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    Abstract.  The Everglades Depth Estimation Network 
(EDEN) is an integrated network of real-time water-level 
gaging stations, ground-elevation models, and water-
surface models designed to provide scientists, engineers, 
and water-resource managers with current (2000-present) 
water-depth information for the entire freshwater portion 
of the greater Everglades. The generation of EDEN water-
level surfaces is derived from real-time data. Real-time 
data are automatically checked for outliers using 
minimum, maximum, and rate-of-change thresholds for 
each station. Smaller errors in the real-time data, such as 
gradual drift of malfunctioning pressure transducers, are 
more difficult to immediately identify with visual 
inspection of time-series plots and may only be identified 
during on-site inspections of the gages. Correcting smaller 
errors in the data often is time consuming and water-level 
data may not be finalized for several months. To provide 
water-level surfaces on a daily basis, EDEN needed an 
automated process to identify errors in water-level data 
and to provide estimates for missing or erroneous water-
level data. 
    A technology often used for industrial applications is 
“inferential sensor.” Rather than installing a redundant 
sensor to measure a process, such as an additional water-
level gage, an inferential sensor, or virtual sensor, is 
developed that estimates the processes measured by the 
physical sensor.  The advantage of an inferential sensor is 
that it provides a redundant signal to the sensor in the field 
but without exposure to environmental threats. In the 
event that a gage does malfunction, the inferential sensor 
provides an estimate for the period of missing data.  The 
inferential sensor also can be used in the quality assurance 
and quality control of the data.  Inferential sensors for 
gages in the EDEN network are currently (2010) under 
development. The inferential sensors will be automated so 
that the real-time EDEN data will continuously be 
compared to the inferential sensor signal and digital 
reports of the status of the real-time data will be sent 
periodically to the appropriate support personnel. The 
development and application of inferential sensors is 
easily transferable to other real-time hydrologic 
monitoring networks. 

INTRODUCTION 
 

    The Everglades Depth Estimation Network (EDEN) is 
an integrated network of approximately 250 real-time 
water-level gaging stations, ground-elevation models, and 
water-surface models designed to provide scientists, 
engineers, and water-resource managers with current 
(2000-present) water-depth information for the entire 
freshwater portion of the greater Everglades (Telis, 2006). 
The U.S. Geological Survey Greater Everglades Priority 
Ecosystems Science program provides support for EDEN 
with the goal of providing quality-assured hydrologic data 
for the Comprehensive Everglades Restoration Plan 
(CERP) (U.S. Army Corps of Engineers, 1999).   
Presented on a 400-square-meter grid spacing, the EDEN 
offers a consistent and documented data set that can be 
used by scientists and managers to: (1) guide large-scale 
field operations, (2) integrate hydrologic and ecological 
responses, and (3) support biological and ecological 
assessments that measure ecosystem responses to the 
CERP.  These data establish a large data set of baseline 
conditions prior to the implementation of the CERP that 
offers investigators a single repository for historic hourly 
water-level data. 
    While EDEN data are of great importance to many 
scientific and resource management activities, some of the 
massive amounts of data being collected by EDEN are 
inaccurate for reasons such as sensor malfunction, data 
communication errors, and other types of hardware issues.  
Detecting these issues can be time consuming and 
problematic, especially when they are not obvious by 
inspection, such as detecting drift.  It can be time 
consuming to correct these types of problems because of 
the remoteness of the monitoring sites and the expense of 
having qualified technical personnel travel to the gages.  
In order for these data to be used for important 
assessments they need to be validated and sometimes 
corrected, further adding to the expense and time required 
to disseminate the data. A technology often used for 
industrial applications is the inferential sensor. Rather 
than installing a redundant sensor to measure a process, 
such as an additional water-level gaging station, an   
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 Figure 1.   Location of the inferential sensor within the 
data stream of EDEN.   
 
inferential sensor, or virtual sensor, is developed that 
estimates the processes measured by the physical sensor.  
The inferential sensor typically is an empirical or 
mechanistic model using inputs from one or more 
proximal gages. The advantage of using an inferential 
sensor is that it provides a redundant signal to the sensor 
in the field but without exposure to the environmental 
threats (floods or hurricanes, for example). In the event 
that a physical sensor does malfunction, the inferential 
sensor provides an estimate for the period of missing or 
erroneous data.  The inferential sensor also can be used in 
the quality assurance and quality control of the data.  The 
virtual signal can be compared to the real-time data and if 
the difference between the two signals exceeds a certain 
tolerance, corrective action can be taken. Inferential 
sensors for gages in the EDEN network are currently 
under development. The inferential sensors (fig. 1) will be 
automated so that the real-time EDEN data will 
continuously be compared to the inferential sensor signal 
and digital reports of the status of the real-time data will 
be sent periodically to the appropriate personnel. 
 
