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    Abstract. A critical element of a dissolved oxygen 
(DO) Total Maximum Daily Load (TMDL) is the 
determination of the relative impacts of point and 
nonpoint source impacts on the DO of an impaired stream. 
It is not uncommon that the ultimate oxygen demand for 
non-point sources during a rain event can be much greater 
than the effects of the fully permitted point-source loading 
to the stream. Traditionally, the loading of oxygen- 
consuming constituents is often estimated with a 
watershed model which is then coupled with a 
mechanistic model of the receiving stream. Calibrating 
coastal system applications of watershed models and 
mechanistic models to match the behavioral variability 
observed in actual field data is particularly difficult due to 
low watershed gradients, poorly defined drainage areas, 
chaotic forcing functions, and insufficient understanding 
of watershed and marsh process physics and chemistry.  
    Data mining offers an alternative approach for 
analyzing and modeling tidal DO signals to quantify their 
responses to point- and nonpoint-source loadings. Data 
mining can be used to extract DO signal components of 
nonpoint loading caused by rainfall events and tidally 
entrained organics from marshes and mudflats. At one 
gaging station on the Cooper River, rainfall was found to 
decrease DO concentrations at an average rate of 
approximately 0.25 milligrams per liter (mg/L) per inch of 
rainfall. Similarly, it was found that specific conductance, 
water level, and tidal range, which indicate tidal forcing, 
modulate DO in the range of 3.1 mg/L. This paper 
examines the approach of using data- mining techniques 
to improve models for coastal applications and more 
accurately quantifies the effects of nonpoint-source 
loading.  
 
 

INTRODUCTION 
 
    The Cooper River is located in the lower Coastal Plain 
physiographic province in the lower part of the Santee-
Cooper River Basin (fig. 1). The basin covers 21,700 
square miles and is the second largest drainage basin on 

the East Coast. The Cooper River is formed by the 
confluence of the West and East Branches at an area 

of poorly defined overbank storage and unmeasureable 
flows through broken levees between the main channel 
and rice fields. The West Branch extends from the tailrace 
of Pinopolis Dam to the Tee.  The East Branch Cooper 
River is a tidal slough throughout its 8-mile reach. On the 
Cooper River, from the Tee to Flag Creek (Figure 1, just 
downstream of station USGS 021720675), industries are 
located along the west bank of the river and extensive 
Spartina alterniflora salt marshes dominate the east bank. 
Downstream of Flag Creek, the main channel has been 
dredged to a depth of 42 feet (ft) by the U.S. Army Corps 
of Engineers for navigational purposes.  
    The Cooper River is tidally affected throughout its 
entire reach, and has mean- and spring-tidal ranges of 5.27 
and 6.11 ft, respectively, at the Customs House (Figure 1, 
station USGS 021720711). The objective of this project 
was to determine if data-mining techniques applied to the 
Cooper River time-series data could be used to determine 
the effects of rainfall and tidal flushing on Cooper River 
water quality. Data was collected over a three-year period 
of record. 

 
METHODS 

 
    The variability of dissolved oxygen (DO) in the Cooper 
River is a result of many factors including the quality of 
the water from Lake Moultrie and Charleston Harbor, the 
loading of oxygen-consuming matter from the tidal 
marshes, abandoned rice fields, and other non-point 
sources, effluent from permitted point sources and 
physical characteristics of streamflow, tidal range, 
salinity, and especially temperature (Figure 2 shows the 
inverse relationship between water temperature [WT] and 
DO).  To evaluate whether data mining could be used to 
determine the influence of tidal marsh loadings on DO, 
data from a gaging station that was near extensive marsh 
areas and relatively distal from point-source loadings was 
selected for evaluation. Of the nine stations in the 
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database on the Cooper River and its tributaries, the gage 
on the East Branch (USGS station 02172037, fig. 2) was 
the most dominated by tidal marshes and abandoned 

F igure 1:  The Cooper and Wando River , SC .F igure 1:  The Cooper and Wando River , SC .   
rice fields, and farthest removed from the point-source 
discharges on the lower Cooper River. 
    The data used were comprised of hourly measurements 
for water level (WL), specific conductance (SC), WT, and 
DO. The effect on DO of the decay of organics can occur 
over a time scale of several days. This effect can be 
difficult to discern when coupled with high frequency 
forces such as diurnal and semi-diurnal ambient 
temperatures and tidal flow variability. Therefore, the 
hourly time series were digitally-filtered using frequency 
domain filtering (Press and others, 1993) to remove 
diurnal and semi-diurnal periodic signal components. 

example, DOf.)   A further processing step was taken to 
decorrelate variables by systematically synthesizing cross-
correlation functions and computing their residuals. This 
step was necessary to avoid the propensity of artificial 
neural network (ANN) models to over-fit when correlated 

variables are used as inputs. (Decorrelated variables are 
f,d.) 

    Rainfall data were collected from three National 
Weather Service stations located in the watershed. These 
measurements were averaged together, and the resulting 
signal was converted to a 2-day moving window average 

-of-the-average of 
three rainfall measurements). 

