Clemson University TigerPrints

Graduate Research and Discovery Symposium (GRADS)

Research and Innovation Month

Spring 2014

Analysis of Solvation Model, Adsorption Site, and Adsorbate Coverage Effects on Adsorption Energies at the Anode in Direct Methanol Fuel Cells

Cameron J. Bodenschatz *Clemson University*

Rachel B. Getman *Clemson University*

Follow this and additional works at: https://tigerprints.clemson.edu/grads_symposium Part of the <u>Biochemical and Biomolecular Engineering Commons</u>

Recommended Citation

Bodenschatz, Cameron J. and Getman, Rachel B., "Analysis of Solvation Model, Adsorption Site, and Adsorbate Coverage Effects on Adsorption Energies at the Anode in Direct Methanol Fuel Cells" (2014). *Graduate Research and Discovery Symposium (GRADS)*. 104. https://tigerprints.clemson.edu/grads_symposium/104

This Poster is brought to you for free and open access by the Research and Innovation Month at TigerPrints. It has been accepted for inclusion in Graduate Research and Discovery Symposium (GRADS) by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Analysis of Solvation Model, Adsorption Site, and Adsorbate Coverage Effects on Adsorption Energies at the Anode in Direct Methanol Fuel Cells

	Motivation
Fuel	cells are currently too cost prohibitive for
wide	espread application
0	Large portion of cost is due to the expensive
	transition metals used as catalyst
Moc	eling using Density Functional Theory (DFT) could
be u	sed to screen catalyst materials for a cheaper
alter	rnative to transition metals
Moc	deling of these systems are hindered by several
facto	ors
0	Solvation effects between surface species and
	solvent molecules
0	Coverage effects between various adsorbed
	molecules
	 Coverage: the number of adsorbed
	molecules per unit surface area of catalyst

The plane-wave implementation of DFT in the Vienna 0 Ab-Initio Software Package (VASP) was used for all calculations in this study.

Table 1:	Parameters	used in	VASP	calculations

VASP Computational Parameters					
Cutoff Energy	400 eV				
Electronic Iteration Tolerance	1x10 ⁻⁵ eV				
Geometric Iteration Tolerance	0.03 eV/A				
Pseudopotential	Projector Augmented Wave (PAW) ^[2]				
Exchange-Correlation Functional	Perdew-Burke-Ernzerhof (PBE) ^[3]				
K-points	11x11x1				
Dispersion Force Correction	DFT-D2 (Grimme) ^[4]				

Table 2: Model system variables analyzed in this study

Variables						
Adsorbate	CO, OH					
Solvation Model	2D model ^[5] (H-up or H-down), center adsorbate 3D model ^[6] (H-up or H-down), center adsorbate 2D model ^[5] (H-up or H-down), displaced water 3D model ^[6] (H-up or H-down), displaced water					
Adsorption Site	Atop, HCP, FCC					
Adsorbate Coverage	1/9 th ML, 2/9 th ML, 1/3 rd ML					

Figure 2: Surface coverages of (a) 1/9th, (b) 2/9th, and (c) 1/3rd monolayer (ML) shown from a top view of a (111) surface. The yellow diamond represents the 3 atom by 3 atom supercell used for VASP simulations. Bronze spheres are metal atoms and teal spheres are adsorbate atoms

Cameron J. Bodenschatz, Rachel B. Getman Department of Chemical and Biomolecular Engineering, Clemson University

Methods

Teal	Adsorbate
Color code for Figure 2 and Fi	igure 3

White

Figure 3: (a) 2D solvation model in the hydrogens up configuration. (b) 2D solvation model in the hydrogens down configuration. (c) 3D solvation model mimicking the Ih ice structure in the hydrogens up configuration.

Hydrogen

Figure 4: Top views of the 2D solvation model in the hydrogen up configuration with (a) adsorbates placed in the center of the water rings and (b) adsorbates displacing water molecules in the ring. Both have an adsorbate coverage of 1/9th ML.

Figure 5: Effects of adsorption site and adsorbate coverage on the adsorption energy of CO and OH using the 2D solvation model in the hydrogens up configuration. Figure 5a shows effects without the inclusion of dispersion forces and Figure 5b shows effects with the inclusion of dispersion forces.

Results and Conclusions

Adsorption energy equations for adsorption on a platinum (111) surface $Pt-CO_{vac} + Pt_{ice} \rightarrow Pt-CO_{ice} + Pt_{vac}$ Center adsorbate placement arrangement: • Adsorbate displacement of water arrangement: $Pt-CO_{vac} + Pt_{ice} \rightarrow Pt-CO_{ice} + Pt_{vac} + H_2O$

Adsorbate Coverage (ML)

effects with the inclusion of dispersion forces.

Future Work		
Develop a Grand-Canonical Monte Carlo (GCMC) code to sample adsorbate placements and coverages	1.	Gas
 Use trends established to minimize computational expense for electronic energy calculations 	2.	Blö
Determine equilibrium adsorbate concentrations for	3.	Per
single-adsorbate cases		
 Extrapolate for multiple-adsorbate cases Use GCMC code to sample adsorbate diffusion into 	4.	Gri
metal catalyst as absorbates		
 Calculate equilibrium concentrations of 	5.	Ros
absorbates		
Calculate kinetics parameters of DMFC rate-limiting		
step on newly determined catalyst compositions	6.	Jan
Screen potential catalyst materials to find a cheaper		
alternative for transition metal catalysts for use in		
DMFCs using developed method		

6a) Adsorption Energy – Dispersion Not Included

References

steiger, H. A., Markovic, N., Ross, P. N., & Cairns, E. J. (1994). CO Electrooxidation on Well-Characterized Pt-Ru Alloys. *Journal of* Physical Chemistry, 98, 617–625.

energies

- ochl, P. E. (1994). Projector Augmented-wave Method. Journal of Physical Chemistry B. 50(24), 17953-17979.
- rdew, J., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical review letters, 77(18), 3865-3868.
- imme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. *Journal of* Computational Chemistry, 27. 1787-1799.
- ssmeisl, J., Nørskov, J. K., Taylor, C. D., Janik, M. J., & Neurock, M. (2006). Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). The Journal of *Physical Chemistry B, 110*(43), 21833–21839.
- nik, M. J., & Neurock, M. (2007). A first principles analysis of the electro-oxidation of CO over Pt(111). *Electrochimica Acta*, *52*(18), 5517–5528.