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 Abstract. Natural systems exhibit complex 
behaviors that are driven by the earth's orbital 
motions, weather, and anthropogenic forcing. 
Modeling them on a large scale is challenging 
because behaviors vary discontinuously both 
spatially and in time. Modeling requires large 
amounts of old and new data, also known as "Big 
Data" that represent a diversity of causes and 
effects. Measured variables are either unchanging 
categorical or dynamic time series. Integrating 
multiple data types and reducing large numbers of 
variables to a select set of data often leads to 
subjective decision-making that has significant 
ramifications when applying state-of-the-art 
multi-step modeling approaches, for example, 
land-use models driving finite- difference/element 
flow models. This paper describes an alternative 
approach that employs numerically optimized 
data-mining algorithms to more accurately predict 
stream temperatures for a total maximum daily 
load to prevent thermal impairment of streams in 
Western Oregon. The methods include: 1) time 
series decomposition to discriminate chaotic and 
periodic time-series components attributable to 
different forcing functions; 2) time-series 
clustering to segment monitored sites by their 
dynamic behaviors; 3) non-linear, multivariate 
sensitivity analysis using multi-layer perceptron 
artificial neural networks (ANN) to determine the 
relative importance of categorical variables at 
predicting site-to-site behavioral variability; 4) 
spatially interpolating dynamic behaviors with 
ANNs; and 5) assembling an end-user application 
that integrates data, site attribute classifiers, and 
prediction models to model an expansive, 
behaviorally heterogeneous natural system.  
 
  

 
 

INTRODUCTION 
 

Natural resource managers commonly ask 
scientists to create predictive models of spatially 
expansive natural systems for planning their 
protection or management. This involves 
collecting large amounts of many types of old and 
new data, also known as "Big Data", for model 
development. The data should come from multiple 
locations that represent the diversity of behaviors 
across the natural system. Measured variables are 
either (practically) unchanging categorical, such 
as, geomorphology, or dynamic time series 
(signals), such as, stream temperature. Time-series 
variables usually have multiple periodic 

orbital motions. Periodicity is by definition highly 
predictable; however, time series also display 
dramatic spatial and temporal variability due to 
chaotic forcing by humans and weather. Chaotic 
behaviors are by definition only somewhat 
predictable, yet it is these behaviors that modelers 
strive to reproduce. Techniques such as band-pass 
and window-average filtering can decompose a 
time series to separate the periodic components, 
leaving behind chaotic components. 

Conrads and Roehl (1999) found that multi-
layer perceptron artificial neural network models 
(ANN) of the type described by Jensen (1994) 
offer a number of advantages over physics-based 
finite-difference models in reproducing the 
dynamic flow and water quality behaviors in an 
estuary. Most importantly, the ANNs gave much 
better prediction accuracy when using the same 
data. Coppola and others (2005) made some of the 
same observations after applying ANNs to 
forecast water levels at two monitoring wells in an 
aquifer affected by climatic variables and 
pumping.  

An important benefit of physics-based finite- 
difference/element models is their ability to 
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provide spatially semi-continuous predictions 
from mesh nodes. Analogously, Dowla and 
Rogers (1996) used ANNs to predict three- 
dimensional land elevations from categorical 
coordinate data, and Conrads and others (2003) 
describe how dynamic ANN outputs for multiple 
locations can be interpolated as a post-processing 
step. Therefore, to model dynamic, spatially 
expansive natural systems, an approach for 
configuring ANNs to simultaneously predict 
spatial and temporal variability was developed. It 
involves: 
 
 ANN Modeling with a Stacked Database  
provides near optimal multivariate non-linear 
curve fitting of categorical and dynamic 
variables. A stacked database consists of 
categorical and time series variables to train 
ANNs for spatial interpolation. Each monitored 
site is represented by a block of rows denoting 
time stamps, and columns denoting candidate 
categorical and time series input variables, and 
time series output variables. The input and 
output variables and their column order are 
identical for all blocks. The blocks for each 
monitored site are stacked atop each other.  

 Sub- and Super- Models  complex modeling 
problems are solved with relatively simple, 
near-numerically optimal sub-models of 
decomposed signals and behavioral classes of 
monitoring sites. 

 Signal Decomposition  using filters, time series 
are decomposed into different frequency ranges, 
ascribable to different forcing functions that are 
more easily and accurately modeled with ANN 
sub-models. 

 Time Series Clustering  produces numerically 
optimal segmentation of a large set of signals 
into classes, with each class comprising signals 
that behave similarly. Each behavioral class can 
then be modeled by an ANN sub-model. 
Typically, there are gradations of similarity 
among the different classes. A side benefit of 
time-series clustering is that it identifies 
redundant data, largely answering the question 
of, 
discontinued  

 New Site Classification  near-numerically 
optimal assignments of "new" sites, not used in 
model development, to behavioral classes so 
that the appropriate sub-models can be applied. 
Classification algorithm options include kriging, 

linear nearest neighbor, and non-linear ANN 
classifiers. 

 

 
 

F igure 1. W estern O regon study area. Class 1, 
2, and 3 sites are circles in white, gray, and black 
respectively. Triangles mark climatic and 
snowpack monitoring sites. 

 
APPLICATION OF APPROACH 

 
Risley and others (2003) describe using this 

approach t
small streams in the western third of Oregon to 
support federal and state efforts to estimate total 
maximum daily loads (TMDL) to prevent thermal 
impairment of streams in Western Oregon. The 
Big Data  used in this project were comprised of: 

 
 Stream Temperature (ST) - hourly time series 
from 148 unimpaired sites recorded from June 
to September 1999 (fig. 1). The sites were 
located on streams that drained basins ranging 
from 0.3 to over 300 square kilometers (km2). 
Site elevations ranged from 7 to 1,445 meters 
(m) above mean sea level. Six of the 148 sites 



 

were randomly withheld from model 
development for validating results. 