 

METHODS 
 

    The inferential sensor will sequence two algorithms to 
automatically analyze the real-time data. The first layer 
implements a Statistical Process Control (SPC) series of 
14 univariate filters (table 1) (Cook et. al.,, 2008).  
Univariate filters provide information about the quality 
and behavior of the data for each parameter and combined 
with post-processing of the filter outputs with logic 

integrates information for multiple sensors to validate 
measurements and generate intelligent notifications for 
system managers.  For example, if only one EDEN sensor 
were to exhibit odd behavior, but neighboring sensors do 
not, then a physical sensor issue is likely the problem.  If 
multiple virtual sensors exhibit odd behavior, then 
systematic network issues or network maintenance may be 
occurring. 
    The second algorithm addresses synthesizing 
measurements to augment actual measurements 
determined to be erroneous or unreliable.  As it is not 
known at any given date and time what sites will have 
reliable data available, it is necessary that empirical 
models be created “on the fly”. A matrix of Pearson 
coefficients is calculated using the most recent 90 days of 
filtered data and candidates gaging stations to be used as 
inputs to an empirical model for a given site are selected 
based on degree of correlation. Filtered data are used to 
remove the influence of any outliers on the calculated 
Pearson coefficients.  Ninety days was selected to capture 
any seasonal changes in relations between sites.    The 
selected signals must then be automatically decorrelated 
from each other.  The first approach made the input site 
that was most highly correlated a “standard” signal and 
then decorrelated the other input sites by computing their 
differences from the standard signal.  This approach has 
been used successfully by the authors in many hydrology 
projects (Conrads et. al., 2006), but proved unsuccessful 
in this case.  A new approach was needed to ensure that 
model inputs are decorrelated. A statistical technique 
known as Principal Component Analysis (PCA, Joliffe, 
2002), which has been widely used in data analysis and 
compression, was selected.  
    “The central idea of principal component analysis is to 
reduce the dimensionality of a data set consisting of a 
large number of interrelated variables, while retaining as 
much as possible of the variation present in the data set.  
This is achieved by transforming to a new set of variables, 
the principal components (PCs), which are uncorrelated, 
and which are ordered so that the first few retain most of 
the variation present in all of the original variables” 
(Joliffe, 2002).  In simple terms, PCA is performed by 
calculating the eigenvalues and eigenvectors of the 
covariance matrix of the assembled data set.  Each 
eigenvector has an associated eigenvalue.  When sorted by 
eigenvalue (highest to lowest), the first eigenvector (PC) 
explains most of the variance in the original variables.   
As all eigenvectors of a symmetric matrix (in this case the 
covariance matrix) are orthogonal to each other, each PC 
is decorrelated from any other PC.   



 

 
Table 1.  Univariate filter descriptions.  Filters are applied in order of precedence.  Limit values shown are for illustration 
only.  The limits are uniquely set for each gaging station and each parameter in the gaging network. 
 
 

 RESULTS 
 
    Twelve sites were selected to test the use of PCA 
coupled with multivariate linear regression to predict 
water levels (WL).   The sites were selected to represent 
the different types of locations (marsh, canal, marsh 
structure and canal structure) as well as those with highly 
correlated candidates and those with few or no highly 
correlated candidates.  The data set included hourly data 
from 4/2009 – 12/2009.   The real-time water-level data 
were first run through the univariate filters.   Water levels 
at each of the 12 sites were predicted over the data set 
time period using PCA and multivariate linear regression.  
Data from up to five candidates were included in the 
models.  Correlations and regressions used the most recent 

90 days of data.  Figures 2, 3, and 4 show results from 
three of the sites to highlight various aspects of the study.  
Displayed in each graph are measured WL, filtered WL,  
predicted WL using linear regression, and predicted WL 
using PCA and multivariate linear regression. In figure 2, 
little improvement is seen by adding additional sites.  
L31N1 has a number of highly correlated sites (coefficient 
of determination [R2] 0.99 or greater). In figure 3, a better 
estimate is seen using five similar sites and PCA over one 
site and regression. Figure 4 highlights the ability of the 
predictions to pick up erroneous data that were missed by 
the univariate filtering.   
 
 

  

 
Figure 2.  Gage L31N1 in Everglades National Park.  Univariate filtering removed the large spikes shown in the inset.   



 

 
Figure 3. Gage S10DT in Water Conservation Area 2.   

 
Figure 4. Gage E146 in Everglades National Park.    

 
CONCLUSIONS 

 
    Initial results confirm that the use of filters and 
empirical models using PCA and multivariate linear 
regression, combined with post-processing logic can 
comprise an inferential sensor that will provide both 
accurate estimates of data when missing and quality 
assurance of the data. Developing empirical models “on 
the fly” ensures that the greatest number of available 
gaging stations is used for developing the inferential 
sensor. The development and application of inferential 
sensors is easily transferable to other real-time hydrologic 
monitoring networks. 
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