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ABSTRACT.  Soil cores provide valuable data on 
historical changes in vegetation and hydrologic 
conditions. Empirical models were developed to quantify 
the effect of meteorological and hydrologic forcing on 
plant species distributions over a 110-year period in 
Water Conservation Area 1 (WCA1) in the Florida 
Everglades, also known as the Arthur R. Marshall 
Loxahatchee National Wildlife Refuge. Empirical models 
that predict plant species distributions at sites within 
WCA1 were developed by linking temporally sparse seed 
bank data from soil cores with continuous multi-decadal 
daily meteorological and hydrologic time series data. The 
meteorological data included rainfall and maximum daily 
temperatures that spanned the entire study period of 110 
years. The hydrologic data included stage data from two 
gages in WCA1 established in 1954. These stage data 
were hindcasted to be concurrent with the meteorological 
data by using correlation models that fit measured stages 
as a function of the meteorological parameters. The 
historical plant species data came from seven peat cores 
from WCA1. Different depths from each core were 
carbon-dated and assayed for relative percentages of 83 
plant species using pollen counts. The oldest dates were 
more than 1,000 years old; however, only core data that 
overlapped the study period were used, for a total of 67 
assays among the seven cores. Twenty-three of the 
species had ratios of at least 5 percent for one or more of 
the 67 assays, hereafter referred to as the "top23".  
    Using the assays as input vectors, the top23 were 
grouped using the k-means clustering into four plant 
classes that represented the extent to which the various 
species have historically appeared together. This reduced 
the modeling problem to one of predicting the relative 
ratios of the four plant classes from the hindcasted stage 
time-series data. A separate empirical model was 
developed for each class using a multi-layer perceptron 
artificial neural network, which provides multivariate, 
nonlinear curve fitting. The models predicted the relative 
ratios of the classes, and the sums of the predictions are 
near 1. The coefficient of determination (R2) of the 
models varied from 0.87 to 0.96, indicating that the 

relative ratios of the plant classes are predictable, and 
therefore controllable, from stage forcing. Similar soil 
cores are available for the Coastal Plain of North 
Carolina and are planned for the Congaree National Park 
in South Carolina.  
 

 
Figure 1. Data collection sites. Core and water level sites 
are in Water Conservation Area 1 (WCA1) at upper right. 
 

INTRODUCTION  
 
     Long-term changes in meteorology and hydrology 
cause variations in plant species distributions and 
dependent wildlife. For more than a decade work in the 
Florida Everglades has focused on understanding this 
relationship for the purpose of restoring and managing 
this national treasure. The development of similar 
knowledge is now of interest in the Coastal Plain of 
North Carolina and the Congaree National Park in South 
Carolina. This paper describes the development of a 



process model that predicts plant species distributions for 
given water level scenarios for a portion of the 
Everglades.  
 

PROJECT OBJECTIVE 
 

     The objective of this project was to develop a method 
for predicting plant species distributions as a function of 
water level to be used as a planning tool for habitat 
restoration and management. 
 

PROJECT DESCRIPTION 
 
    Intact soil cores from the marshes provide valuable 
data on historical changes in vegetation and hydrologic 
conditions. Pollen and surface water-level data from the 
WCA1 and data from long-term meteorological 
monitoring stations (fig. 1) were used to develop 
empirical predictive models of plant distributions from a 
specified water-level history. The data were: 
 
 Meteorological Data – three precipitation and air 

temperature datasets were downloaded from the 
National Oceanic and Atmospheric Administration’s 
Global Historical Climatology Network 
(http://www.ncdc.noaa.gov/ghcnm/). Period of 
record: 1895 to 2011. 

 Hydrologic Data – water-level data from Site in 
WCA19 (fig. 1) were downloaded from the South 
Florida Water Management District DBHYDRO 
database (http://www.sfwmd.gov). Period of record: 
1954 to 2010. 

 Plant Species Assays – U.S. Geological Survey data 
(unpublished) from seven cores were used for this 
study (fig. 1). The data included the relative 
abundance of 83 plant species using pollen counts 
and age models for each core. The age models for 
the cores varied from 380 to 1,470 calibrated years 
before the present (Traverse, 2007). 

 
    Transforming large numbers of parameters, such as the 
83 plant species’ relative abundance ratios, into a smaller 
set that accurately represents observed process behaviors 
is a means to reduce the dimensionality and complexity 
of analysis and modeling problems. The method for 
clustering the time series into a small set of classes is 
described by Roehl and others (2006). Only data 
overlapping the meteorological data were used in the 
study, leaving 67 (of the 83) assays from the seven 
coring sites. Twenty-three species with relative 
abundance of at least 0.05 (5 percent) for one or more of 
the 67 assays were used for the cluster analysis. Table 1 
lists the resulting four class assignments of the “top 23” 
plant taxa time series. 

