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Introduction: 
Metallic nanolaminates consist of alternating nano-scale metallic layers and have 
increased resistance to dislocation flow due to high density of interfaces when compared to 
other composites. 
 
They have potential as both freestanding high-strength foils1 and wear-resistant coatings2.  
Their mechanical properties (strength) can be tailored by controlling the component 
layer thicknesses1,3,4. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cu/Ag and Cu/Nb were chosen as model systems due to their ability to form semi-coherent and 
incoherent interfaces1,3,4, this is due to their various crystal structures (Cu: FCC, Ag: FCC, Nb: 
BCC). 

Experimental Methods: 
Fabrication of Cu/Nb and Cu/Ag: 
•  Substrate: (100) P-type silicon (Ra < 2 nm). 
•  Deposition rates: 4.0 nm/min (Cu), 2.8 nm/min (Ag), and 2.8 nm/min (Nb).  
•  Total coating thickness: 1 µm (1000 nm). 
•  Individual layer thickness: 20 or 100 nm. 
•  Kurt J. Lesker magnetron sputter deposition system (COMSET). 
 

Characterization of Sliding Deformation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hardness: 
•  Measured with a Hysitron Triboscope nanoindentation system. 
•  Three-sided diamond Berkovich tip.  
•  Displacement-controlled indentation mode to maximum depths between 100 and 50 nm, to 

minimize effects of the underlying substrate. 
•  Oliver-Pharr indentation analysis used to determine mechanical properties. 
•  Hardness is defined by:                               where P is maximum load and Ac is contact area 

Grain Size: 
•  Measured with a Digital Instruments Nanoscope IIIa atomic force microscope. 
•  Five areas (scan length: 750–1500 nm) measured. 
•  Grain size calculated using line intercept method. 

Results: 

Initial Properties of Nanolaminate Systems: 
 
 
 
 
 
 
 
 
 
 
 
Scratch Damage of Cu/Ag Systems: 
Upon observing morphology of the scratch path, a shift from plowing abrasion in the thicker system to cutting 
abrasion in the thinner system was noted.  Additionally, a deeper scratch path on the 100 nm system shows that 
the thicker system underwent more damage due to the sliding contact.  These results are consistent with those 
described by previous work2,5. 
 

 
 
 
 
 
 
 
 
 

Sliding Friction of Cu/Ag Systems: 
The coefficient of friction increases with the increase in bilayer thickness (Fig 6.), similar to trends described by 

previous researchers2.   
 
 
 
 
 
 
 
 
 
Scratch Damage of Cu/Nb Systems: 
When sliding contact was imposed on the 100 nm Cu/Nb systems, the films buckled due to compressive stress.  
Additionally, when viewed in cross-section, plastic deformation was observed.  This deformation in the upper 
surface of the film was due to the scratching and not the delamination.  Also, it was seen that the deformation 
was localized to the uppermost layers and did not permeate through the thickness of the film. 
 
 
 
 

 
 
 
 
 
 

Results (continued): 
Microstructure Evolution of Cu/Nb Systems: 
Sliding friction causes localized heating at the point of contact.  In order to understand 
implications of that heating on long term stability, additional work has sought to examine 
microstructural evolution. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Discussion and Conclusions: 
•  The same relationship between layer thickness and hardness were observed as in other 

groups1,3,4.   

•  Decreased friction observed in thinner layered Cu/Ag system.  Similar to trends reported 
elsewhere2. 

•  Transition in abrasion morphology from plowing to cutting as layer thickness is decreased.  
Similar to trends reported elsewhere2. 

•  Friction and wear morphology behavior is likely due to hardness of film systems5. 

•  Buckling and localized yielding observed along scratch path in Cu/Nb.  Deformation due to 
scratch did not penetrate through depth of nanolaminate. 

•  Effect of heating and aggressive species on microstructural development observed, possible 
pinning of grain growth by impurities. 

•  Non-uniform grain growth observed in system heated in vacuum. 

. 
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Future Work: 
 
 
 
 
 
 
 
 
 
 

Aims: 
 
•  Understand the effects of initial stress 

on mechanical behavior of model 
nanolaminate systems. 

•  Determine dislocation (and 
deformation zone) evolution of model 
nanolaminate systems as a result of 
dynamic loading. 

•  Elucidate residual stress evolution in 
nanolaminate films during thermal 
cycling. 

Table 1 Scratch test parameters used for this study. 

Future Work: 
•  Further examination of friction progression in 

nanolaminates using scratch and wear testing. 

•  Examination of Cu/Ni systems to complement Cu/Ag and 
Cu/Nb. 

•  Use of FIB and TEM to examine dislocation evolution in 
individual layers due to deformation. 

•  Correlation with theory in dislocation dynamic simulations. 
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Fig. 1 Concept map of major issues for stable and 
durable nanolaminate systems. 

Scratch	
  Test	
  Parameters	
  
Load	
   Velocity	
   Length	
   #	
  of	
  Passes	
  
0.5	
  N	
   1	
  mm/sec	
   2	
  cm	
   20	
  Passes	
  

•  Linear reciprocating wear tests conducted using CETR UMT-2.   
•  Counterface: 440C SS 3/8” ball bearing. 
•  Table 1 shows parameters used for the scratch testing.  
•  Plastic deformation observation using non-contact profilometry (Wyko white light 

interferometer) and field emission scanning SEM (Hitachi S-4800). 

Fig. 2 Linear reciprocating wear 
test of Cu/Nb nanolaminate and 
stainless steel counterface. 

Fig. 6 Coefficient of friction of Cu/Ag nanolaminates 
during scratch testing.  Thicker system shows higher 
steady state friction level. 

Fig. 5 Measured film profiles following scratch 
testing.  Thicker system (100 nm) shows more 
deformation in scratch path. 

Fig. 4 Plan-view of sliding wear 
deformation of 100 nm (A) and 20 nm (B) 
Cu-Ag nanolaminates. 

A B 

Sliding Direction 

Fig. 7 Cross-sectional views of sliding wear 
deformation of 100 nm (A) and 20 nm Cu-Ag 
(B) nanolaminates. 

A B 

Sliding Direction 

Fig. 8 Cross-sectional view of deformation in 100 nm Cu/Nb following sliding 
contact.  Buckling and localized scratch damage can be seen. 

Fig. 10 Non-uniform grain size observed by 
AFM in Cu/Nb system heated in vacuum. 

Fig. 9 Grain growth observed in 20 nm Cu/Nb 
systems in varying environments. Possible 
grain pinning due to impurities. 

Research	
  Hypothesis	
  
It	
  is	
  hypothesized	
  that	
  as	
  the	
  disloca8on	
  density	
  and	
  residual	
  stresses	
  within	
  metallic	
  

nanolaminates	
  increase,	
  their	
  wear	
  mechanisms	
  will	
  change.	
  

Fig. 3 Hardness of nanolaminate systems increase with decreasing 
thickness (A), 20 nm nanolaminate geometry as seen in Cu/Nb TEM 

(B), initial XRD patterns for Cu/Nb (C), and Cu/Ag (D). 

Hardness of nanolaminate systems behave similar to description by the confined layer slip model1,2.  Decreased 
layer thickness shows elevated hardness (Fig. 3A).  Initial nanolaminate structures were formed (Fig. 3B, 3C, 3D). 

H = P / Ac

A B C 

D 

Fig. 11 Confined layer slip model, 
image taken from Misra1. 
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