 Climate  65 hourly time series of air 
temperature, dew-point, solar radiation, 
barometric pressure, snowpack, and 
precipitation from 25 locations. 

 Stream Habitat and Basin Attributes  34 
categorical variables that included stream 
bearing, gradient, canopy cover, wetted widths, 
depth, and bed substrate; and basin topographic 
and vegetation characteristics such as size and 
forest cover. 

 
Additional technical details for this project 

included: 
 

 The original objective was to predict maximum 
daily ST; however, initial attempts to model 
daily maximums directly were less successful 
than modeling the hourly ST and picking the 
daily maximum. This indicated a need for three 
cascaded sub-models (where outputs from one 
model are used to for inputs to a subsequent 
model) for each behavioral class to predict 
categorical, chaotic, and hourly STs.  

 A large list of candidate categorical and 
dynamic inputs whose interrelationships and 
predictive performance were unknown. Many of 
the variables were highly correlated. 

 New site classification could not be based solely 
on spatial coordinates because of the influences 
of categorical habitat and basin attributes.  

 
Signal decomposition of the hourly water 

temperature time series STHi(t) involved the 
following. The categorical (static) components at 
the sites STSi  the historical mean of STHi(t). The 
chaotic components STCi(t)  the 24-hour moving 
window averages of STHi(t). STCi(t) was then 
normalized as STCNi(t) = STCi(t)  STSi. STHi(t) 
was normalized as STHNi(t) = STHi(t)  STCNi(t) - 
STSi. 

STCi(t) were clustered into three classes (1,2, 
and 3) using time-series clustering. Here, the STs 
of all the sites were cross-correlated to produce a 
matrix of Pearson correlation coefficients. Each 
row and column represented a different site and its 
behavioral similarity to each of the other sites. 
The rows were then clustered using the k-means 
algorithm. The number of classes, k, is determined 
by the sensitivity of the root mean square error to 
k.  

Class 1 sites were generally located in warmer 
climate regions at lower elevations and in the 
southern portion of the study area (fig.1). This 
includes the Klamath Mountains ecoregion and 
the Willamette River valley lowlands. Class 2 
sites were more predominant at higher elevations, 
particularly in the Cascade Mountains (fig.1). 
Class 3 sites were widely distributed at middle 
elevations (fig.1). 

The climatic hourly time series, CHi(t), were 
decomposed into chaotic components CCi(t)  24-
hour moving window averages of CHi(t), and then 
normalized hourly CHNi(t) = CHi(t)  CCi(t). Each 
type of climatic variable was measured at multiple 
stations. These tended to be highly correlated 
station-to-station, so they were decorrelated by 
setting one station 
difference between the standard and the other 
stations. 

A single categorical sub-model that used only 
categorical variable inputs to interpolate STS for 
all three classes was used. For each class, chaotic 
sub-models were trained to interpolate STCNj(t) 
from categorical and chaotic climatic inputs. 
Similarly, hourly sub-models were trained to 
interpolate STHNj(t) from categorical and hourly 
climatic inputs. Input variables were selected 
according to their predictive performance. STHi(t) 
and STCi(t) predictions were summations of the 
categorical and normalized chaotic and hourly 
predictions. The critical input variables included 
air temperature, riparian shade, site elevation, and 
percent of forested area in the basin. 

Figure 2 shows measured and predicted STHi(t) 

sites. Both predictions track the climatically-
forced dynamic behaviors; however, the Fisher 
Creek predictions are offset from the 
measurements by an average of 2.4 degrees 
Celsius (°C). The offset is due largely to the error 
in the predicted categorical ST, suggesting that 
overall model error is a consequence of the 
process by which habitat and basin attributes are 
determined. A second potential cause of the offset 
is related to the procedure used to select validation 
sites, such as random selection as was used here. 
A validation site whose attributes are unique and 
unlearned will be poorly represented by an 
empirical model.  

A non-linear classifier comprised of three 
ANNs, one for each class, was created to select 
the appropriate categorical+chaotic+hourly sub-



 

trained to predict a binary digit (0 or 1) depending 
on whether or not 
attributes matched those of its member sites. 
Programmed logic was used to resolve ambiguous 
cases. 
 

 
 

 
 
F igure 2. Measured and predicted stream 
temperature (ST) at two validation sites. 
 
 

CONCLUSIONS 
 

This paper provides an overview of 
leveraging Big Data  with a divide-and-conquer 
approach to empirically model spatially 
heterogeneous, dynamic behaviors across 
expansive regions. The Big Data  comprises 
many types of categorical and time series data that 
should be used to the fullest possible extent with 
minimal subjectivity about which data are 
important. Time-series clustering provided a 
numerically optimal solution to segmenting the 
many ST time series into classes. An ANN-based 
nonlinear classifier provided a numerically 
optimal means to classify new sites for model 
runs. ANNs use an inherently non-linear, 
multivariate architecture and error minimizing 
training algorithm to fit data representing complex 

behaviors. Their performance is improved by 
decomposing time series into static and dynamic 
components and modeling them separately. 
Modeling behavioral classes separately avoids 
prediction errors caused by fitting discontinuous 
behaviors with continuous functions. ANNs can 
be trained to spatially interpolate with a stacked 
training database that combines static and time- 
series variables. The best predictor variables can 
be found by systematically adding and removing 
candidates and tracking statistical measures of 
prediction accuracy. ANN sub-models are easily 
assembled into super-models that can be 
integrated with a database and control program to 
form run-time applications. 
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