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Analysis of Solvation Model, Adsorption Site, and Adsorbate Coverage

Effects on Adsorption Energies at the Anode in Direct Methanol Fuel Cells

Cameron J. Bodenschatz, Rachel B. Getman
Department of Chemical and Biomolecular Engineering, Clemson University

Results and Conclusions

Adsorption energy equations for adsorption on a platinum (111) surface
o Center adsorbate placement arrangement: pt-CO__+ Pt — Pt-CO. _+ Pt__
o Adsorbate displacement of water arrangement: Pt-CO__+ Pt.  — Pt-CO. + Pt __+ H,O

Motivation

o Fuel cells are currently too cost prohibitive for
widespread application
o Large portion of cost is due to the expensive
transition metals used as catalyst

Objectives

o Use Density Functional Theory (DFT) to model
adsorption of reactants for the rate-limiting mechanism
steplll at the anode in Direct Methanol Fuel Cells
(DMFCs):
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Methods
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Table 2: Model system variables analyzed in this study

Variables
Sphere Color Element

Adsorbate CO, OH
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o Use trends established to minimize computational
expense for electronic energy calculations
o Determine equilibrium adsorbate concentrations for
single-adsorbate cases
o Extrapolate for multiple-adsorbate cases
o Use GCMC code to sample adsorbate diffusion into
metal catalyst as absorbates
o Calculate equilibrium concentrations of
absorbates
o Calculate kinetics parameters of DMFC rate-limiting
step on newly determined catalyst compositions
o Screen potential catalyst materials to find a cheaper
alternative for transition metal catalysts for use in
DMFCs using developed method
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Figure 3: (a) 2D solvation model in the hydrogens up configuration. (b) 2D
solvation model in the hydrogens down configuration. (c) 3D solvation model
mimicking the Ih ice structure in the hydrogens up configuration.

Figure 4: Top views of
the 2D solvation

§ model in the hydrogen
up configuration with
(a) adsorbates placed
in the center of the

d water rings and (b)
adsorbates displacing
water molecules in the
% ring. Both have an

adsorbate coverage of
1/9t ML.

Figure 2: Surface coverages of (a) 1/9t, (b) 2/9t, and (c) 1/3¥ monolayer
(ML) shown from a top view of a (111) surface. The yellow diamond
represents the 3 atom by 3 atom supercell used for VASP simulations.
Bronze spheres are metal atoms and teal spheres are adsorbate atoms.
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