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 Abstract. This is the second of two papers that describe 
how data mining can aid natural-resource managers with 
the difficult problem of controlling the interactions 
between hydrologic and man-made systems. Data mining 
is a new science that assists scientists in converting large 
databases into knowledge, and is uniquely able to leverage 
the large amounts of real-time, multivariate data now 
being collected for hydrologic systems. Part 1 gives a 
high-level overview of data mining, and describes several 
applications that have addressed major water resource 
issues in South Carolina. This Part 2 paper describes how 
various data mining methods are integrated to produce 
predictive models for controlling surface- and ground- 
water hydraulics and quality. The methods include:  

 signal processing to remove noise and decompose 
complex signals into simpler components;  

 time series clustering that optimally groups hundreds 

reduction and (or) divide-and-conquer problem 
solving;  

 classification which optimally matches new data to 
behavioral classes;  

 artificial neural networks which optimally fit 
multivariate data to create predictive models;  

 model response surface visualization that greatly aids 
in understanding data and physical processes; and, 

 decision support systems that integrate data, models, 
and graphics into a single package that is easy to use. 

 
 

INTRODUCTION 
 

Data mining is a relatively new science that assists in 
converting large databases into knowledge (Weiss and 
Indurkhya, 1997), and is uniquely able to leverage the 
real-time, multivariate data now being collected for 
hydrologic systems. In side-by-side comparisons with 
state-of-the-art physics-based hydrologic models, data-
mining solutions have been substantially more accurate, 
less time consuming to develop (Conrads and Roehl, 
1999; Conrads and Greenfield, 2010), and embeddable 
into spreadsheets and sophisticated decision support 

systems, making them easy to use by regulators and 
stakeholders.  

This is the second of two papers that describe how data 
mining can aid natural-resource managers with the 
difficult problem of controlling the interactions between 
hydrologic and man-made systems in ways that preserve 
resources while optimally meeting the needs of disparate 
stakeholders. Part 1 gives a high-level overview of data 
mining, and describes several applications in South 
Carolina. Part 2 describes how various data mining 
methods are integrated to produce predictive models for 
controlling surface- and groundwater systems. 
 

DATA MINING CONCEPTS AND METHODS 
 

Per iodicity, Chaos, Noise and Signal Decomposition 
Process signals exhibit three types of behavior - 

periodic, chaotic, and noise (random) that are superposed. 
For example, coastal -

l 
interactions of the earth, moon, and sun. It also is affected 
by chaotic and random influences such as wind and 
storms. Theoretically, periodic behavior repeats itself 
perfectly, making it perfectly predictable. Examples of 
periodic behavior include diurnal (24-hour) and seasonal 
ambient temperature cycling, and human impacts on water 
resources controlled by the workday, the workweek, and 
the seasons, for example, irrigation and power generation. 

Chaos Theory (Abarbanel, 1996) studies physical 
processes that are highly sensitive to small changes in 
boundary conditions. These processes can flip-flop 
between different behaviors with little apparent cause. 
Weather is a chaotic process that affects nearly 
everything, including industrial processes such as water 
and wastewater treatment, making them also chaotic. 
Chaotic processes are somewhat predictable and special 
methods have been developed for analyzing and modeling 
them. 

"Signal decomposition" provides a quantitative 
accounting of the predictable and unpredictable. Figure 1 
illustrates signal decomposition, which filters raw signals 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268625525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ed.roehl@advdmi.com
mailto:pconrads@usgs.gov


 

behaviors. At upper right, a fast Fourier transform (FFT) 
generates a "spectral signature" of a tidally forced, water- 
level signal. The 
12.4-
the 28-day lunar orbit. An FFT-based filter was then used 
to split the raw signal into high and low frequency ( ) 
components. The high  components are predominantly 
the ones identified in the spectral signature. The midsize 

 components occur every 7 days and 
are caused by upstream hydroelectric generation. The 
remaining low  components are predominantly chaos and 
noise. Chaotic components are separated from noise with 
more difficulty using empirical model-based filters. 
Removing all of the predictable periodic and chaotic 
components leaves behind the unpredictable noise. 

 

 
F igure 1. Signal decomposition reveals causes of estuary 
water-level variability. 

 

 

 
F igure 2: n-dimensional, multivariate state vector (top) 
lying in an n-dimensional state space. 
 
State Vectors and State Space 

Typically, the behavior of a variable x(t) is represented 
by a time series of values measured at constant time 

intervals, for example, once per minute. Trend plotting 
shows how x(t) changes over time. A value of x can be 
forecasted at a future time by fitting a line or curve to 
recent measurements and extrapolating forward. The 

pproach is that it is 
weakly analytical and employs only one variable at a time.  

Chaos Theory, like trending, uses multiple 
measurements to characterize process behavior. Chaotic 

another in time, whereas periodic processes repeat the 
same states. Figure 2 shows that a state is characterized by 

n can represent 
one or more variables. Multiple measurements from the 
same variable can be assigned to different features to 
represent its trend. Each vector feature represents a 
different dimension in an -
Densely populated regions of state space are generally 
more understandable and modeled than sparse regions.  

The three dimensional (3D) scatter plot in Figure 3 

of points in n-
history can be used to develop an empirical, predictive 
process model by curve fitting an n-dimensional function. 
Here, of interest are the salinity intrusion events on the 
Lower Savannah River Estuary indicated by spiking 
specific conductance (SC) at an inland gage. The spikes 
are seen to coincide with low freshwater flow (Q) and 
high ocean water level (WL). 
 

 
 
F igure 3. Modeling Savannah River Estuary seawater 
intrusion. Lower left  three dimensional scatter plot of 
specific conductance (SC) versus with freshwater flow 
(Q) and sea water level (WL). Above - measured (gray) 
and ANN-predicted (black) SC. Lower right - ANN 
response surface fitted to scatter plot data. 
 