    
The dataset was augmented with calculated variables. The 
dissolved- was computed as                                                                                  
follows: DOD = DOsaturated  DOmeasured. DOsaturated was 
determined by adjusting the measured DO values for 
temperature and salinity (US Geological Survey, 1981). In 
addition, the daily tidal range (XWL) was computed, 
interpolated to produce hourly values, and then digitally-
filtered as above. 

 
 

RESULTS 
 

RAINAA and DODf,d vary seasonally, and upon close 
inspection of Figure 3, many incidents of high rainfall that 
coincide with spiking DOD can be seen. Figure 4 shows 
that an ANN model, having inputs for RAINAA at 
multiple time delays, , starting at 1 day, estimates a 
significant portion of the DODf,d variability (R2 = 0.281). 
DODf,d was most sensitive to RAINAA @ .  

 is used by convention to 
match a model input variable with a time delay relative 
to a model output variable.) 
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Figure 5 f,d 

longer delays were set to zero). Also shown are the actual 
data projected onto the surface. Note that the surface is 
relatively linear, and that the sensitivity of DODf,d to 

 
    The overall impact of rainfall can be estimated from 
figure 5 as follows. The total increase in DODf,d 
milligram per liter (mg/L). This occurs when the 

days.) Because RAINAA is a 2-day moving average, a 
value of RAINAA = 2.0 is equivalent to 4 inches of 
rainfall over 2 days, or 8 inches over 4 days. The 
sensitivity of DODf,d to rainfall can be characterized on 
average as: 
DODf,d   
mg/L per inch of rainfall. It should be noted that South 

-quality standard for the maximum 
impact of all point sources on the Cooper River is only 0.1 
mg/L. 
    A second ANN model was created to examine how 
interactions among WL, XWL, SC, and WT affect DOD. 
The model used filtered and decorrelated versions of these 

variables, plus their 1-day derivatives, plus RAINAA as 
inputs to predict DODf,d. Figure 6 shows the model 
prediction of DODf,d versus XWLf,d and SCf,d as a 
response surface. (To generate the response surface shown 
in figure 6, RAINAA and derivative inputs were set to 0, 

midpoints of their ranges.) A number of behavioral modes 
are apparent. Mode 1 shows that DOD remains low and 
nearly constant at high XWL.. A high XWL, the difference 
between high and low tide, is an indicator of high tidal 
fluxes that would transport non-point source oxygen-
consuming matter from proximal wetlands downstream to 
the main channel of the river. Mode 2 shows that DOD 
also remains low and nearly constant at high SC. A high 
SC indicates a reverse flow of seawater upriver so that the 
characteristics of the seawater dominate behavior at the 
gage. Mode 3 shows that at low XWL, DOD behavior is 
highly dependent on SC. The highest DOD value occurs at 
low XWL and SC, indicating conditions that have little 
tidal exchange. Resident fresh water is being neither 
aerated nor transported away, allowing non-point organic 
matter to decay undisturbed. Increasing SC, an indicator 
of reverse flow upriver, drastically reduces DOD. This is 
likely caused by the diversion of high quality water 

Branch into the East Branch where the gage resides. As 
SC continues to increase, DOD behavior becomes that of 
Mode 2. Mode 4 shows that DOD declines quickly with  
 

 
increasing XWL and tidal flux. Mode 5 shows that DOD 
increases at an intermediate but low SC. The surface about 
Mode 5 is likely a region of transitional behavior in which 
lower quality water from below the Tee is forced into the 
East Branch by higher tidal fluxes. In figure 6, the actual 
data are projected onto the response surface, showing that 
the data are densest in the region of greatest surface  

F igure 4: Actual and A NN prediction of D O Df,d.
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F igure 4: Actual and A NN prediction of D O Df,d.
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F igure 5: D O Df,d versus R A IN A A @ = 1 and 3 
days. 
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F igure 5: D O Df,d versus R A IN A A @ = 1 and 3 
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complexity. This provides confirmation that the ANN has 
captured the very complicated behaviors of the natural 
system surrounding the gage. It also should be noted that 
the total computed range of DODf,d 
that non-point organic loading caused by tidal flooding 
has a dramatic impact on water quality. It was found that 
this range increased when WLf,d was decreased, 
theoretically increasing the organic concentrations in 
flood waters. The range also increased when WTf,d was  
increased, effectively providing for an increased level of 
microbial activity. The maximum computed range of 
DODf,d f,d was decreased and 
WTf,d was  increased to the limits of their historical range. 

 
 

CONCLUSIONS 
 
    Long term real-time gaging of 
hydrodynamic and water quality 
parameters, in combination with data-
mining techniques, including  signal 
processing and ANN models, can 
provide an excellent means to 
understand highly complex and 
interacting behaviors in an estuary. The 
location selected for this study, being 
largely unaffected by anthropogenic 
oxygen-consuming constituent sources, 
provided an excellent case for 
evaluating the effects of non-
anthropogenic, non-point source 
loading using these tools. The 
sensitivity of DOD, the dissolved-
oxygen deficit, to a 1-inch rainfall was 

and the 
overall sensitivity to tidally forced 
organic loading was 2.0 mg/L or more.  
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behavioral modes are marked at left. Actual values are projected onto the same 
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