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Flocculant-Aided Sediment Retention Pond

http://rpitt.eng.ua.edu/Class/Erosioncontrol/Module6/Module6.htm
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2. Electrostatic Patch Mechanisms

http://hceglobal.com/faqs.asp
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Conceptual Model : Flocculation and Sedimentation 
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Mathematical Models : CFD-DPBE model
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Mathematical Models : 1. Computational Fluid Dynamics

Mass Conservation Equation : 

Momentum 

Conservation Equation :

Turbulence Model : Two-equation κ-ε turbulence model (Fox, 2003) 

 FLOW3D® software was used to simulate turbulent flow within a 

retention pond. 
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Model Parameters:
<Ui> : Time averaged velocity component

i, j : Indices for directional coordinates

t : Time

ρ : Fluid density

P : Piezometric pressure

ν : Kinematic viscosity of the fluid.

κ : Turbulent kinematic energy

ε : Turbulent energy dissipation rate



Mathematical Models : 2. Multi-dimensional DPBE

Multi-Dimensional DPBEs (30 Differential Equations) :

Fractal Theory: Stokes’ Law :

 The multi-dimensional DPBE is used to simulate particle/floc 

transport and flocculation in the ponds.
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Model Parameters:
ni : Number concentration of class size Di

<U> : Time averaged velocity component

Cμ : CFD model constant = 0.09

D0 : Particle diameter of monomer

Di : Average particle diameter of i-th class
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Df : Fractal dimension

ρs : Particle density

ρw : Fluid density

g : Gravitational acceleration

η : Fluid viscosity



Mathematical Models : 3. Aggregation/Break-up Kinetics

Aggregation and Breakage Kinetics  (Ding et al, 2006):
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Model Parameters:
α(i, j) : Collision Efficiency Factor Between 

Particle Size Classes i and j

β(i, j) : Collision Frequency Factor

a(i) : Breakup Kinetic Constant

b(i, j) : Breakup Distribution Function

a0 : Selection Rate Constant

Vi : Mean Particle Volume of i-th Class

Di : Mean Diameter of i-th Class

Dc : Critical Diameter



Simulation :  1. Model Pond System
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Simulation :  2. Numerical Strategy

  • INITIALIZATION 

      - Supporting data (flow field data from CFD, solid and liquid properties) 

      - Computational system layout (Dimensions, Mesh) 

  • DPBE CALCULATION (Operator Splitting Algorithm) 
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  • POST PROCESSING 

      - Mass balance, Particle/floc diameters, Solid concentrations, etc. 

 

1. Generate Steady State Flow Field Data with FLOW-3D®

2. Solve the DPBE Equation with MATLAB ®



Results : 1. Steady State Flow Field Simulation

Case 1 : Low Turbulence

Case 2 : Intermediate Turbulence

Case 3 : High Turbulence

 Influent flow 

velocities were set at 

three different values 

(0.222, 0.334, and 0.667 

m/s) by adjusting inlet 

width, to create different 

levels of fluid 

turbulence, and to 

compare the effects of 

turbulent intensity on 

flocculation efficiency.

 Arrows and colors 

represent flow velocities 

and shear rates.
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Results : 2. Consistency and Stability Tests

Mass Mean Diameter:

mi : Mass of i-th class particle

M : Total mass of all the classes
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Solid Mass Balance:

in/out : In or out of the pond

deposit : Deposit on the bottom

retained : Retained in the pond
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Dynamic Pond Simulation 

Movie Clip :  20 sec / 1 frame
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Results : 3. Dynamic Simulation Results

Solid Mass Conc.

Evolution
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Mass mean diameter (D43) distributions 

Results : 4. Steady State Simulation Results

Case 1

Case 2

Case 3

Solid concentration distributions

 Particles/flocs traveling through these swirling zones are more exposed 

to flocculation and thus tend to grow larger than those passing through the 

other zones. 
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Results : 5. Summary

 Turbulent conditions were found to induce critical effects on both 

flocculation and subsequent sedimentation efficiencies
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Conclusion

 FLOW-3D® was a useful tool to generate steady state flow 

field data, such as flow velocities and shear rates, which 

were used in subsequent multi-dimensional DPBE 

simulations. 

 As an alternative to QMOM, the DPBE formulation was 

applied to simulate a multi-dimensional 

flocculation/sedimentation process.  

 Operator splitting and Leveque’s flux-corrected 

algorithms were applied to overcome computational 

instability caused by nonlinearity, advection dominance and 

complexity of the DPBE model. 

 In applications of the CFD-DPBE model, increased 

turbulence was found to enhance the flocculation and 

sedimentation efficiencies.  However, methodology 

optimizing this effect requires further study. 



Ongoing Research : Experimental Validation

Bench-scale 3-Dimensional Flume Test

EEES, Clemson University



Future Research : Various CFD-DPBE Applications

Cohesive Sediment Transport 

in River, Lake, Estuary

http://uregina.ca/~sauchyn/geog323/112.jpg

Clarifier in Water/Wastewater 

Treatment Plants

http://www.veoliawaterst.com.au/en/case-studies/7741.htm
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