  
Table 1. “Top 23" taxa and their class assignments. 
 

 
 
    To obtain concurrent data between the three datasets, 
the surface water-level data from Site 9 were appended 
with hindcasted data back to 1923 using an artificial 
neural network (ANN) model as described by Jensen 
(1994). The inputs to the model were created by 
decorrelating and decomposing the raw rainfall time 
series into different spectral ranges from one month to 10 
years. Figure 2 shows the measured water level with the 
model predictions. Note that the long-term trend shows 
an increase of approximately 2 feet, which has likely 
been a principal cause of habitat change in the WCA1. 
 

 
Figure 2. Measured and hindcasted monthly water levels 
for Site 9 for the period 1923 to 2010. 
 
    The modeling goal was to develop numerical models 
that predict the relative abundance of the four vegetation 
classes (table 1) as functions of water level. The inputs to 
the models are derived monthly water levels for Site 9 in  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

Figure 3. Super-model architecture showing connections of sub-models. 

Figure 4. Measured and predicted class assignments from the Models 2 and Models 3 for seven cores.



addition to the most recent class abundance, which 
represent an “end condition”. Note that water depths vary 
throughout WCA1, and consequently, plant distributions 
also vary site-to-site. Over time, channels have been cut 
along the perimeter of WCA1 to move water from 
agricultural areas to the north to other water conservation 
areas to the south. In addition, smaller channels have 
been cut into the interior for access to the marsh. The 
consequence of the channelization has been the transport 
of  non-point source nutrient loads from agriculture and 
land development to parts of WCA1. The end condition 
inputs enable the model to predict what the current plant 
distribution will change into for a given water level 
scenario.  
    The vegetation models are “sub-models” that 
collectively comprise a “super-model” (fig. 3). The steps 
taken to develop the super-model were as follows. 
 
1. Develop Model 1 to generate a low-frequency 

component of Site 9 water levels using monthly 
counter input by fitting the hindcasted data (fig. 2) 
with a least-squares regression straight line.  

2. Configure a stacked dataset that combines static 
(categorical) and dynamic (time series) data. The 
complete datasets for the cores are stacked one on 
top of the other. This provides for training ANN 
models to learn input-output relations that are 
common to all of the cores. The dynamic data 
included the hindcasted hydrology and class relative 
abundance ratios. The static data included the 
locations of cores and end-condition ratios.  

3. Develop Models 2 to predict the low-frequency 
variability of each class ratio using the stacked 
dataset. A separate ANN was trained for each ratio. 

4. Develop Models 3 to predict the high-frequency 
variability of each class ratio. A separate ANN was 
trained for each ratio. The inputs were the Model 1 
residuals (prediction error = measured – predicted 
values), and the outputs were the Models 2 residuals.  

5. The final predicted class ratios are the summation of 
the predictions from the Models 2 and Models 3 (fig. 
4).  

 
RESULTS AND DISCUSSION 

 
    From the prediction plots (fig. 4) and the model 
performance statistics (coefficient of determination and 
percent model error of the ANN training and testing 
datasets listed on table 2), it appears that long-term rather 
than short-term water-level change is the primary driver 
of the plant population distribution. The high frequency 
variability in the final model predictions (fig. 4) is not 
much different than the Models 2 predictions and the 
coefficients of determination for the Models 3 indicate 

that the models capture less than 10 percent of the high 
frequency variability of the data. While there are 
potentially several sources of error, such as the 
hindcasted Site 9 water-level, unaccounted nutrient 
loading, and ambient temperature change, it is perhaps 
most likely that the assay dates are insufficiently accurate 
to be correctly synchronized with the stage and 
meteorological data. Errors of plus or minus a year or 
two for each assay would prevent the ANNs from 
learning cause-effect relationships on a seasonal time 
scale. 
 
Table 2. Performance statistics for the ANN sub-models 
[N, count; R2, coefficient of determination; PME1, 
percent model error = root mean square error of the 
model predictions divided by the range of the observed 
data.] 

 
1 The percent model error (PME) is the root mean square 
error of the model predictions divided by the range of the 
observed data. 
 
    Fig. 4 shows significant consistency in the model 
predictions for all of the cores. Note that for all cores the 
Class 1 ratios increase monotonically from low initial 
values; and that as a likely consequence, the Class 3 
ratios decrease monotonically from values that are 
initially higher than those of Class 1. The Class 4 ratios 
vary non-monotonically in five cores (1, 2, 3, 6, and 7), 
and clearly vary oppositely to the Class 2 ratios for 
significant portions of the time in all but core 5. These 
results appear to confirm that the long-term increasing 
trend in water level (fig. 2) is a primary driver of plant 
distributions, and that the Models 2 are adequate 
predictors of the outcomes of alternative water level 
management scenarios. 
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