFD-DPBE model

Mathematical Models : 1. Computational Fluid Dynamics

<u>Turbulence Model</u>: Two-equation κ - ε turbulence model (Fox, 2003)

Model Parameters:

<Ui>> : Time averaged velocity component

- *i*, *j*: Indices for directional coordinates
- t : Time
- $ho\,$: Fluid density

- **P**: Piezometric pressure
- v: Kinematic viscosity of the fluid.
- κ : Turbulent kinematic energy
- ε : Turbulent energy dissipation rate

FLOW3D[®] software was used to simulate turbulent flow within a retention pond.

Mathematical Models : 2. Multi-dimensional DPBE

Multi-Dimensional DPBEs (30 Differential Equations) :

Fractal Theory:
$$D_i = D_o \left(2^{i-1}\right)^{1/D_f}$$
 Stokes' Law : $u_{gi} = \frac{g}{18\eta} \left(\rho_s - \rho_w\right) D_0^{3-D_f} D_i^{D_f - 1}$

Model Parameters:

- n_i : Number concentration of class size D_i D_f : Fractal dimension
- $\langle U \rangle$: Time averaged velocity component ρ_s : Particle density
- C_{μ} : CFD model constant = 0.09
- $D\theta$: Particle diameter of monomer
- *Di* : Average particle diameter of *i*-th class n

The multi-dimensional DPBE is used to simulate particle/floc transport and flocculation in the ponds.

- ρ_w : Fluid density
- : Gravitational acceleration g
- : Fluid viscosity

Mathematical Models : 3. Aggregation/Break-up Kinetics

Model Parameters:

- $\alpha(i, j)$: Collision Efficiency Factor Between a_0
 - Particle Size Classes *i* and *j*
- $\beta(i, j)$: Collision Frequency Factor
- a(i): Breakup Kinetic Constant

b(i, j): Breakup Distribution Function

- : Selection Rate Constant
- *Vi* : Mean Particle Volume of *i*-th Class
- *Di* : Mean Diameter of *i*-th Class
- *Dc* : Critical Diameter

Simulation: 1. Model Pond System

Simulation: 2. Numerical Strategy

- 1. Generate Steady State Flow Field Data with FLOW-3D®
- 2. Solve the DPBE Equation with MATLAB®

• INITIALIZATION

- Supporting data (flow field data from CFD, solid and liquid properties)
- Computational system layout (Dimensions, Mesh)
- DPBE CALCULATION (Operator Splitting Algorithm)

$$\begin{array}{l} \checkmark \\
 Leveque's flux-corrected upwind scheme (Advection) \\
 \frac{\partial n_i}{\partial t} + \frac{\partial}{\partial x} (\langle U_x \rangle n_i) + \frac{\partial}{\partial y} (\langle U_y \rangle n_i) + \frac{\partial}{\partial z} (\langle U_z \rangle n_i) + u_{gi} \frac{\partial n_i}{\partial z} = 0 \\
 t+\Delta t \\
 FDM calculated with Gauss-Siedel iteration (Dispersion and Reaction) \\
 \frac{\partial n_i}{\partial t} - \frac{\partial}{\partial x} \left(C_\mu \frac{k^2}{\varepsilon} \frac{\partial n_i}{\partial x} \right) + \frac{\partial}{\partial y} \left(C_\mu \frac{k^2}{\varepsilon} \frac{\partial n_i}{\partial y} \right) + \frac{\partial}{\partial z} \left(C_\mu \frac{k^2}{\varepsilon} \frac{\partial n_i}{\partial y} \right) - (agg / break)_i = 0
\end{array}$$

POST PROCESSING

- Mass balance, Particle/floc diameters, Solid concentrations, etc.

Results : 1. Steady State Flow Field Simulation

Steady state flow field profiles (CFD)

Arrows and colors represent flow velocities and shear rates. Shear Rate = $G = (\varepsilon / v)^{1/2}$

➢ Influent flow velocities were set at three different values (0.222, 0.334, and 0.667 m/s) by adjusting inlet width, to create different levels of fluid turbulence, and to compare the effects of turbulent intensity on flocculation efficiency.

Results : 2. Consistency and Stability Tests

Solid Mass Balance:

Mass Balance(%) – $\frac{Mass_{out,acc} + Mass_{deposit,acc} + Mass_{retained}}{Mass_{deposit,acc}}$	
Muss Dulunce	Mass _{in,acc}
in/out	: In or out of the pond
deposit	: Deposit on the bottom
retained	: Retained in the pond

Mass Mean Diameter:

$$D_{43} = \frac{\sum m_i D_i}{M} = \left(\frac{m_1}{M} D_1 + \frac{m_2}{M} D_2 + \dots + \frac{m_I}{M} D_I\right)$$

mi : Mass of *i*-th class particle
M : Total mass of all the classes

Case 1 Case 2

Case 3

8

10

Results : 3. Dynamic Simulation Results

Results : 4. Steady State Simulation Results

Particles/flocs traveling through these swirling zones are more exposed to flocculation and thus tend to grow larger than those passing through the other zones.

Results : 5. Summary

Turbulent conditions were found to induce critical effects on both flocculation and subsequent sedimentation efficiencies

Conclusion

- FLOW-3D[®] was a useful tool to generate steady state flow field data, such as flow velocities and shear rates, which were used in subsequent multi-dimensional DPBE simulations.
- As an alternative to QMOM, the DPBE formulation was applied to simulate a multi-dimensional flocculation/sedimentation process.
- Operator splitting and Leveque's flux-corrected algorithms were applied to overcome computational instability caused by nonlinearity, advection dominance and complexity of the DPBE model.
- In applications of the CFD-DPBE model, increased turbulence was found to enhance the flocculation and sedimentation efficiencies. However, methodology optimizing this effect requires further study.

Ongoing Research : Experimental Validation

Bench-scale 3-Dimensional Flume Test EEES, Clemson University

Future Research : Various CFD-DPBE Applications

<u>Cohesive Sediment Transport</u> in River, Lake, Estuary

Clarifier in Water/Wastewater Treatment Plants

http://uregina.ca/~sauchyn/geog323/112.jpg http://www.veoliawaterst.com.au/en/case-studies/7741.htm

Acknowledgments

- •Funding
 - USDA-NRCS (NRCS-69-4639-1-0010) for the CLUE
 Project
 - USDA-CSREES (SC-170027)
 - State of South Carolina