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Group testing models with unknown link function
Dewei Wang1)∗, K. B. Kulasekera2), Colin Gallagher3), and Christopher McMahan4)

1, 3, 4 : Department of Mathematical Sciences, Clemson University
2 : Department of Bioinformatics and Biostatistics, University of Louisville

1 Introduction

Let us consider the problem of screening a large number of individuals for an
infectious disease. Traditionally, a specimen (e.g., blood, urine, plasma, etc.)
is collected from each of the individuals and is subsequently tested for the
presence of the infection:

Figure 1. Individual testing.

Due to the large number of individuals, this process can be both expensive
(with respect to testing cost) and time consuming.

Group testing, also known as pooled testing, was first proposed by Dorfman
in 1943 as a method for reducing the cost associated with screening World
War II soldiers for syphilis. In general, group testing involves testing pooled
specimens formed from amalgamating specimens collected from individuals,
rather than testing each specimen separately:

Figure 2. Group testing with size four.

Information that we gain from this pooled testing process are:
• If a group tests negative, then we may conclude that all contributing individ-
uals are negative.
• If a group tests positive, then we may conclude that there is at least one
positive individual in the pool.

When testing for low prevalence diseases, pooling specimens has become a
common method of increasing screening efficiency. In practice, group testing
strategies have been successfully applied in a variety of areas, including ge-
netics, bioterrorism detection, and drug discovery.

Statistical research in group testing are branched into two major area:
•Classification: How to design an efficient decoding algorithm so that one
can diagnose all individuals as either positive or negative with minimum
cost. The basic idea here is to retest individuals’ specimen in positive pools.
•Estimation: How to estimate individuals’ disease risks (the probability of be-
ing infected) by use pool response data only. In this poster, I will present a
new methodology which can flexibly model this probability while main-
taining a good interpretability.

2 Notation

•We consider the situation in which N individuals are to be screened for a
binary characteristic of interest.
•Further, we assume each of these individuals are assigned to a pool of size

nj, for j = 1, ..., J.
•Let Yij denote the true (latent) status of the ith individual in the jth pool, such
that

Yij =

{
1, truly positive,

0, truly negative.

•For modeling, we assume that Xij, a p-dimensional vector of predictor vari-
ables is available for each individual and

P (Y = 1|X = x) = p(x>β)

where p(·) is an unknown link function. The major contribution in our
methodology is that we allow the link function to be unknown and then
estimate it from the data.
•Since tests are carried on pools instead of on individuals, we cannot observe

Yijs. The only information we have are the testing responses for pools; i.e.,
Y ∗j = max{Y1j, . . . , Ynjj}.

If Y ∗j = 0, all the Yij, i = 1, . . . , nj, are zero. If Y ∗j = 1, at least one of them are one,
but the problem is that we do not know which of them are one.

3 Methodology

The methodology we investigated could be summarized as in the following fig-
ure. We first estimate the dependence of the link function p(·) on the coefficient
β. To emphasize this dependence, we denote it as pβ(·). Then we maximize the
estimated likelihood of the data with respect to β to obtain the final estimator
of β.

Figure 3. The procedure of our proposed method.

4 Numerical Analysis

We consider the following models:
(1) : p(x>β) = exp(−1 + 5x>β)/[8 + 8 exp(−1 + 5x>β)]

(2) : p(x>β) = exp(x>β)/20

(3) : p(x>β) = (x>β)2/8

(4) : p(x>β) = [sin(πx>β) + 1.2]/[20 + 160(x>β)2{sign(x>β) + 1}]
Simulation settings:
• β = (

√
3, 1)>/2 = (0.866, 0.500)>

•X: X1 ∼ U [−1, 1], P (X2 = ±0.5) = 0.5

•N = 5000, nj = n ∈ {1, 2, 5, 10}
The above data generating process was repeated 200 times, for each model
and setting, and our methodology was applied to each. The following figure
and table summarize the behavior of the 200 resulting estimates.
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Figure 4. Quantile curves of the 200 estimates of the link function p(·)
One can interpret the 90% interval curves as a “confidence band” constructed
by our estimate. And you can see that the truth is well covered by this band
and the width of this band is not large. It indicates that our estimate of the
link function behaves quite well.

The main message from the following table is that the regression coefficient β

can be well estimated by our procedure. One may observe that the standard
deviation increases as group size becomes larger. It is natural since that more
information are hidden in a larger pool. The same pattern can be found in
Figures 4–5.

Table 1. Mean (standard deviation) of the 200 estimates of the coefficient β

Model Target nj = 1 nj = 2 nj = 5 nj = 10

(1) β1 = 0.866 0.868(0.032) 0.863(0.042) 0.864(0.063) 0.866(0.102)

β2 = 0.500 0.492(0.058) 0.497(0.076) 0.484(0.122) 0.448(0.196)

(2) β1 = 0.866 0.862(0.058) 0.850(0.084) 0.826(0.128) 0.829(0.146)

β2 = 0.500 0.492(0.105) 0.500(0.142) 0.509(0.209) 0.487(0.234)

(3) β1 = 0.866 0.866(0.024) 0.860(0.042) 0.843(0.079) 0.836(0.097)

β2 = 0.500 0.497(0.041) 0.504(0.069) 0.519(0.116) 0.518(0.157)

(4) β1 = 0.866 0.865(0.028) 0.874(0.037) 0.865(0.086) 0.862(0.107)

β2 = 0.500 0.499(0.048) 0.480(0.069) 0.474(0.137) 0.464(0.174)

5 Hepatitis B data

We analyzed a real hepatitis B data set from NHANES 2009-2010. The is
data set consists of 6533 individual observations. Each observation has six
variables:
• Y is binary, indicating the presence (Y = 1) or absence (Y = 0) of the antibodies
to the hepatitis B core antigen in the patient’s serum or plasma.
•X1 is age (continuous).
•X2 is gender (discrete).
•X3 is the cholesterol level (continuous).
•X4 is the alanine aminotransferase level (continuous).
•X5 is ethnicity (discrete).
We considered group sizes nj = n = 1, 2, . . . , 10. After randomly grouping individu-
als, we artificially generate the pooled testing response by

Y ∗j = max{Y1j, . . . , Ynj}.
Then estimates are computed by our methodology. This procedure is repeated
200 times. The pattern of these 200 estimates are summarized in the following
figure.
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Figure 5. Boxplot of estimates of β and Quantile curves of estimates of the link function p(·)

6 Conclusion

We have proposed a new method for modeling data collected form a group
testing scheme which has becomes a standard procedure for screening a large
number of individuals for infectious diseases. Numerical investigation and a
real data analysis have demonstrated the performance of our estimators under
practical settings. We also extend our method to cover the cases of imperfect
testing and missing covariate information. If you are interested in this work,
you are very welcome to contact me at dwang@clemson.edu.
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