 

 Developing A ccurate, Predictive Process Models 

process, also 
known as a model, to poke and probe for answers. 
Modeling is the development of a mathematical function 
that, for vectors of input values, will calculate a set of 
output predictions.  

Calibrating a model involves fitting vectors with 
predetermined or synthesized mathematical functions. 
Examples of predetermined functions are lines, n-
dimensional hyperplanes, and physics-based models, 
whose coefficients are manipulated to provide the best 
possible fit. A benefit of predetermined functions is their 
rigorous mathematical foundation, but their downside is 
poor accuracy when they are functionally unable to fit the 
data. Synthesized functions employ "machine learning" 
methods such as multivariate adaptive regression splines 
(Friedman, 1991), and the method discussed here - multi-
layer perceptron artificial neural networks (ANN; Jensen, 
1994), to better fit calibration data with nonlinear 
"hypersurfaces", making them more accurate predictors 
for some problems. Above in figure 3 are plots of the 
aforementioned measured SC data with ANN predictions 
having an R2 more than 8 times higher than a state-of-the-
art physics-based model of the same system. At lower 
right in figure 3 is a 3D projection, called a "response 
surface", of the higher dimensional, nonlinear 
hypersurface fitted by an ANN to the salinity intrusion 
data. Response surfaces clearly reveal the relations among 
variables learned by the ANN to provide knowledge about 
a process's physics. 

Modeling is the inverse of signal decomposition 
because the goal is to synthesize a new signal, a prediction 
of an output variable, from multiple input signals. 
Modeling is an iterative process involving multiple steps. 
Raw signals are cleaned up to remove unreliable 
measurements. Complex signals are then 
into multiple, simpler components whose behaviors can be 
ascribed to identifiable causes. Candidate input 
components are checked for relative independence and 
culled or decorrelated if necessary before being used in 
models. Because output signals themselves have multiple 
components, they are seldom modeled with a single 

-
model each output component using the most appropriate 
input components. In most cases, a sub-model will have 
only a single output. As shown in figure 4, the outputs of 
sub- -
synthesize an overall prediction of the output variable. 

-and-
the intricacies of a process, and enforces rigor to ensure 
that the super-model is as accurate and representative of 
the actual process as possible. 

 

Cluster ing and C lassification 
Modeling spatially expansive natural systems is difficult 

because behaviors vary discontinuously both spatially and 
in time. These problems require the integration of large 
numbers of categorical and time-series variables, and 
reducing them to a select set with maximum predictive 
capability, preferably without subjectivity in a 
numerically optimized way. Figure 5 shows that 
hydrographs of monitoring wells in the Floridan aquifer 
system can vary greatly over short distances, indicating 
differences in their underlying process physics. Often the 
causes of such differences are unknown, making the 
employment of physics-based models problematic.  

Roehl and others (2006-1) describe another divide-and-
conquer modeling approach that employs "time-series 
clustering" as a method for optimally clustering large 
numbers of signals into "classes", whose "members" 
behave similarly. Figure 6 shows the hydrographs of two 
of the 12 classes used. Note how much alike the member 
hydrographs of a class are, and how dissimilar they are 
class-to-class. Each class is then modeled with a 
"spatially-interpolating" ANN sub-model that incorporates 
categorical inputs, such as monitoring site descriptors and 
spatial coordinates, and dynamic inputs derived from 
signals such as rainfall. The super-model of the entire 
system is composed of the class sub-models. Predictions 
at a new site, not used in model development, are made by 
first assigning it to a class using a "classification 
algorithm" that employs the site categorical variable 
descriptions, and then running the appropriate sub-model. 

 

 
F igure 4. Super-model composed of two sub-models. 

Gray trends at right are measurements and the red and 
green trends are predictions made using calibration and 
testing data, respectively. At upper left, a Low frequency 
( ) sub-model predicts low  components yp

Low  of the 
output variable y from input low  components xLow . 
yp

Low  is then input with other high  components xHi  to 
the Hi  sub-model to predict yp.   



 

 
F igure 5. 18-year hydrographs in the Floridan aquifer 
system. The wells shown cover a 30x50 square kilometer 
sub-region of an approximate 100x100 km2 monitoring 
network. Dotted line marks the Suwannee River. 
 

 
F igure 6. Normalized WLs for Classes 2 and 4 of 12 total 
classes. x-axis is approximately 18 years of days. 
 
Decision Support Systems 

The collective interests and computer skills of  resource 
managers, scientists, and other stakeholders can be quite 
varied. A decision support system (DSS) provides a 
means to effectively transform arcane databases and 
models into information that is equally accessible to all 
stakeholders for cooperative, informed decision-making 
(Roehl and others, 2006-2). Important features of DSSs 
include:  

 accurate predictive models;  

 databases that describe historical behaviors; 
 model controls for running "What if?"  scenarios;  
 graphical user-interfaces that integrate the DSS 
components with user controls and graphical output;  

 "constrained optimization" that couples a search 
routine to the model to determine the input scenario 
that provides the best predicted outcome; and  

 expert knowledge such as water-quality standards and 
expert hydrology rules. 

 
CONCLUSIONS 

 
Data mining methods constitute a divide-and-conquer 

approach to solving complex hydrologic and water-quality 
problems. They have been successfully employed on 
many projects in South Carolina and elsewhere, and can 
provide the knowledge and tools to solve problems that 
are unsolvable by other means. The solutions they provide 
are inherently adaptive and easily updated when new data 
become available. They are easily deployed to end-users 
in spreadsheets, DSSs, or other types of off- or on-line 
computer program. 
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